Invariance is bliss! Was ist algebraische Topologie?

Größe: px
Ab Seite anzeigen:

Download "Invariance is bliss! Was ist algebraische Topologie?"

Transkript

1 Invariance is bliss! Was ist algebraische Topologie? Clara Löh Universität Regensburg 29. Juli 2011

2 Was sind Invarianten? Clara Löh Was sind Invarianten? 2 / 17

3 Was sind Invarianten? Clara Löh Was sind Invarianten? 2 / 17

4 Was sind Invarianten? Problem Commander Blorx möchte dem hundertköpfigen Drachen Siegfried den Garaus machen. Clara Löh Was sind Invarianten? 2 / 17

5 Überlebt Siegfried? Problem Commander Blorx möchte dem hundertköpfigen Drachen Siegfried den Garaus machen; ihm stehen dazu die Schwerter Notung, Gram und Balmung zur Verfügung. Clara Löh Was sind Invarianten? 3 / 17

6 Überlebt Siegfried? Problem Commander Blorx möchte dem hundertköpfigen Drachen Siegfried den Garaus machen; ihm stehen dazu die Schwerter Notung, Gram und Balmung zur Verfügung. Ein Hieb mit Notung entfernt genau 36 Köpfe des Drachen; genetisch bedingt wachsen dann jedoch 12 Köpfe nach. Gram entfernt genau 42 Köpfe, es wachsen 27 nach. Balmung entfernt genau 9 Köpfe, es wachsen 21 nach. Clara Löh Was sind Invarianten? 3 / 17

7 Überlebt Siegfried? Problem Commander Blorx möchte dem hundertköpfigen Drachen Siegfried den Garaus machen; ihm stehen dazu die Schwerter Notung, Gram und Balmung zur Verfügung. Ein Hieb mit Notung entfernt genau 36 Köpfe des Drachen; genetisch bedingt wachsen dann jedoch 12 Köpfe nach. Gram entfernt genau 42 Köpfe, es wachsen 27 nach. Balmung entfernt genau 9 Köpfe, es wachsen 21 nach. Kann Blorx alle Köpfe von Siegfried abschlagen? Clara Löh Was sind Invarianten? 3 / 17

8 Überlebt Siegfried? Was passiert, wenn Blorx und Notung, Gram, Balmung in Aktion treten? Clara Löh Was sind Invarianten? 4 / 17

9 Überlebt Siegfried? Was passiert, wenn Blorx und Notung, Gram, Balmung in Aktion treten? Notung: Anzahl der Köpfe ändert sich um = 24 bzw. 36. Gram: Anzahl der Köpfe ändert sich um = 15 bzw. 42. Balmung: Anzahl der Köpfe ändert sich um = 12 bzw. 9. Clara Löh Was sind Invarianten? 4 / 17

10 Überlebt Siegfried? Was passiert, wenn Blorx und Notung, Gram, Balmung in Aktion treten? Notung: Anzahl der Köpfe ändert sich um = 24 bzw. 36. Gram: Anzahl der Köpfe ändert sich um = 15 bzw. 42. Balmung: Anzahl der Köpfe ändert sich um = 12 bzw. 9. Der Rest der Anzahl der Köpfe von Siegfried bei Division durch 3 ist also eine Invariante. Clara Löh Was sind Invarianten? 4 / 17

11 Überlebt Siegfried? Was passiert, wenn Blorx und Notung, Gram, Balmung in Aktion treten? Notung: Anzahl der Köpfe ändert sich um = 24 bzw. 36. Gram: Anzahl der Köpfe ändert sich um = 15 bzw. 42. Balmung: Anzahl der Köpfe ändert sich um = 12 bzw. 9. Der Rest der Anzahl der Köpfe von Siegfried bei Division durch 3 ist also eine Invariante. Da Siegfried zu Beginn genau 100 Köpfe hat und 100 im Gegensatz zu 0 nicht durch 3 teilbar ist, kann Blorx den Drachen Siegfried nicht vollständig enthaupten! Clara Löh Was sind Invarianten? 4 / 17

12 Was sind Invarianten? Invarianten sind einfache mathematische Objekte (z.b. Zahlen) oder Eigenschaften, die sich unter gewissen Transformationen der betrachteten Objekte nicht oder nur kontrolliert ändern. Clara Löh Was sind Invarianten? 5 / 17

13 Was ist Topologie? Clara Löh Was ist Topologie? 6 / 17

14 Was ist Geometrie? Geometrie: Untersuchung/Klassifikation geometrischer Objekte und geometrischer Transformationen. Geometrische Objekte: Objekte, auf denen es Längen-, Winkel- und Volumenbegriffe gibt. Geometrische Transformationen: ändern Längen/Winkel/Volumina nicht oder nur kontrolliert. Clara Löh Was ist Topologie? 7 / 17

15 Was ist Geometrie? Geometrie: Untersuchung/Klassifikation geometrischer Objekte und geometrischer Transformationen. Geometrische Objekte: Objekte, auf denen es Längen-, Winkel- und Volumenbegriffe gibt. Geometrische Transformationen: ändern Längen/Winkel/Volumina nicht oder nur kontrolliert. Clara Löh Was ist Topologie? 7 / 17

16 Was ist Geometrie? Geometrie: Untersuchung/Klassifikation geometrischer Objekte und geometrischer Transformationen. Geometrische Objekte: Objekte, auf denen es Längen-, Winkel- und Volumenbegriffe gibt. Geometrische Transformationen: ändern Längen/Winkel/Volumina nicht oder nur kontrolliert. Clara Löh Was ist Topologie? 7 / 17

17 Was ist Geometrie? Geometrie: Untersuchung/Klassifikation geometrischer Objekte und geometrischer Transformationen. Geometrische Objekte: Objekte, auf denen es Längen-, Winkel- und Volumenbegriffe gibt. Geometrische Transformationen: ändern Längen/Winkel/Volumina nicht oder nur kontrolliert. Clara Löh Was ist Topologie? 7 / 17

18 Was ist Geometrie? Winkelsumme: 180 Grad Geometrie: Untersuchung/Klassifikation geometrischer Objekte und geometrischer Transformationen. Geometrische Objekte: Objekte, auf denen es Längen-, Winkel- und Volumenbegriffe gibt. Geometrische Transformationen: ändern Längen/Winkel/Volumina nicht oder nur kontrolliert. Clara Löh Was ist Topologie? 7 / 17

19 Was ist Geometrie? Winkelsumme: 180 Grad a 2 + b 2 = c 2 Geometrie: Untersuchung/Klassifikation geometrischer Objekte und geometrischer Transformationen. Geometrische Objekte: Objekte, auf denen es Längen-, Winkel- und Volumenbegriffe gibt. Geometrische Transformationen: ändern Längen/Winkel/Volumina nicht oder nur kontrolliert. b a c Clara Löh Was ist Topologie? 7 / 17

20 Was ist Geometrie? Winkelsumme: 180 Grad a 2 + b 2 = c 2 Geometrie: Untersuchung/Klassifikation geometrischer Objekte und geometrischer Transformationen. Geometrische Objekte: Objekte, auf denen es Längen-, Winkel- und Volumenbegriffe gibt. Geometrische Transformationen: ändern Längen/Winkel/Volumina nicht oder nur kontrolliert. b a c Clara Löh Was ist Topologie? 7 / 17

21 Was ist Topologie? Topologie: Untersuchung/Klassifikation topologischer Objekte und topologischer Transformationen. Topologische Objekte: Objekte, auf denen es nur einen qualitativen Begriff von Nähe gibt, keinen quantitativen ( Gummi-Objekte ). Topologische Transformationen: ändern die prinzipielle Form nicht oder nur kontrolliert. Clara Löh Was ist Topologie? 8 / 17

22 Was ist Topologie? Topologie: Untersuchung/Klassifikation topologischer Objekte und topologischer Transformationen. Topologische Objekte: Objekte, auf denen es nur einen qualitativen Begriff von Nähe gibt, keinen quantitativen ( Gummi-Objekte ). Topologische Transformationen: ändern die prinzipielle Form nicht oder nur kontrolliert. Clara Löh Was ist Topologie? 8 / 17

23 Was ist Topologie? Topologie: Untersuchung/Klassifikation topologischer Objekte und topologischer Transformationen. Topologische Objekte: Objekte, auf denen es nur einen qualitativen Begriff von Nähe gibt, keinen quantitativen ( Gummi-Objekte ). Topologische Transformationen: ändern die prinzipielle Form nicht oder nur kontrolliert. Clara Löh Was ist Topologie? 8 / 17

24 Was ist Topologie? Topologie: Untersuchung/Klassifikation topologischer Objekte und topologischer Transformationen. Topologische Objekte: Objekte, auf denen es nur einen qualitativen Begriff von Nähe gibt, keinen quantitativen ( Gummi-Objekte ). Topologische Transformationen: ändern die prinzipielle Form nicht oder nur kontrolliert. Clara Löh Was ist Topologie? 8 / 17

25 Was ist Topologie? Topologie: Untersuchung/Klassifikation topologischer Objekte und topologischer Transformationen. Topologische Objekte: Objekte, auf denen es nur einen qualitativen Begriff von Nähe gibt, keinen quantitativen ( Gummi-Objekte ). Topologische Transformationen: ändern die prinzipielle Form nicht oder nur kontrolliert. Clara Löh Was ist Topologie? 8 / 17

26 Wozu Topologie? Welche Form hat das Universum? Und wie können wir das überprüfen, ohne das Universum zu verlassen? Existenzaussagen für die Lösbarkeit gewisser Gleichungen Modellierung von kombinatorischen/diskreten Problemen; z.b. Einbettungs- und Färbungsprobleme für Graphen, untere Schranken für verteilte Algorithmen... Clara Löh Was ist Topologie? 9 / 17

27 Was ist algebraische Topologie? Clara Löh Was ist algebraische Topologie? 10 / 17

28 Was ist algebraische Topologie? Problem Im allgemeinen ist es sehr schwer, herauszufinden, ob zwei gegebene topologische Objekte topologisch gleich sind oder nicht da es sehr viele topologische Transformationen gibt. Clara Löh Was ist algebraische Topologie? 10 / 17

29 Was ist algebraische Topologie? Idee Übersetzung der Topologie in ein starreres mathematische Gebiet. Algebraische Topologie: Topologie Algebra topologische Objekte algebraische Objekte topologische Transformationen algebraische Transformationen 2 Clara Löh Was ist algebraische Topologie? 11 / 17

30 Beispiel: Die Euler-Charakteristik Zellenzerlegungen der Kugeloberfläche: Clara Löh Was ist algebraische Topologie? 12 / 17

31 Beispiel: Die Euler-Charakteristik Zellenzerlegungen der Kugeloberfläche: Definition Die Euler-Charakteristik eines topologischen Raumes bezüglich einer Zellenzerlegung ist definiert als Anzahl der 0-dimensionalen Zellen (Ecken) Anzahl der 1-dimensionalen Zellen (Kanten) + Anzahl der 2-dimensionalen Zellen (Flächen)... Clara Löh Was ist algebraische Topologie? 12 / 17

32 Topologische Invarianz der Euler-Charakteristik Satz Die Euler-Charakteristik ist eine topologische Invariante; insbesondere hängt sie nicht von der gewählten Zellenzerlegung ab! Clara Löh Was ist algebraische Topologie? 13 / 17

33 Topologische Invarianz der Euler-Charakteristik Satz Die Euler-Charakteristik ist eine topologische Invariante; insbesondere hängt sie nicht von der gewählten Zellenzerlegung ab! Eulersche Polyederformel Für jede überkreuzungsfreie Einbettung eines Graphen G in die Ebene oder in die Kugeloberfläche gilt: 2 = Anzahl der Ecken von G Anzahl der Kanten von G + Anzahl der Flächen dieser Einbettung. Clara Löh Was ist algebraische Topologie? 13 / 17

34 Wie sieht der Planet Goleos aus? Problem Blorx, Blyrx und Blurx leben auf dem Planeten Goleos. Es gelingt ihnen, Hochgeschwindigkeitsstraßen zu bauen, die ihre Domizile jeweils mit den drei Hauptattraktionen auf Goleos zu verbinden Clara Lo h Was ist algebraische Topologie? 14 / 17

35 Wie sieht der Planet Goleos aus? Problem Blorx, Blyrx und Blurx leben auf dem Planeten Goleos. Es gelingt ihnen, Hochgeschwindigkeitsstraßen zu bauen, die ihre Domizile jeweils mit den drei Hauptattraktionen auf Goleos zu verbinden Clara Lo h Was ist algebraische Topologie? 14 / 17

36 Wie sieht der Planet Goleos aus? Problem Blorx, Blyrx und Blurx leben auf dem Planeten Goleos. Es gelingt ihnen, Hochgeschwindigkeitsstraßen zu bauen, die ihre Domizile jeweils mit den drei Hauptattraktionen auf Goleos zu verbinden Clara Lo h Was ist algebraische Topologie? 14 / 17

37 Wie sieht der Planet Goleos aus? Problem Blorx, Blyrx und Blurx leben auf dem Planeten Goleos. Es gelingt ihnen, Hochgeschwindigkeitsstraßen zu bauen, die ihre Domizile jeweils mit den drei Hauptattraktionen auf Goleos zu verbinden Clara Lo h Was ist algebraische Topologie? 14 / 17

38 Wie sieht der Planet Goleos aus? Problem Blorx, Blyrx und Blurx leben auf dem Planeten Goleos. Es gelingt ihnen, Hochgeschwindigkeitsstraßen zu bauen, die ihre Domizile jeweils mit den drei Hauptattraktionen auf Goleos zu verbinden ohne dass sich diese Straßen u berkreuzen oder Tunnel/Bru cken no tig sind.??? Clara Lo h Was ist algebraische Topologie? 14 / 17

39 Wie sieht der Planet Goleos aus? Welche Schlüsse können wir daraus über den Planeten Goleos ziehen???? Clara Löh Was ist algebraische Topologie? 15 / 17

40 Kann Goleos eine Kugel oder eine Scheibe sein? Sei G der Graph, der diese Situation beschreibt: Angenommen, Goleos wäre eine Kugel oder eine Scheibe. Dann folgt: Clara Löh Was ist algebraische Topologie? 16 / 17

41 Kann Goleos eine Kugel oder eine Scheibe sein? Sei G der Graph, der diese Situation beschreibt: Angenommen, Goleos wäre eine Kugel oder eine Scheibe. Dann folgt: Der Graph G besitzt eine Einbettung in die Kugeloberfläche/Ebene. Clara Löh Was ist algebraische Topologie? 16 / 17

42 Kann Goleos eine Kugel oder eine Scheibe sein? Sei G der Graph, der diese Situation beschreibt: Angenommen, Goleos wäre eine Kugel oder eine Scheibe. Dann folgt: Der Graph G besitzt eine Einbettung in die Kugeloberfläche/Ebene. Also beträgt die Anzahl der Flächen dieser Einbettung: 2 Ecken von G + Kanten von G = 2 (3 + 3) + (3 3) = 5. Clara Löh Was ist algebraische Topologie? 16 / 17

43 Kann Goleos eine Kugel oder eine Scheibe sein? Sei G der Graph, der diese Situation beschreibt: Angenommen, Goleos wäre eine Kugel oder eine Scheibe. Dann folgt: Der Graph G besitzt eine Einbettung in die Kugeloberfläche/Ebene. Also beträgt die Anzahl der Flächen dieser Einbettung: 2 Ecken von G + Kanten von G = 2 (3 + 3) + (3 3) = 5. Andererseits hat jeder Kreis in G mindestens 4 Kanten, und jede Kante benachbart höchstens 2 Flächen. Clara Löh Was ist algebraische Topologie? 16 / 17

44 Kann Goleos eine Kugel oder eine Scheibe sein? Sei G der Graph, der diese Situation beschreibt: Angenommen, Goleos wäre eine Kugel oder eine Scheibe. Dann folgt: Der Graph G besitzt eine Einbettung in die Kugeloberfläche/Ebene. Also beträgt die Anzahl der Flächen dieser Einbettung: 2 Ecken von G + Kanten von G = 2 (3 + 3) + (3 3) = 5. Andererseits hat jeder Kreis in G mindestens 4 Kanten, und jede Kante benachbart höchstens 2 Flächen. Also kann diese Einbettung von G höchstens 2 Kanten von G 4 Flächen besitzen. Widerspruch! = < 5 Clara Löh Was ist algebraische Topologie? 16 / 17

45 Goleos kann keine Kugel oder Scheibe sein! Clara Löh Was ist algebraische Topologie? 17 / 17

46 Goleos kann keine Kugel oder Scheibe sein! Clara Löh Was ist algebraische Topologie? 17 / 17

Gruppen, Graphen, Symmetrie Was sind negativ gekrümmte Gruppen?

Gruppen, Graphen, Symmetrie Was sind negativ gekrümmte Gruppen? Gruppen, Graphen, Symmetrie Was sind negativ gekrümmte Gruppen? MNU-Landestagung. 02/2012. Regensburg Clara Löh Fakultät für Mathematik. Universität Regensburg Überblick Zwei Paradigmen der modernen (theoretischen)

Mehr

Triangulierungen und Kartographie

Triangulierungen und Kartographie Triangulierungen und Kartographie Ein Einblick in geometrische und topologische Methoden Stefan Krauss, Clara Löh Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg 30. Oktober 2015 Was

Mehr

Triangulierungen und Kartographie

Triangulierungen und Kartographie Triangulierungen und Kartographie Ein Einblick in geometrische und topologische Methoden Stefan Krauss, Clara Löh Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg 23. Juli 2014 Was verraten

Mehr

Lernmodul 2 Modelle des Raumes

Lernmodul 2 Modelle des Raumes Folie 1 von 21 Lernmodul 2 Modelle des Raumes Bildnachweis: www. tagesschau.de Folie 2 von 21 Modelle des Raumes Übersicht Motivation Was ist Raum? Formalismus und Invarianz Metrischer Raum/Euklidischer

Mehr

Teilgebiete der Abbildungsgeometrie

Teilgebiete der Abbildungsgeometrie Teilgebiete der Abbildungsgeometrie In der Abbildungsgeometrie wird zur Klassifizierung von Eigenschaften des Raumes (bzw. der Ebene) und der in ihm enthaltenen Objekte (Geraden, Kreise, Polytope, usw.)

Mehr

(In)Varianten. Warum Drachen überleben und Ufos kollidieren. Clara Löh September 2008

(In)Varianten. Warum Drachen überleben und Ufos kollidieren. Clara Löh September 2008 (In)Varianten Warum Drachen überleben und Ufos kollidieren Clara Löh September 2008 Invarianten sind einfache mathematische Objekte (z.b. Zahlen) oder Eigenschaften, die sich unter gewissen Operationen

Mehr

Ideen der algebraischen Topologie

Ideen der algebraischen Topologie Prof. Dr. Stefan Wewers Christian Steck Institut für Reine Mathematik Seminar im SS 13 Ideen der algebraischen Topologie vorläufiges Programm Stand: 9.4.2013 1 Einführung Ziel des Seminars ist, die Teilnehmer

Mehr

Achilles und die Schildkröte Sommersemester 2008

Achilles und die Schildkröte Sommersemester 2008 Achilles und die Schildkröte Sommersemester 2008 Färbbarkeit planarer Graphen Alexander Damarowsky 20.05.2008 V6, 15.05.2008 Problemstellung /Ziel des Vortrags: Wie viele Farben werden benötigt, um jeden

Mehr

Geoinformation I Landkarten

Geoinformation I Landkarten Folie 1 von 17 Geoinformation I Landkarten Folie 2 von 17 Landkarte Übersicht! Tesselation: Definition! Landkarte " Definition " Einschränkungen " Topologische Beziehungen " Euler-Formel " Topologische

Mehr

Geoinformation I Landkarten

Geoinformation I Landkarten Folie 1 von 17 Geoinformation I Landkarten Folie 2 von 17 Landkarte Übersicht Tesselation: Definition Landkarte Definition Einschränkungen Topologische Beziehungen Euler-Formel Topologische Fehler Integritätsbedingungen

Mehr

Wie druckt man eine Mannigfaltigkeit? Über die Topologie des 3D-Drucks

Wie druckt man eine Mannigfaltigkeit? Über die Topologie des 3D-Drucks Wie druckt man eine Mannigfaltigkeit? Über die Topologie des 3D-Drucks MNU-Landestagung. 02/2016. Regensburg Clara Löh Fakultät für Mathematik. Universität Regensburg Überblick Ziele Verständnis des Grundprinzip

Mehr

Polyeder, Konvexität, Platonische und archimedische Körper

Polyeder, Konvexität, Platonische und archimedische Körper Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten

Mehr

Höher, Schneller, Weiter!

Höher, Schneller, Weiter! Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Höher, Schneller, Weiter! Das Extremalprinzip Das Extremalprinzip ist eine vielseitig einsetzbare Lösungstechnik für mathematische

Mehr

3 Planare Graphen die Eulersche Polyederformel

3 Planare Graphen die Eulersche Polyederformel 3 Planare Graphen die Eulersche Polyederformel Planare Graphen sind solche Graphen, die sich ohne Überkreuzungen von Kanten in eine Ebene zeichnen lassen. Wir nehmen hierbei an, dass die Knoten als Punkte

Mehr

Vom Satz des Pythagoras zu aktueller Algebraischer Geometrie

Vom Satz des Pythagoras zu aktueller Algebraischer Geometrie Vom Satz des Pythagoras zu aktueller Algebraischer Geometrie Universität des Saarlandes, Saarbrücken, E-Mail: Labs@Math.Uni-Sb.de, mail@oliverlabs.net, Web: www.oliverlabs.net Saarbrücken, Otto Hahn Gymnasium,

Mehr

Lernmodul 2 Topologie. Lernmodul 2: Geoobjekte und ihre Modellierung - Topologie

Lernmodul 2 Topologie. Lernmodul 2: Geoobjekte und ihre Modellierung - Topologie Folie 1 von 71 Lernmodul 2 Topologie Folie 2 von 71 Topologie Übersicht Topologie - Allgemeines Punktmengentopologie Nachbarschaft Beispiele zur Nachbarschaft Nähe, offene/geschlossene Menge Abschluß,

Mehr

Gruppenstruktur und Gruppenbild

Gruppenstruktur und Gruppenbild Prom. Nr. 2155 Gruppenstruktur und Gruppenbild VON DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE IN ZÜRICH ZUR ERLANGUNG DER WÜRDE EINES DOKTORS DER MATHEMATIK GENEHMIGTE PROMOTIONSARBEIT VORGELEGT VON Hans

Mehr

Unendliche Gruppen als geometrische Objekte

Unendliche Gruppen als geometrische Objekte Unendliche Gruppen als geometrische Objekte Ralf Meyer Georg-August-Universität Göttingen 12. November 2004 1 Endlich erzeugte Gruppen und die Wortmetrik Wir definieren endlich erzeugte Gruppen und führen

Mehr

Algebraische Topologie

Algebraische Topologie Kurzbeschreibung des Zyklus Algebraische Topologie Thomas Schick 22. Juni 2012 1 Studienobjekte (beispielsweise) (1) topologische Räume (2) Mannigfaltigkeiten, z.b. Flächen (3) Knoten in R 3 (4) Beziehungen

Mehr

1 Rund um die Kugel. a) Mathematische Beschreibung

1 Rund um die Kugel. a) Mathematische Beschreibung Rund um die Kugel a) Mathematische Beschreibung Die Punkte der Oberfläche haben vom Mittelpunkt M alle die Entfernung r. Oder, mit den Mitteln der analytischen Geometrie: Für alle Punkte der Kugeloberfläche

Mehr

Ein Turnierplan mit fünf Runden

Ein Turnierplan mit fünf Runden Mathematik I für Informatiker Graphen p. 1 Ein Turnierplan mit fünf Runden c b a c b a c b a c b a c b a d e d e d e d e d e Mathematik I für Informatiker Graphen p. 2 Definition: Graph Ein (schlichter)

Mehr

Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen

Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Sommersemester 2012 Matthias Fischer mafi@upb.de Vorlesung 12 26.6.2012 Matthias Fischer 374 Übersicht Motivation Modell der Sichtbarkeit Eigenschaft

Mehr

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn 1. Geschichte - Frage kommt Mitte des 19 Jahrhunderts auf Wie viele Farben benötigt man um eine Karte

Mehr

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse Alg. Ebene e Hannah Markwig Technische Universität Kaiserslautern 6. Juli 2006 Alg. Inhalt 1 () 2 3 Der Algorithmus zum Zählen ebener 4 Der Algorithmus Alg. Algebraische Geometrische Objekte sind Nullstellengebilde

Mehr

8. Modelle für feste Körper

8. Modelle für feste Körper 8. Modelle für feste Körper Modell: Abbild der Realität, welches bestimmte Aspekte der Realität repräsentiert (und andere ausblendet) mathematische Modelle symbolische Modelle Datenmodelle Experimentalmodelle

Mehr

Kantengraphen und Planare Graphen. Seminararbeit

Kantengraphen und Planare Graphen. Seminararbeit Kantengraphen und Planare Graphen Seminararbeit in Mathematisches Seminar für LAK 621.378 SS 2018 vorgelegt von Anna Maria Gärtner bei: Baur, Karin, Univ.-Prof. Dr.phil. Graz, 2018 Inhaltsverzeichnis 1

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Diskrete Mathematik Graphentheorie (Übersicht)

Diskrete Mathematik Graphentheorie (Übersicht) Diskrete Mathematik Graphentheorie (Übersicht) Dr. C. Löh 2. Februar 2010 0 Graphentheorie Grundlagen Definition (Graph, gerichteter Graph). Ein Graph ist ein Paar G = (V, E), wobei V eine Menge ist (die

Mehr

Graphen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Graphen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Ein Turnierplan mit fünf Runden c d b e a c d b e a c d b e a c d b b c a a d e e Das Diagramm beschreibt

Mehr

6 Einige Beweisprinzipien. Themen: Das Invarianzprinzip Das Extremalprinzip

6 Einige Beweisprinzipien. Themen: Das Invarianzprinzip Das Extremalprinzip 6 Einige Beweisprinzipien Themen: Das Invarianzprinzip Das Extremalprinzip Das Invarianzprinzip In einem Problem wird ein Objekt behandelt, das sich ständig ändert, beispielsweise eine Zahlenfolge oder

Mehr

Tag der Mathematik Trainingslager Themenkomplex 1: Geschickt Gleichungen aufstellen

Tag der Mathematik Trainingslager Themenkomplex 1: Geschickt Gleichungen aufstellen Themenkomplex 1: Geschickt Gleichungen aufstellen Bei vielen Aufgaben lohnt es sich, die Aufgabenstellung in eine Gleichung (oder mehrere Gleichungen) zu überführen. Ob diese Gleichungen dann am Ende hilfreich

Mehr

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt Diskrete Mathematik Hamiltonsche Graphen Teil I Karina Arndt 21.06.2006 Übersicht Einleitung Hamiltonsch und eulersch Hamiltonsche Kreise Hamiltonsche Graphen neu zeichnen Kreise und Wege Reguläre Graphen

Mehr

Wann hat ein gleichschenkliges Dreieck drei gleich große Winkel? Erkläre.

Wann hat ein gleichschenkliges Dreieck drei gleich große Winkel? Erkläre. Aufgabe 1: Es ist ein Schneekristall abgebildet. Kreuze die wahren Aussagen an: Die abgebildete Figur ist achsensymmetrisch. Die abgebildete Figur ist drehsymmetrisch. Die abgebildete Figur ist keines

Mehr

Etwas Topologie. Thomas Jahn. LV Algebraische Topologie am 1. Dezember 2014

Etwas Topologie. Thomas Jahn. LV Algebraische Topologie am 1. Dezember 2014 Etwas Topologie Thomas Jahn LV Algebraische Topologie am 1. Dezember 214 1 Eulerscher Polyedersatz [2] Satz 1.1 (Eulerscher Polyedersatz). Sei G ein ebener Graph. (Multikanten und Schlingen sind erlaubt,

Mehr

Naiver Algorithmus für Hamiltonkreis

Naiver Algorithmus für Hamiltonkreis Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE

Mehr

GRUNDZUGE DER MATHEMATIK

GRUNDZUGE DER MATHEMATIK 40483 GRUNDZUGE DER MATHEMATIK FÜR LEHRER AN GYMNASIEN SOWIE FÜR MATHEMATIKER IN INDUSTRIE UND WIRTSCHAFT BAND II GEOMETRIE Mit zahlreichen Abbildungen GÖTTINGEN VANDENHOECK & RUPRECHT 1960 INHALT Zeichen

Mehr

Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005

Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005 Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005 Antonia Wittmers Igor Savchenko Konvexe Hüllen Inkrementeller Algorithmus für die konvexe Hülle Dabei heißt inkrementeller Algorithmus,

Mehr

Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten:

Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten: 1 Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten: Beweise, die eine Behauptung nicht nur bestätigen, sondern auch erklären,

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Chromatosaurier Lösungen

Chromatosaurier Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Chromatosaurier Lösungen Aufgabe 1 (Tetrachromatosaurier (nur für die Klassen 7/8) [4 Punkte]). Bei Ausgrabungen wurde der folgende

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik.

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik. Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5 Symmetrie Symmetrie Geometrische Symmetrie Beispiele Symmetrische geometrische Objekte (2D)

Mehr

Invarianten in der Mathematik

Invarianten in der Mathematik Prof. Dr. A. Beliakova, 23. Schweizerischer Tag über Mathematik und Unterricht Was ist eine Invariante? Invarianten in der Mathematik Aufgabe 1 Können die 11 gezeichnenten Zahnräder sich gleichzeitig drehen?

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung)

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

Beweise und Widerlegungen

Beweise und Widerlegungen Beweise und Widerlegungen Alberto Abbondandolo Ruhr-Universität Bochum Tag der offenen Tür 2015 Einige Polyeder Einige Polyeder V = 4, S = 6, F = 4 V = 8, S = 12, F = 6 Einige Polyeder V = 4, S = 6, F

Mehr

Die Poincaré-Vermutung

Die Poincaré-Vermutung Die Poincaré-Vermutung Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 19. Mai 2014 Warum dieser Vortrag? Mehr als 100

Mehr

EULER-CHARAKTERISTIK KONVEXER POLYEDER

EULER-CHARAKTERISTIK KONVEXER POLYEDER MINI-IKM 1998 EULER-CHARAKTERISTIK KONVEXER POLYEDER Eberhard-Karls-Universität Tübingen, März 1998 Richard Bödi Inhalt 1. Der euklidische Raum, affine Räume...........................................1

Mehr

Wie bügle ich ein Tischtuch? Prof. Dr. Uwe Jannsen

Wie bügle ich ein Tischtuch? Prof. Dr. Uwe Jannsen Auflösungen von Singularitäten, oder: Wie bügle ich ein Tischtuch? Prof. Dr. Uwe Jannsen (Universität Regensburg) Vortrag 10.12.2010 Bayerische Akademie der Wissenschaften Prof. Dr. Uwe Jannsen (Regensburg)

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge

Mehr

Kurzer Überblick. Ortslehre ). Veraltet: Topologie (griechisch, analysis situs

Kurzer Überblick. Ortslehre ). Veraltet: Topologie (griechisch, analysis situs Kurzer Überblick (griechisch, Ortslehre ). Veraltet: analysis situs Kurzer Überblick (griechisch, Ortslehre ). Veraltet: analysis situs Königsberger Brückenproblem, 1736 gelöst von Euler [1707 1783] Gibt

Mehr

Einführung in das Invarianzprinzip

Einführung in das Invarianzprinzip 15.03.2016 Motivation Betrachtet diesen Kreis, der in sechs Sektoren eingeteilt ist. Wir erlauben, die Zahl in je zwei benachbarten Feldern um jeweils 1 zu erhöhen. In welcher Reihenfolge muss man die

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Volumen und L 2 -Bettizahlen asphärischer Mannigfaltigkeiten

Volumen und L 2 -Bettizahlen asphärischer Mannigfaltigkeiten Volumen und L 2 -Bettizahlen asphärischer Mannigfaltigkeiten Roman Sauer WWU Münster Stuttgart Oktober 2008 Topologie und Geometrie von Mannigfaltigkeiten Topologie: Studium von Eigenschaften und Invarianten,

Mehr

BRP Mathematik VHS Floridsdorf Gruppe A / Seite 1/5

BRP Mathematik VHS Floridsdorf Gruppe A / Seite 1/5 BRP Mathematik VHS Floridsdorf Gruppe A / 16.6.212 Seite 1/5 1. Uhrturm des Palace of Westminster a) Bei Aufnahme dieses Fotos sah der Betrachtende den unteren Rand der Uhr unter einem Höhenwinkel von

Mehr

Eine Einführung in die Differentialgeometrie

Eine Einführung in die Differentialgeometrie Eine Einführung in die Differentialgeometrie Nach einer Vorlesung von Prof. Helga Baum 1 Getippt haben Luise Fehlinger und Carsten Falk 4. Mai 2006 1 Der Inhalt dieses Skriptes beruht auf den Vorlesungen

Mehr

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni CHAPTER. GRAPHEN.. B Ä UME.. Bäume Ein schlichter Graph ohne Kreise heisst Wald, ist er noch zusätzlich zusammenhängend so wird er Baum genannt. Bevor wir Bäume genauer beschreiben ein kleines LEMMA...

Mehr

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 06.02.2013 Name: Vorname:

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 2 Beispiele für Gruppen Aus der Vorlesung Mathematik I sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

Die Faszination der Primzahlen

Die Faszination der Primzahlen zu Die der Institut für Mathematik Humboldt-Universität zu Berlin 27. April 2015 zu zu zu zu Die natürlichen Zahlen. Die Menge der natürlichen Zahlen: N = {0, 1, 2, 3,... }. zu zu Die natürlichen Zahlen.

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Kapitel 3. Kapitel 3 Graphentheorie

Kapitel 3. Kapitel 3 Graphentheorie Graphentheorie Inhalt 3.1 3.1 Grundlagen 3.2 3.2 Das Das Königsberger Brückenproblem 3.3 3.3 Bäume 3.4. 3.4. Planare Graphen 3.5 3.5 Färbungen Seite 2 3.1 Grundlagen Definition. Ein Ein Graph besteht aus

Mehr

Parallele Algorithmen in der Bildverarbeitung

Parallele Algorithmen in der Bildverarbeitung Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren

Mehr

Alois Fichtl, Julius Vogelbacher 10. Juni Voronoi und Johnson-Mehl Mosaike

Alois Fichtl, Julius Vogelbacher 10. Juni Voronoi und Johnson-Mehl Mosaike Alois Fichtl, Julius Vogelbacher 10. Juni 2008 Voronoi und Johnson-Mehl Mosaike Seite 2 Voronoi- und Johnson-Mehl-Mosaike Alois Fichtl, Julius Vogelbacher 10. Juni 2008 Inhaltsverzeichnis Einführung Mosaike

Mehr

Was und wie zählt man im Alltag und in der modernen Mathematik?

Was und wie zählt man im Alltag und in der modernen Mathematik? Was und wie zählt man im Alltag und in der modernen Mathematik? Wolfgang Lück (Bonn) Greifswald Januar 2014 Hinweis Dies ist keine Vorlesung. Dies ist ein interaktiver Vortrag. Mitmachen und Mitdenken

Mehr

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296 Kapitel 7 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 256 / 296 Inhalt Inhalt 7 Färbungen Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 257 / 296 Jordankurve Zentrale Frage

Mehr

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 13. Januar 2018

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 13. Januar 2018 Brückenkurs Mathematik Jörn Steuding (Uni Würzburg), 3. Januar 08 unser Programm. November:. Zahlen und einfache Gleichungen Zahlen, Rechengesetze, lineare u. quadratische Gleichungen, Dezimalbrüche, ein

Mehr

Symmetrien, gerade und ungerade Funktionen

Symmetrien, gerade und ungerade Funktionen Symmetrien, gerade und ungerade Funktionen Wir Menschen fühlen uns von Symmetrien angezogen. 1-E1 1-E2 Vorausgesetzte Kenntnisse Definition einer Funktion, einer Relation, des Definitionsbereiches einer

Mehr

Stoffverteilungsplan Mathematik 7 auf der Grundlage des Lehrplans Schnittpunkt 7 Klettbuch

Stoffverteilungsplan Mathematik 7 auf der Grundlage des Lehrplans Schnittpunkt 7 Klettbuch K5: Symbolische und formale Sprache in natürliche Sprache übersetzen und umgekehrt K4: Verschiedene Formen der Darstellung von mathematischen Objekten und Situationen anwenden und interpretieren K6: Die

Mehr

Christian Rieck, Arne Schmidt

Christian Rieck, Arne Schmidt Institute of Operating Systems and Computer Networks Algorithms Group Algorithmen und Datenstrukturen Wintersemester 207/208 Übung#2, 09..207 Christian Rieck, Arne Schmidt Organisatorisches Anmeldung Mailingliste

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Körper zum Selberbauen Polydron

Körper zum Selberbauen Polydron Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist

Mehr

Tutorial Laserscanning: Automatisierung der Modellierung

Tutorial Laserscanning: Automatisierung der Modellierung Tutorial Laserscanning: Automatisierung der Modellierung Dr.-Ing. Fredie Kern Univ.-Prof. Dr.-Ing. habil. Wolfgang Niemeier Dipl.-Ing. Martin Zumstrull 1 Inhaltsverzeichnis 1. Was kann modelliert werden

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

1.2 Gitter: Grundlegende Konzepte

1.2 Gitter: Grundlegende Konzepte Gitter und Codes c Rudolf Scharlau 16. April 2009 5 1.2 Gitter: Grundlegende Konzepte Es sei V ein n-dimensionaler R-Vektorraum. Auf V sei ein Skalarprodukt gegeben, dessen Werte mit x, y R, dabei x, y

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

Wie man Diophantische Gleichungen löst. Anna-Maria Chiavetta Seminar 28. Oktober 2013

Wie man Diophantische Gleichungen löst. Anna-Maria Chiavetta Seminar 28. Oktober 2013 Wie man Diophantische Gleichungen löst Anna-Maria Chiavetta Seminar 28. Oktober 2013 Inhaltsverzeichnis 1. Einführung in das Thema 2. Lösbarkeit Diophantischer Gleichungen - Beispielgleichung 3. Ein anderer

Mehr

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag Krümmung in der Mathematik und Physik Relativitätstheorie im Alltag Justus-Liebig-Universität Giessen Dr. Frank Morherr Was ist Krümmung? Gerade soll Krümmung Null haben. Prototyp Kreis - großer Radius,

Mehr

Drei Anwendungen der Eulerschen Polyederformel

Drei Anwendungen der Eulerschen Polyederformel Drei Anwendungen der Eulerschen Polyederformel Seminar aus Reiner Mathematik Viktoria Weißensteiner 04. Dezember 2013 Inhaltsverzeichnis 1 Einleitung 2 2 Vorbereitende Theorie 3 2.1 ebene Graphen..........................

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

Jahrbuch 2003/2004 Baues, Hans-Joachim; Jibladze, Mamuka Abbildungen zwischen Sphären

Jahrbuch 2003/2004 Baues, Hans-Joachim; Jibladze, Mamuka Abbildungen zwischen Sphären Abbildungen zwischen Sphären Maps between spheres Baues, Hans-Joachim; Jibladze, Mamuka Max-Planck-Institut für Mathematik, Bonn Korrespondierender Autor E-Mail: baues@mpim-bonn.mpg.de Zusammenfassung

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton) WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

Planungsblatt Mathematik für die 4B

Planungsblatt Mathematik für die 4B Planungsblatt Mathematik für die 4B Woche 39 (von 1.06 bis 19.06) Hausaufgaben 1 Bis Dienstag 14.06: Mache die Aufgaben 105 und 1053. Bis Freitag 16.06: Mache die folgende Aufgaben: Zeichne eine Strecke

Mehr

Vorlesungen vom 5.Januar 2005

Vorlesungen vom 5.Januar 2005 Vorlesungen vom 5.Januar 2005 5 Planare Graphen 5.1 Beispiel: Gas, Wasser, Elektrik Drei eingeschworene Feinde, die im Wald leben, planen Trassen zu den Versorgungswerken für die drei Grundgüter Gas, Wasser

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

Konfigurationsraum eines Gestänges. Diana Khoromskaia

Konfigurationsraum eines Gestänges. Diana Khoromskaia 1 Universität Leipzig, 29. Juni 2005 Konfigurationsraum eines Gestänges Diana Khoromskaia Wilhelm-Ostwald-Gymnasium Leipzig Betreuer: Herr Prof. Dr. Schwarz (Universität Leipzig) Inhalt D. Khoromskaia,

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Die Anfänge der Mathematik als Wissenschaft Logik und Geometrie im antiken Griechenland (I) 2010 Prof. Dr. Fridtjof Toenniessen

Die Anfänge der Mathematik als Wissenschaft Logik und Geometrie im antiken Griechenland (I) 2010 Prof. Dr. Fridtjof Toenniessen Die Anfänge der Mathematik als Wissenschaft Logik und Geometrie im antiken Griechenland (I) Die Anfänge der Mathematik als Wissenschaft Logik und Geometrie im antiken Griechenland (I) Thales von Milet

Mehr