Logische und funktionale Programmierung
|
|
|
- Michaela Gretel Vogel
- vor 7 Jahren
- Abrufe
Transkript
1 Logische und funktionale Programmierung Vorlesung 8: Arithmetik, Listenprädikate, weitere Prolog Prädikate Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca 1/67
2 ARITHMETIK IN PROLOG Die meisten Prologimplementierungen stellen Operatoren zur Verarbeitung von Zahlen zur Verfügung. Hierzu gehören die arithmetischen Operatoren + (Addition), - (Subtraktion), * (Multiplikation), / (Division), // (ganzzahlige Division), mod (modulo) und ˆ (Exponent). Alle Operatoren können auch als Funktoren verwendet werden: Statt 3+4 kann man auch +(3,4) schreiben. Die verwendeten Symbole für die Operatoren hängen von dem jeweiligen Prolog-Interpreter ab (hier angegeben für SWI-Prolog). Vorsicht: Arithmetische Operationen gehören nicht zu den Kernkonzepten von Prolog. Mit ihnen verlässt man das auf Unifikation basierende Grundprinzip der deklarativen Programmierung. 2/67
3 RECHNEN IN PROLOG 3/67
4 ARITHMETISCHE OPERATOREN UND DIE EVALUATION 4/67
5 DER EVALUATIONSOPERATOR IS/2 5/67
6 VERGLEICH IS/2 MIT NORMALEN PROLOGPRÄDIKATEN 6/67
7 ARITHMETISCHE VERGLEICHOPERATOREN 7/67
8 EVALUATION ERZWINGENDE OPERATOREN IN PRÄDIKATSDEFINITIONEN 8/67
9 LISTENLÄNGE BESTIMMEN OHNE AKKUMULATOR 9/67
10 TRACE: LISTENLÄNGE OHNE AKKUMULATOR 10/67
11 LISTENLÄNGE BESTIMMEN MIT AKKUMULATOR 11/67
12 TRACE: LISTENLÄNGE MIT AKKUMULATOR 12/67
13 VERGLEICH LÄNGE MIT UND OHNE AKKUMULATOR 13/67
14 MAXIMALES LISTENELEMENT BESTIMMEN MIT AKKUMULATOR 14/67
15 MAXIMALES LISTENELEMENT BESTIMMEN OHNE AKKUMULATOR 15/67
16 AKKUMULATOREN: STRUKTUR DER PROGRAMME 16/67
17 ZUSAMMENFASSUNG Keywords: Rechnen in Prolog mit dem Evaluationsoperator is, arithmetische Vergleichsoperatoren, Akkumulatoren. Wichtig: Die rekursive Verarbeitung von Listen mit Akkumulatoren ist eine zentrale Programmiertechnik in Prolog. Vorsicht: Die arithmetischen Vergleichsoperatoren und der Operator is fordern zwingend sofort evaluierbare Terme. Uninstantiierte Terme führen zu einem Abbruch mit Fehlermeldung. 17/67
18 WIEDERHOLUNG 18/67
19 WIEDERHOLUNG KONKATENATION VON LISTEN: APPEND/3 19/67
20 APPEND/3 DEKLARATIV 20/67
21 APPEND/3 PROZEDURAL 21/67
22 VERWENDUNG VON APPEND/3 22/67
23 BESONDERHEITEN VON APPEND/3 Mit dem Prädikat append/3 können sehr unterschiedliche Funktionen implementiert werden. Dennoch muss man beachten, dass bei jedem Aufruf von append/3 die Liste im ersten Argument komplett abgearbeitet werden muss. aufgrund der kompletten Listenabarbeitung Programme mit vielen Aufrufen von append/3 sehr schnell ineffizient werden können. Man sollte also bei der Verwendung von append/3 in rekursiven Prädikaten vorsichtig sein. 23/67
24 SUFFIXE, PRÄFIXE UND ALLGEMEINE SUBLISTEN: PREFIX/2, SUFFIX/2, SUBLIST/2 24/67
25 SUFFIXE, PRÄFIXE UND ALLGEMEINE SUBLISTEN: PREFIX/2, SUFFIX/2, SUBLIST/2 25/67
26 SUFFIXE, PRÄFIXE UND ALLGEMEINE SUBLISTEN: PREFIX/2, SUFFIX/2, SUBLIST/2 26/67
27 LÖSCHEN EINES ELEMENTS: DELETE/3 27/67
28 UMDREHEN VON LISTEN: NAIVEREV/2 (NAIVE DEFINITION) 28/67
29 WARUM NAIVES REVERSE? Das naive naiverev/2 wird naiv genannt, weil das zu lösende Problem eigentlich mit linearer Laufzeit gelöst werden könnte. Das naive naiverev/2 benötigt jedoch durch den Einsatz von append/3 kubische Laufzeit. Betrachte den Trace von naiverev([a,b,c,d],x). 29/67
30 REVERSE/2 MIT AKKUMULATOR 30/67
31 REVERSE/2 PROZEDURAL 31/67
32 LISTENVERARBEITUNG MIT AKKUMULATORLISTE 32/67
33 DIFFERENZLISTEN 33/67
34 BEISPIEL: [1,2,3] ALS DIFFERENZLISTE 34/67
35 VORTEIL VON DIFFERENZLISTEN: KONKATENATION IN EINEM SCHRITT 35/67
36 VORTEIL VON DIFFERENZLISTEN: KONKATENATION IN EINEM SCHRITT 36/67
37 VORTEIL VON DIFFERENZLISTEN: KONKATENATION IN EINEM SCHRITT 37/67
38 VORTEIL VON DIFFERENZLISTEN: KONKATENATION IN EINEM SCHRITT 38/67
39 VORTEIL VON DIFFERENZLISTEN: KONKATENATION IN EINEM SCHRITT 39/67
40 VORTEIL VON DIFFERENZLISTEN: KONKATENATION IN EINEM SCHRITT 40/67
41 VORTEIL VON DIFFERENZLISTEN: KONKATENATION IN EINEM SCHRITT 41/67
42 VORTEIL VON DIFFERENZLISTEN: KONKATENATION IN EINEM SCHRITT 42/67
43 WIEDERHOLUNG TERME 43/67
44 ZUSAMMENGESETZTE BZW. KOMPLEXE TERME 44/67
45 WIEDERHOLUNG: BESONDERE TERME LISTEN UND ARITHMETISCHE AUSDRÜCKE 45/67
46 WIEDERHOLUNG: MATCHING-/ UNIFIKATIONSOPERATOR 46/67
47 WIEDERHOLUNG: ARITHMETISCHER GLEICHHEITSOPERATOR 47/67
48 Vergleich von Termen 48/67
49 BERSICHT MATCHING- UND VERGLEICHSOPERATOREN 49/67
50 ANALYSE VON NICHT ZUSAMMENGESETZTEN TERMEN 50/67
51 ANALYSE ZUSAMMENGESETZTER TERME 51/67
52 DAS PRÄDIKAT: FUNCTOR/3 52/67
53 DAS PRÄDIKAT: FUNCTOR/3 53/67
54 TESTEN OB EIN TERM ZUSAMMENGESETZT IST 54/67
55 DAS PRÄDIKAT: ARG/3 55/67
56 DAS UNIV-PRÄDIKAT: =../2 56/67
57 BILDSCHIRMAUSGABE: WRITE CANONICAL/1 UND WRITE/1 57/67
58 STRUKTURIERTE BILDSCHIRMAUSGABE: NL/0 UND TAB/1 58/67
59 OPERATOREN EXTERNE UND INTERNE NOTATION 59/67
60 TYPEN VON OPERATOREN 60/67
61 PRÄZEDENZ VON OPERATOREN 61/67
62 ASSOZIATIVITÄT VON OPERATOREN 62/67
63 DEFINITION EIGENER OPERATOREN 63/67
64 DEFINITION BESTEHENDER OPERATOREN 64/67
65 BEISPIEL: ZWEI VERSCHIEDENE OPERATOREN 65/67
66 BEISPIEL 66/67
67 DEFINITION EINES EIGENEN OPERATORS 67/67
Prolog 5. Kapitel: Arithmetik
Zusammenfassung Kapitel 4 Prolog 5. Kapitel: Arithmetik Dozentin: Wiebke Petersen Kursgrundlage: Learn Prolog Now (Blackburn, Bos, Striegnitz) Wir haben Listen als mächtige Datenstrukturen in Prolog kennengelernt
Prolog 6. Kapitel: Listenprädikate
Prolog 6. Kapitel: Listenprädikate Dozentin: Wiebke Petersen Kursgrundlage: Learn Prolog Now (Blackburn, Bos, Striegnitz) Petersen Prolog: Kapitel 6 1 Zusammenfassung Kapitel 5 Wir haben gesehen, wie wir
Teil 4: Rekursion und Listen
Einführung in das Programmieren Prolog Sommersemester 2006 Teil 4: Rekursion und Listen Version 1.0 Gliederung der LV Teil 1: Ein motivierendes Beispiel Teil 2: Einführung und Grundkonzepte Syntax, Regeln,
Terme. Heute: Terme vergleichen. Struktur von Termen. Operatoren. Logik in der Praxis Logikprogrammierung (Prolog) p.1
Terme Heute: Terme vergleichen Struktur von Termen Operatoren Logik in der Praxis Logikprogrammierung (Prolog) p.1 Termgleichheit: ==?- a == a.?- a == b. no?- X == Y. no?- X == X.?- X == a. no Logik in
Fragen zum Nachdenken: Wie könnte man das Fehlen eines Attribut-Wertes interpretieren?
Attribut-Werte-Paare Eine Eigenschaft kann beschrieben werden durch ein Paar [a,w]. Dabei bezeichnet a das Attribut und w den konkreten Wert aus dem Wertebereich W a des Attributs. Die Eigenschaften eines
Reihenfolge von Klauseln
Reihenfolge von Klauseln Bei der Programmierung in Prolog steht grundsätzlich die Repräsentation logischer Zusammenhänge im Vordergrund. Nichtsdestotrotz ist es unvermeidbar, die Mechanismen der Abarbeitung
Rekursive Listenverarbeitung
Rekursive Listenverarbeitung Übersicht Rekursion ist die wichtigste Programmiertechnik in Prolog! Rekursive Datenstrukturen Einfache und rekursiv gebildete Strukturen Rekursive Datenstrukturen und rekursive
Prolog 3. Kapitel: Rekursion
Zusammenfassung: Kapitel 2 Prolog 3. Kapitel: Rekursion Wir haben gelernt wie komplexe Strukturen durch Matching in Prolog aufgebaut werden können und wie die Beweisführung in Prolog funktioniert. Dozentin:
5.3 Auswertung von Ausdrücken
5.3 Auswertung von Ausdrücken Funktionen in Java bekommen Parameter/Argumente als Input, und liefern als Output den Wert eines vorbestimmten Typs. Zum Beispiel könnte man eine Funktion i n t min ( i n
Prolog 3. Kapitel: Rekursion
Prolog 3. Kapitel: Rekursion Dozentin: Wiebke Petersen Kursgrundlage: Learn Prolog Now (Blackburn, Bos, Striegnitz) Petersen Prolog: Kapitel 3 1 Zusammenfassung: Kapitel 2 Wir haben gelernt wie komplexe
Prolog 4. Kapitel: Listen
Prolog 4. Kapitel: Listen Dozentin: Wiebke Petersen Kursgrundlage: Learn Prolog Now (Blackburn, Bos, Striegnitz) Petersen Prolog: Kapitel 4 1 Zusammenfassung Kapitel 3 Wir haben gelernt, dass die Rekursion
Informatik I: Einführung in die Programmierung 3. Werte, Typen, Variablen und Ausdrücke
Informatik I: Einführung in die Programmierung 3. Werte,, n und Albert-Ludwigs-Universität Freiburg Peter Thiemann 30. Oktober 2018 1 30. Oktober 2018 P. Thiemann Info I 3 / 39 Bits Der Computer repräsentiert
Logische und funktionale Programmierung
Logische und funktionale Programmierung Vorlesung 9: Prolog - Das Prädikat CUT Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 9. Dezember 2016 1/31 Läßt sich nämlich
Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz
Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige
Übungen zu Kognitive Systeme I
Übungen zu Kognitive Systeme I Stephan Weller ([email protected]) Kognitive Systeme / WIAI / Uni Bamberg 19. Oktober 2005 Inhalt Intro Was ist Prolog? Wie funktioniert Prolog? Rekursion
Java I Vorlesung Imperatives Programmieren
Java I Vorlesung 2 Imperatives Programmieren 3.5.2004 Variablen -- Datentypen -- Werte Operatoren und Ausdrücke Kontrollstrukturen: if Imperatives Programmieren Im Kern ist Java eine imperative Programmiersprache.
3. Operatoren und Ausdrücke
3. Operatoren und Ausdrücke Ausdruck (expression): Verarbeitungsvorschrift zur Ermittlung eines Wertes besteht aus Operanden und Operatoren wichtigste Ausdrücke: arithmetische und logische (Boole'sche)
Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Operatoren, Kommentare, Ein-/Ausgabe
Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Operatoren, Kommentare, Ein-/Ausgabe Was sind Operatoren Ein Operator ist eine in die Programmiersprache eingebaute Funktion, die
Einführung in das Programmieren Prolog Sommersemester 2006. Teil 2: Arithmetik. Version 1.0
Einführung in das Programmieren Prolog Sommersemester 2006 Teil 2: Arithmetik Version 1.0 Gliederung der LV Teil 1: Ein motivierendes Beispiel Teil 2: Einführung und Grundkonzepte Syntax, Regeln, Unifikation,
Prolog 10. Kapitel: Cut und Negation
Zusammenfassung Kapitel 9 Prolog 10. Kapitel: Cut und Negation Dozentin: Wiebke Petersen Kursgrundlage: Learn Prolog Now (Blackburn, Bos, Striegnitz) Wir haben verschiedene Prädikate zur Analyse von zusammengesetzten
26 Hierarchisch strukturierte Daten
Algorithmik II Peter Wilke Sommersemester 2005 Teil III Funktionale Programmierung 26 Hierarchisch strukturierte Daten Peter Wilke Algorithmik II Sommersemester 2005 1 Peter Wilke Algorithmik II Sommersemester
2 Logikprogrammierung am Beispiel Prolog
2 Logikprogrammierung am Beispiel Prolog 2.1 Logikprogrammierung mit einfachen Daten 2.2 Variablenumbenennung 2.3 Syntax 2.4 Komplexe Daten 2.5 Der Cut 2.6 Negation als Fehlschlag 2.7 Literaturhinweise
Prolog: Listen und Cut. Mark Ugarov
Prolog: Listen und Cut Mark Ugarov Übersicht Wiederholung und Anwendung Wie nutzt man? Listen Cut Anwendungsbeispiele immer parallel Wiederholung: Aufruf von Prolog-Programmen Notwendige Software: SWI
Operatoren und Ausdrücke
Operatoren und Ausdrücke Zuweisungsoperator Arithmetische Operatoren Vergleichsoperatoren Logische Operatoren und Ausdrücke Implizite Typ-Umwandlung Rangordnung der Operatoren / Reihenfolge der Auswertung
Rekursion. rekursive Prädikate. deklarative vs. prozedurale Bedeutung von Prädikaten. Programmierkurs Prolog p.1
Rekursion rekursive Prädikate deklarative vs. prozedurale Bedeutung von Prädikaten Programmierkurs Prolog p.1 is digesting/2 is digesting(x,y) :- just ate(x,y). is digesting(x,y) :- just ate(x,z), is digesting(z,y).
4. Zahlendarstellungen
121 4. Zahlendarstellungen Wertebereich der Typen int, float und double Gemischte Ausdrücke und Konversionen; Löcher im Wertebereich; Fliesskommazahlensysteme; IEEE Standard; Grenzen der Fliesskommaarithmetik;
3.1 Reservierte Wörter
3.1 Reservierte Wörter int Bezeichner für Basis-Typen; if, else, while Schlüsselwörter aus Programm-Konstrukten; (,), ",, {,},,,; Sonderzeichen. 62 3.2 Was ist ein erlaubter Name? Schritt 1: Angabe der
Modellierung und Programmierung 1
Modellierung und Programmierung 1 Prof. Dr. Sonja Prohaska Computational EvoDevo Group Institut für Informatik Universität Leipzig 4. November 2015 Administratives Zur Abgabe von Übungsaufgaben Nein, wir
Kapitel 2: Python: Ausdrücke und Typen. Grundlagen der Programmierung 1. Holger Karl. Wintersemester 2016/2017. Inhaltsverzeichnis 1
Kapitel 2: Python: Ausdrücke und Typen Grundlagen der Programmierung 1 Holger Karl Wintersemester 2016/2017 Inhaltsverzeichnis Inhaltsverzeichnis 1 Abbildungsverzeichnis 2 Liste von Definitionen u.ä. 2
Theorembeweiser und ihre Anwendungen
Theorembeweiser und ihre Anwendungen Prof. Dr.-Ing. Gregor Snelting Dipl.-Inf. Univ. Daniel Wasserrab Lehrstuhl Programmierparadigmen IPD Snelting Universität Karlsruhe (TH) IPD Snelting, Uni Karlsruhe
IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen
IT-Sicherheitsmanagement Teil 4: Einführung in algebraische Strukturen 19.09.18 1 Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie.
Kapitel 2: Python: Ausdrücke und Typen. Grundlagen der Programmierung 1. Holger Karl. Wintersemester 2018/2018. Inhaltsverzeichnis 1
Kapitel 2: Python: Ausdrücke und Typen Grundlagen der Programmierung 1 Holger Karl Wintersemester 2018/2018 Inhaltsverzeichnis Inhaltsverzeichnis 1 Abbildungsverzeichnis 2 Liste von Definitionen u.ä. 2
Programmierung Paradigmen und Konzepte
Programmierung Paradigmen und Konzepte Mit 79 Bildern, 85 Beispielen, 130 Aufgaben und Kontrollfragen und 19 Referatsthemen Fachbuchverlag Leipzig im Carl Hanser Verlag 1 Einführung und Überblick 11 1.1
3. Operatoren und Ausdrücke
3. Operatoren und Ausdrücke Ausdruck (expression) Verarbeitungsvorschrift zur Ermittlung eines Wertes besteht aus Operanden und Operatoren wichtigste Ausdrücke: arithmetische und logische (boole'sche)
Abstrakte Syntax von Prolog (1)
3. Prolog Syntax 3-1 Abstrakte Syntax von Prolog (1) Abstrakte und konkrete Syntax: Abstrakte Syntax: Nur Datenstrukturen, die der Parser anlegt (z.b. Operatorbaum). Konkrete Syntax: Zeichenketten, die
3. Exkurs in weitere Arten der Programmierung
3. Exkurs in weitere Arten der Programmierung Inhalt: Objektorientierte Programmierung in C++ Funktional-Logische Programmierung in Prolog Funktional-logische Programmierung in Prolog Prolog Programming
IT-Security. Teil 9: Einführung in algebraische Strukturen
IT-Security Teil 9: Einführung in algebraische Strukturen 08.05.17 1 Literatur und Videos [9-1] http://www.iti.fh-flensburg.de/lang/krypto [9-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage,
3. Operatoren und Ausdrücke
3. Operatoren und Ausdrücke Ausdruck (expression) Verarbeitungsvorschrift zur Ermittlung eines Wertes besteht aus Operanden und Operatoren wichtigste Ausdrücke: arithmetische und logische (boole'sche)
Rekursive Programmiertechniken. Einfachste Rekursion mit Babuschka. Hyponymie: Unterbegriffshierarchie. Linksrekursion mit Babuschka
Rekursive Programmiertechniken Einfachste Rekursion mit Babuschka Übersicht Linksrekursion Transitive Relationen berechnen Hierarchische Beziehungen: Hyponymie Dekomposition eines (von mehreren) Arguments
Programmiersprache Prolog
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 6.2 Logikprogrammierung Prolog 240 Programmiersprache Prolog Prolog-Programm ist Liste von Fakten (einelementige Hornklausel) und Regeln (mehrelementige
III.1 Prinzipien der funktionalen Programmierung - 1 -
1. Prinzipien der funktionalen Programmierung 2. Deklarationen 3. Ausdrücke 4. Muster (Patterns) 5. Typen und Datenstrukturen 6. Funktionale Programmiertechniken III.1 Prinzipien der funktionalen Programmierung
Logische und funktionale Programmierung
Logische und funktionale Programmierung Vorlesung 11: Logikprogramme Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 19. Dezember 2016 1/55 WIEDERHOLUNG: HORN-KLAUSELN
Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren
Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage, Springer, 2015 [4-3] Teschl, Gerald; Teschl, Susanne: Mathematik für
2. Ganze Zahlen int unsigned int
99 2. Ganze Zahlen Auswertung arithmetischer Ausdrücke, Assoziativität und Präzedenz, arithmetische Operatoren, Wertebereich der Typen int, unsigned int Celsius to Fahrenheit // Program: fahrenheit.cpp
Angewandte Mathematik und Programmierung
Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Operatoren Operatoren führen Aktionen mit Operanden aus. Der
Die Programmiersprache C Eine Einführung
Die Programmiersprache C Eine Einführung Christian Gentsch Fakutltät IV Technische Universität Berlin Projektlabor 2. Mai 2014 Inhaltsverzeichnis 1 Einführung Entstehungsgeschichte Verwendung 2 Objektorientiert
Software Entwicklung 1. Fallstudie: Arithmetische Ausdrücke. Rekursive Klassen. Überblick. Annette Bieniusa / Arnd Poetzsch-Heffter
Software Entwicklung 1 Annette Bieniusa / Arnd Poetzsch-Heffter Fallstudie: Arithmetische Ausdrücke AG Softech FB Informatik TU Kaiserslautern Bieniusa/Poetzsch-Heffter Software Entwicklung 1 2/ 33 Überblick
Kapitel 2: Ausdrücke. 1. Sorten und abstrakte Datentypen. 2. Ausdrücke 2.1 Syntax 2.2 Semantik 2.3 Ausdrücke in Java. 3. Funktionale Algorithmen
Kapitel 2: Ausdrücke 1. Sorten und abstrakte Datentypen 2. Ausdrücke 2.1 Syntax 2.2 Semantik 2.3 Ausdrücke in Java 3. Funktionale Algorithmen 4. Variablen, Anweisungen, Prozeduren 5. Prozeduraufrufe 54
Gliederung. Programmierparadigmen. Einführung in Prolog: Einführung in Prolog: Programmieren in Prolog. Einführung Syntax Regeln Listen Relationen
Gliederung Programmierparadigmen Programmieren in Prolog D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg 1 Sommer 2011, 26. April
Potenzen mit ganzzahligen Exponenten: Rechenregeln
Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die
Prolog 2. Kapitel: Matching und Beweisführung
Zusammenfassung: Kapitel 1 Prolog 2. Kapitel: Matching und Beweisführung Dozentin: Wiebke Petersen Kursgrundlage: Learn Prolog Now (Blackburn, Bos, Striegnitz) Wir haben die Grundlagen und Anwendungsgebiete
Ausdrücke (1) Grundlegende Eigenschaften
Ausdrücke () Grundlegende Eigenschaften bestehen aus Literalen, Konstanten, Variablen und Operatoren einfachster Ausdruck ist das Semikolon, es bewirkt nichts. Ausdrücke werden mit einem Semikolon abgeschlossen.
Vorkurs Informatik WiSe 17/18
Java Ausdrücke und Variablen Dr. Werner Struckmann / Stephan Mielke, Nicole Naczk, 05.10.2017 Technische Universität Braunschweig, IPS Überblick Ausdrücke, Datentypen und Variablen Kontrollstrukturen 05.10.2017
Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik
Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division
2: Restklassen 2.1: Modulare Arithmetik
2: Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32, 64} Prüfziffern mod 10 oder mod 11... 71 S. Lucks Diskr Strukt.
Martin Unold INFORMATIK. Geoinformatik und Vermessung
Wiederholung So sieht ein leeres Java-Programm aus public class Programmname { public static void main (String[] args) { // Hier stehen die Anweisungen } } Beispiele für Anweisungen Wiederholung Ausgabe
C-Programmierung: Ausdrücke und Operatoren#Division.2F
C-Programmierung: Ausdrücke und Operatoren#Division.2F http://de.wikibooks.org/wiki/c-programmierung:_ausdrücke_und_operatoren#division_.2f This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF
Wirtschaftsmathematik: Mathematische Grundlagen
Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.
5.3 Auswertung von Ausdrücken
5.3 Auswertung von Ausdrücken Funktionen in Java bekommen Parameter/Argumente als Input, und liefern als Output den Wert eines vorbestimmten Typs. Zum Beispiel könnte man eine Funktion i n t min ( i n
Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt
Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die
Abschnitt 7: Komplexität von imperativen Programmen
Abschnitt 7: Komplexität von imperativen Programmen 7. Komplexität von imperativen Programmen 7 Komplexität von imperativen Programmen Einf. Progr. (WS 08/09) 399 Ressourcenbedarf von Algorithmen Algorithmen
Programmieren I. Kapitel 5. Kontrollfluss
Programmieren I Kapitel 5. Kontrollfluss Kapitel 5: Kontrollfluss Ziel: Komplexere Berechnungen im Methodenrumpf Ausdrücke und Anweisungen Fallunterscheidungen (if, switch) Wiederholte Ausführung (for,
