Eintrittsdruck p E D E durchmesser D A geschwindigkeit c E [mm] [mm] [m/s] [bar] 1) ,5 1 2) ,5 1 3) ,5 1.

Größe: px
Ab Seite anzeigen:

Download "Eintrittsdruck p E D E durchmesser D A geschwindigkeit c E [mm] [mm] [m/s] [bar] 1) ,5 1 2) ,5 1 3) ,5 1."

Transkript

1 Zusatzaufgabe 1 Die Hauptaufgabe der (SM) ist die Umwandlung der Strömungsenergie des Fluids in mechanische Arbeit an der Welle oder umgekehrt. Die Arbeitsweise beruht dabei auf dem Impulsaustausch zwischen der Fluidströmung und dem Rotor, bzw. den Laufschaufeln. Entscheidend für die Energieumwandlung ust die sich aus dem Impulsaustausch ergebende Kraftkomponente in Umfangsrichtung. Mit der Umfangsgeschwindigkeit ergibt sich daraus die übetragbare Leistung ( P = F u ). 1.1 Berechnen Sie für die in der nachfolgenden Tabelle aufgelisteten Krümmervarianten jeweils die von dem Krümmer auf das Fluid ausgeübten Kräfte und tragen Sie diese in die Skizzen ein (Maßstab: 10 N = 1 cm). Krümmer Eintrittsdurchmesser Austritts- Eintritts- Eintrittsdruck p E D E durchmesser D A geschwindigkeit c E [mm] [mm] [m/s] [bar] 1) ,5 1 2) ,5 1 3) ,5 1 Annahmen: Adiabate stationäre und rejibungsfreie Strömung Strömungsgrößen sind über dem Eintritts- und Austritsquerschnitt konstant Inkompressibles Fluid mit ρ = 10 3 kg/m 3 Änderung der geodätischen Höhen vernachlässigbar Zusatzübungsaufgaben zur Vorlesung 1

2 1) 2) 3) Zusatzübungsaufgaben zur Vorlesung 2

3 Zusatzaufgabe 2 Zustandsänderungen Der Verlauf realer Zustandsänderungen in ist im Allgemeinen nicht genau berechenbar. Daher wird als gute Näherung eine polytrope Zustandsänderung angenommen. Für diese Zustandsänderung ist das Polytropenverhältnis υ zwischen Eintritt und Austritt entlang des Strömungsweges konstant! υ dh = dy konst. 2.1 Leiten Sie für die Spezialfälle a) e) einer polytropen Zustandsänderung die p,v- Abhängigkeit her. 2.2 Berechnen Sie ausgehend von einem Zustand (1) (T 1, p 1 ) zu einem Zustand (2) (p 2 ) die Enthalpieänderung und die Entropieänderung für die Spezialfälle a) d). 2.3 Zeichnen Sie die Verläufe der Zustandsänderungen in ein T,s-Diagramm. 2.4 Wie sehen die verschiedenen Zustandsänderungen qualitativ im p,v-diagramm aus? Zustand (1): Zustand (2): p 1 T 1 P 2 = 1 bar = 300 K = 1,7 bar Fluid: Spezialfälle: Ideales Gas mit konstanten Stoffdaten: R = 0,287 kj/(kg K) κ = 1,4 a) isentrope Zustandsänderung b) isenthalpe Zustandsänderung c) isotherme Zustandsänderung d) isochore Zustandsänderung e) isobare Zustandsänderung Zusatzübungsaufgaben zur Vorlesung 3

4 Zusatzaufgabe 3 Es soll ein Carnot-Prozess untersucht werden. Für das im Kreisprozess umlaufende ideale Gas Helium sind folgende Daten bekannt: T 0 = T 1 = T 4 = 300K T = T 2 = T 3 = 850 K Druckverhältnis p max /p min = p 2 /p 4 = 50 Gaskonstante R = 2,077 kj/kg K = 5,193 kj/kg K c p Geschwindigkeitsanteile und Höhenunterschiede können vernachlässigt werden. 3.1 Bestimmen Sie die bei den vier Teilprozessen als Arbeit oder Wärme umgesetzten Energiemengen. 3.2 Wie groß ist die spez. Nutzarbeit und der thermische Wirkungsgrad des Kreisprozesses? 3.3 Wie ändert sich die spez. Nutzarbeit, wenn für die am Kreisprozess beteiligten Turbomaschinen Wirkungsgrade von η T = 0,9 und η V = 0,8 angenommen werden? Es gelten weiterhin die oben genannten Daten, wobei der Zustandspunkt 4 unverändert bleiben soll. Welchen Wert hat jetzt der thermische Wirkungsgrad? 3.4 Wie ist dieser Prozess im Bezug auf seine praktische Durchführbarkeit zu beurteilen? Zusatzübungsaufgaben zur Vorlesung 4

5 Zusatzaufgabe 4 Gleichdruckturbinenstufe Es soll die adiabate Zustandsänderung in einer Repetierstufe einer Gleichdruckturbine betrachtet werden. Die Turbine wird von einem idealen Gas mit den konstanten Stoffdaten spezifische Gaskonstante Verhältnis der spezifischen Wärmekapazitäten R = 0,287 kj/kg K c p = 1,0 kj/kg K durchströmt. Das Gas besitzt beim Eintritt in die Stufe folgenden Zustand: Druck p 0 = 5 bar Temperatur T 0 = 600 K. Das Stufenverhältnis beträgt p 0 /p 2 = 1,8. Die Zustandsänderung verläuft im Leitrad längs einer Polytropen mit υ = 0,85. Die Entropieänderungen im Leit- und Laufrad sind gleich groß. 4.1 Stellen Sie die Zustandsänderung im T,s-Diagramm dar. Kennzeichnen Sie für das Leit- und Laufrad jeweils die Enthalpieänderungen ( Δ h, Δ h ) und die Verluste ( j, j ) als Flächen im T,s-Diagramm. 4.2 Berechnen Sie die Zustandsgrößen Druck und Temperatur nach dem Leitrad. 4.3 Berechnen Sie die Entropieänderung im Laufrad. Zusatzübungsaufgaben zur Vorlesung 5

6 Zusatzaufgabe 5 Für eine adiabat arbeitende axiale Verdichterrepetierstufe sind die folgenden kinematischen Kenngrößen bekannt: Enthalpiekenngröße ψ h = 0,8 Kinematischer Reaktionsgrad ρ h = 0,6 Durchflusskenngrößen ϕ 1 = 0,8 ϕ 2 = 0,7 5.1 Leiten Sie für den hier vorliegenden Fall die Beziehung für ψ h und ρ h her; geodätische Höhenunterschiede sind hier zu vernachlässigen. 5.2 Zeichnen Sie die dimensionslosen Geschwindigkeitsdreiecke (Maßstab u/u = 10 cm) und den zugehörigen Schaufelplan (Laufrad und Leitrad). Zusatzübungsaufgaben zur Vorlesung 6

7 Zusatzaufgabe 6 In können folgende Gitterströmungen auftreten: A B C D Beschleunigte Strömungen Umgelenkte Strömungen Verzögerte Strömungen mit Druckabfall Verzögerte Strömungen mit Druckanstieg Diese Strömungen sollen für ein ebenes Gitter betrachtet werden. 6.1 Zeichnen Sie die den Fällen A-D entsprechenden Zustandsänderungen (totale und statische Zustände) in die in Abbildung 6-1 vorgesehenen h,s-diagramme unter Berücksichtigung von Strömungsverlusten ein. 6.2 Kennzeichnen Sie in Abbildung 6-2 die Bereiche, in denen für die jeweiligen Fälle die Zustände am Gitteraustritt liegen können. 6.3 Welche Strömungsarten (A, B, C, D) kann man den Lauf- bzw. Leiträdern in Turbinen- und Verdichterstufen unter Berücksichtigung des kinematischen Reaktionsgrades ρ h zuordnen? Tragen Sie die entsprechenden Buchstaben (A, B, C, D) in Abbildung 6-3 ein. Zusatzübungsaufgaben zur Vorlesung 7

8 Abbildung 6-1 Abbildung 6-2 Abbildung 6-3 Zusatzübungsaufgaben zur Vorlesung 8

9 Zusatzaufgabe 7 Kavitation In einem Versuch ist eine einstufige radiale Kreiselpumpe untersucht worden. Von der Pumpe sind folgende Daten bekannt: Stutzenquerschnitt Eintritt D E = 100 mm Austritt D A = 80 mm Drehzahl n = 2900 min -1 Mechanischer Wirkungsgrad η m = 0,93 Als Messwerte stehen zur Verfügung: Drehmoment an der Antriebswelle M d = 175 Nm Volumenstrom V & = 200 m 3 /h Druckdifferenz Δp EA = 7 bar Die Maschine kann als adiabat angesehen werden, und geodätische Höhenunterschiede können vernachlässigt werden. Der versuch wurde mit Wasser mit den Stoffdaten: durchgeführt. Dichte ρ w = 1000 kg/m 3 Mittlere spez. Wärmekapazität = 4,18 x10 3 J/kg K c F 7.1 Wie groß ist die innere Leistung der Pumpe? 7.2 Berechnen Sie den statischen polytropen Wirkungsgrad dieser Maschine. 7.3 Wie groß ist die Temperaturerhöhung des Wassers beim Durchströmen der Kreiselpumpe? 7.4 Beschreiben Sie den Vorgang der Kavitation in Kreiselpumpen. 7.5 Welche Auswirkungen hat die Kavitation? Nennen Sie Maßnahmen zur Vermeidung von Kavitation. Zusatzübungsaufgaben zur Vorlesung 9

10 Zusatzaufgabe In Abbildung 8-1 sind die Schaufelgitter von Lauf- und Leitrad einer Axialverdichterrepetierstufe und die Stufenkennlinie für konstante Drehzahl skizziert. Der Auslegungspunkt ist durch I, die Betriebsgrenzen durch II und III gekennzeichnet. (a) Beschreiben Sie kurz die Vorgänge, welche die Betriebsgrenzen verursachen. (b) Ergänzen Sie die Geschwindigkeitsdreiecke am Lauf- und Leitradeintritt für die Betriebspunkte II und III ; skizzieren und benennen Sie die jeweils zugehörige Zuströmung und Strömungsform (Strömungsablösung) für beide Schaufelgitter. (c) Skizzieren Sie am Beispiel des Laufrades die Gittercharakteristiken Δβ = f(α) und ω = f(α) in Abbildung 8-1 und markieren Sie darauf die Betriebspunkte I, II und III. 8.2 Erläutern Sie die Begriffe kritische Machzahl und Sperrmachzahl mit Hilfe einer Skizze für ein Verzögerungsgitter. Zusatzübungsaufgaben zur Vorlesung 10

11 Abbildung 8-1 Zusatzübungsaufgaben zur Vorlesung 11

12 Zusatzaufgabe 9 Ein radialverdichter fördert Luft für die Druckluftzentrale eines Großbetriebes. Der Druckluftbedarf schwankt zwischen 0,5 m & / m& 0 1, 0. Die Auslegungsdaten sind: Massenstrom m& 0 = 4 kg/s Wirkungsgrad η 0 = 0,8 Ansaugtemperatur T 1 = 288 K =konstant Ansaugdruck p 1 = 1,0 bar = konstant Druckverhältnis π 0 = p 2 /p 1 = 4 Gaseigenschaften κ = 1,4 R = 287 J/kg K Zur Regelung ist ein großer Speicher vorgesehen, dessen Druck auf einen konstanten Wert von p 3 = 4 bar geregelt werden soll. Kinetische Energien und Druckverluste in den Rohrleitungen seien vernachlässigbar. Die Verdichtung kann als adiabat angesehen werden. Die Verdichterkennlinien sind im Bereich 0,5 m & / m& 0 1, 05 durch folgende Funktionen beschrieben: 2 m& m& Verdichterdruckverhältnis π = f1 ( m& / m& 0 ) = V + 4 m& 0 m& 0 Polytroper Wirkungsgrad η V = f & & m& ( 2 m / m0) = η0 0,8 1 m& Berechnen Sie den Leistungsbedarf P i0 für den Auslegungspunkt. 9.2 Kennzeichnen Sie die Betriebspunkte auf den Kennlinien und berechnen Sie jeweils den Leistungsbedarf für eine Förderung ( m& zur Anlage) von 60% des Auslegungsmassenstroms bei: a) Regelung durch druckseitige Drosselung (n=konst.) b) Regelung durch Abblasen (n konst.) Zusatzübungsaufgaben zur Vorlesung 12

13 9.3 Bis zu welchen minimalen Massenströmen kann mit den beiden Regelungsmethoden in den Speicher gefördert werden? Wodurch ist der minimale Massenstrom ggf. begrenzt? 9.4 Nennen Sie möglichst drei verschiedene Regelungsmethoden, mit denen bei konstantem Austrittsdruck von p 3 = 4 bar kleinere Massenströme als mit Methode 9.2a) zur Anlage gefördert werden können. (Konstruktive Maßnahmen am Verdichter bzw. an der Anlage sind dabei zugelassen). 9.5 Erklären Sie jeweils die Wirkungsweise der unter 9.4 genannten Regelungsmethoden skizzenhaft im Verdichterkennfeld und kennzeichnen Sie qualitativ die minimalen Massenstrome. Zusatzübungsaufgaben zur Vorlesung 13

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002 Universität Duisburg-Essen Standort Duisburg Fachbereich Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Prüfer: Fluiddynamik / Hauptstudium II Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D.

Mehr

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002 Universität Duisburg-Essen Standort Duisburg Fachbereich Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Prüfer: Fluiddynamik / Hauptstudium II Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D.

Mehr

Prüfungsordnung 2002

Prüfungsordnung 2002 Universität Duisburg-Essen Fachbereich für Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Fluiddynamik/Strömungsmaschinen Prüfer: Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel Datum der

Mehr

Klausur Strömungsmaschinen WS 2005/ 2006

Klausur Strömungsmaschinen WS 2005/ 2006 Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J. Seume Klausur Strömungsmaschinen WS 2005/ 2006 28. Februar 2006, Beginn 14:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel

Mehr

Nach Prüfungsordnung 1989

Nach Prüfungsordnung 1989 Fachprüfung: Prüfer: Kolben und Strömungsmaschinen Hauptstudium II Prof. Dr. Ing. H. Simon Prof. Dr. Ing. P. Roth Tag der Prüfung: 10.08.2001 Nach Prüfungsordnung 1989 Vorgesehene Punkteverteilung: Strömungsmaschinen:

Mehr

Klausur Strömungsmaschinen I SoSe 2008

Klausur Strömungsmaschinen I SoSe 2008 Klausur Strömungsmaschinen I SoSe 2008 9 August 2008, Beginn 3:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Vorlesungsskript (einschließlich handschriftlicher Notizen und Formelsammlung)

Mehr

Klausur Strömungsmaschinen I WiSe 2008/09

Klausur Strömungsmaschinen I WiSe 2008/09 Klausur Strömungsmaschinen I WiSe 008/09 7 Februar 009, Beginn 4:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Vorlesungsskript (einschließlich handschriftlicher Notizen und Formelsammlung)

Mehr

Klausur Fluidenergiemaschinen Fragen H Lösung:

Klausur Fluidenergiemaschinen Fragen H Lösung: Klausur Fluidenergiemaschinen (mit Lösungen).0.00 Fragen. Wasser soll mit einer Pumpe von einem unteren Becken in ein oberes Becken gefördert werden. Beide Becken sind offen. a) Stellen Sie qualitativ

Mehr

mittlere Stromlinie 1.3 Wird die Strömung innerhalb der Laufräder beschleunigt, verzögert oder nur umgelenkt?

mittlere Stromlinie 1.3 Wird die Strömung innerhalb der Laufräder beschleunigt, verzögert oder nur umgelenkt? Aufgabe 1 Eulergleichung, Geschwindigkeitsdreiecke Für die Projektierung von anlagen und für die überschlägige Abschätzung wird die eindimensionale Stromfadentheorie zugrunde gelegt. Dabei betrachtet man

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

Klausur Strömungsmaschinen I WiSe 2013/2014

Klausur Strömungsmaschinen I WiSe 2013/2014 Klausur Strömungsmaschinen I WiSe 2013/2014 4. März 2013, Beginn 14:00 Uhr Prüfungszeit: 90 Minutenn Zugelassene Hilfsmittell sind: Taschenrechner, Geodreieck, gestellte Formelsammlung Zeichenmaterial,

Mehr

Klausur Strömungsmaschinen I SS 2011

Klausur Strömungsmaschinen I SS 2011 Klausur Strömungsmaschinen I SS 2011 17. August 2011, Beginn 13:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Vorlesungsskript (einschließlich handschriftlicher Notizen) und zugehörige

Mehr

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 20. August 2009

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 20. August 2009 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 20. August 2009 Bearbeitungszeit:

Mehr

Klausur Strömungsmaschinen I SoSe 2013

Klausur Strömungsmaschinen I SoSe 2013 Klausur Strömungsmaschinen I SoSe 013 14. August 013, Beginn 13:00 Uhr Prüfungszeit: 90 Minutenn Zugelassene Hilfsmittel sind: nichtprogrammierbarer Taschenrechner, Geodreieck, Zeichenmaterial Andere Hilfsmittel,

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 15. August 2005

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 15. August 2005 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 15. August 2005 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 15. August 2007

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 15. August 2007 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 15. August 2007 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Klausur Strömungsmaschinen SS 2004

Klausur Strömungsmaschinen SS 2004 Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J. Seume Klausur Strömungsmaschinen SS 2004 24. August 2004, Beginn 13:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind:

Mehr

Klausur Strömungsmaschinen I WiSe 2012/2013

Klausur Strömungsmaschinen I WiSe 2012/2013 Klausur Ströungsaschinen I WiSe 2012/2013 5. März 2013, Beginn 14:00 Uhr Prüfungszeit: 90 Minutenn Zugelassene Hilfsittel sind: Taschenrechner, Geodreieck, Zeichenaterial Andere Hilfsittel, insbesondere:

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Thermodynamik 1 Klausur 01. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 01. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 01. März 2013 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Klausur Strömungsmaschinen WS 2002/2003

Klausur Strömungsmaschinen WS 2002/2003 Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J. Seume Klausur Strömungsmaschinen WS 2002/2003 25. Februar 2003, Beginn 9:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind:

Mehr

Thermodynamik 1 Klausur 02. August 2010

Thermodynamik 1 Klausur 02. August 2010 Thermodynamik 1 Klausur 02. August 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Klausur Strömungsmaschinen SS 2002

Klausur Strömungsmaschinen SS 2002 Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J. Seume Klausur Strömungsmaschinen SS 2002 7. August 2002, Beginn 9:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: das

Mehr

Energie- und Kältetechnik Klausur SS 2008

Energie- und Kältetechnik Klausur SS 2008 Prof. Dr. G. Wilhelms Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

Thermodynamik 1 Klausur 06. August 2012

Thermodynamik 1 Klausur 06. August 2012 Thermodynamik 1 Klausur 06. August 2012 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

II. Thermodynamische Energiebilanzen

II. Thermodynamische Energiebilanzen II. Thermodynamische Energiebilanzen 1. Allgemeine Energiebilanz Beispiel: gekühlter Verdichter stationärer Betrieb über Systemgrenzen Alle Energieströme werden bezogen auf Massenstrom 1 Energieformen:

Mehr

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen. Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik I

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik I NAME, Vorname Matr.-Nr. Studiengang Prof. Dr.-Ing. Gerhard Schmitz Prüfung am 26. 02. 2019 im Fach Technische Thermodynamik I Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 30 Dauer: 25 Minuten Regeln

Mehr

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess:

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Aufgabe 12: Eine offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Der Verdichter V η s,v 0,75) saugt Luft im Zustand 1 1 bar, T 1 288 K) an und verdichtet sie adiabat auf den Druck p 2 3,7

Mehr

Klausur Strömungsmaschinen I WiSem 2014/2015

Klausur Strömungsmaschinen I WiSem 2014/2015 Klausur Strömungsmaschinen I WiSem 2014/2015 3. März 2015, Beginn 14:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner Geodreieck Zeichenmaterial gestellte Formelsammlung Andere

Mehr

Thermodynamik I Klausur WS 2010/2011

Thermodynamik I Klausur WS 2010/2011 Thermodynamik I Klausur WS 010/011 Aufgabenteil / Blatt 1-50 Minuten Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

Thermodynamik 1 Klausur, 3. August Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur, 3. August Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur, 3. August 2009 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

0tto-von-Guericke-Universität Magdeburg

0tto-von-Guericke-Universität Magdeburg 0tto-von-Guericke-Universität Magdeburg Institut für Strömungstechnik und Thermodynamik, Lehrstuhl Strömungsmechanik und Strömungstechnik Übungsaufgaben Fluidenergiemaschinen Aufgabe 1.01 In einer Bewässerungsanlage

Mehr

Institut für Technische Verbrennung Univ.-Prof. Dr.-Ing. H. Pitsch. Aufgabenstellung Thermodynamik I SS Aachen, den 22.

Institut für Technische Verbrennung Univ.-Prof. Dr.-Ing. H. Pitsch. Aufgabenstellung Thermodynamik I SS Aachen, den 22. Institut für Technische Verbrennung Univ.-Prof. Dr.-Ing. H. Pitsch Aufgabenstellung Thermodynamik I SS 2014 Aachen, den 22. September 2014 Bachelorprüfung Thermodynamik I SS 2014 1/4 1 Aufgabe (25 Punkte)

Mehr

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 12. März 2014 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung:

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II

Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II Theoriefragen für das Labortestat und die Prüfung Fluidmechanik II 1) Wie stellt sich der Druck p E im Austrittsquerschnitt beim Austritt eines Gases aus einem Kessel durch eine stetig konvergente Mündung,

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 17. August 2012

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 17. August 2012 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 17. August 2012 Bearbeitungszeit:

Mehr

Prüfung: Thermodynamik II (Prof. Adam)

Prüfung: Thermodynamik II (Prof. Adam) Prüfung: Thermodynamik II (Prof. Adam) 18.09.2008 Erreichbare Gesamtpunktzahl: 48 Punkte Aufgabe 1 (30 Punkte): In einem Heizkraftwerk (siehe Skizze) wird dem Arbeitsmedium Wasser im Dampferzeuger 75 MW

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II NAME, Vorname Matr.-Nr. Studiengang ÈÖÓ º Öº¹ÁÒ º Ö Ö Ë Ñ ØÞ Prüfung am 11. 08. 2015 im Fach Technische Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 15 Minuten Regeln Nur

Mehr

Klausurlösungen T. Thermodynamik II Sommersemester 2016 Fragenteil

Klausurlösungen T. Thermodynamik II Sommersemester 2016 Fragenteil Klausurlösungen T. Thermodynamik II Sommersemester 2016 Fragenteil Lösung zum Fragenteil Regeln Nur eine eindeutige Markierung wird bewertet, z. B.: Für eine Korrektur kann die zweite Spalte mögl. Korrektur

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

Übungsaufgaben zur Thermodynamik

Übungsaufgaben zur Thermodynamik Übungsaufgaben zur Thermodynamik Übungsbeispiel 1 Ein ideales Gas hat bei einem Druck von 2,5 bar und ϑl = 27 C eine Dichte von ρ1 = 2,7 kg/m 3. Durch isobare Wärmezufuhr soll sich das Gasvolumen Vl verdoppeln

Mehr

Thermodynamik 1 Klausur 03. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 03. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 03. März 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Thermodynamik 1 Klausur 12. August 2013

Thermodynamik 1 Klausur 12. August 2013 Thermodynamik 1 Klausur 12. August 2013 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Thermodynamik 1 Klausur 08. September 2016

Thermodynamik 1 Klausur 08. September 2016 Thermodynamik 1 Klausur 08. September 2016 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten Alle Unterlagen zur Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

Thermodynamik I Klausur SS 2010

Thermodynamik I Klausur SS 2010 Thermodynamik I Klausur 00 Prof. Dr. J. Kuck, Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten/eite Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und

Mehr

Thermodynamik 1 Klausur 06. März 2015

Thermodynamik 1 Klausur 06. März 2015 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 06. März 2015 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung:

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 7. August 2009 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw Gedankengang muss erkennbar

Mehr

Klausur Kraft- und Arbeitsmaschinen- Teil Strömungsmaschinen Prof. Dr.-Ing. Th. Carolus - Universität Siegen

Klausur Kraft- und Arbeitsmaschinen- Teil Strömungsmaschinen Prof. Dr.-Ing. Th. Carolus - Universität Siegen Klausur Kraft- und Arbeitsmaschinen- Teil Strömungsmaschinen Prof. Dr.-Ing. Th. Carolus - Universität Siegen 2. Termin WS 2006/07 Aufgabe 1 2 3 4 Σ Name: Punkte Punktezahl Matr.-Nr.: /8 /12 /10 /10 /40

Mehr

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti Thermodynamik I PVK - Tag 2 Nicolas Lanzetti Nicolas Lanzetti 05.01.2016 1 Heutige Themen Carnot; Wirkungsgrad/Leistungsziffer; Entropie; Erzeugte Entropie; Isentroper Wirkungsgrad; Isentrope Prozesse

Mehr

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 18. August 2011

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 18. August 2011 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 18. August 2011 Bearbeitungszeit:

Mehr

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 19. August 2010

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 19. August 2010 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 19. August 2010 Bearbeitungszeit:

Mehr

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3 Formelzeichen XIII 1 Einleitung 1 2 Einheiten physikalischer Größen 3 3 Systeme 7 3.1 Definition von Systemen 7 3.2 Systemarten 8 3.2.1 Geschlossenes System 8 3.2.2 Offenes System 9 3.2.3 Adiabates System

Mehr

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann.

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann. Aufgabe 33 Aus einer Druckluftflasche V 50 dm 3 ) mit einem Anfangsdruck p 0 60 bar strömt solange Luft in die Umgebung p U bar, T U 300 K), bis der Druck in der Flasche auf 0 bar gefallen ist. Dabei soll

Mehr

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter Schriftliche Prüfung aus VO Kraftwerke am 19.04.2016 KW 04/2016 Name/Vorname: / Matr.-Nr./Knz.: / 1. Stirlingmotor (25 Punkte) Ein Stirlingmotor soll zur Stromerzeugung in einem 50 Hz Netz eingesetzt werden.

Mehr

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 26. August 2013

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 26. August 2013 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. August 2013 Bearbeitungszeit:

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2012 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Technische Thermodynamik II

Technische Thermodynamik II Technische Thermodynamik II Name,Vorname: Bitte deutlich (in Blockschrift) ausfüllen! Matr.-Nr: Studiengang: F 1 2 Σ Note 1 NAME, Vorname Studiengang Prof. Dr.-Ing. Gerhard Schmitz Prüfung am 16. 03. 2017

Mehr

4 Energieumsetzung in der Strömungsmaschinenstufe

4 Energieumsetzung in der Strömungsmaschinenstufe 4 Energieumsetzung in der Strömungsmaschinenstufe 4.1 Darstellung, Bezeichnungen und Bilanzgrenzen 4.2 Schaufeln und deren Anordnung im Gitter 4.3 Kinematische Grundgleichung, Geschwindigkeitsdreiecke

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Kraft- und Arbeitsmaschinen. Klausur, 18. August 2014

Kraft- und Arbeitsmaschinen. Klausur, 18. August 2014 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur, 18. August 2014 Bearbeitungszeit: 120 Minuten

Mehr

Klausur. Strömungsmechanik

Klausur. Strömungsmechanik Strömungsmechanik Klausur Strömungsmechanik. Juli 007 Name, Vorname: Matrikelnummer: Fachrichtung: Unterschrift: Bewertung: Aufgabe : Aufgabe : Aufgabe 3: Aufgabe 4: Gesamtpunktzahl: Klausur Strömungsmechanik

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3.1 Stationär durchströmte offene Systeme - Grundlegende Beziehungen - nergiesatz stationär durchströmter offener Systeme - nwendung

Mehr

III. Energieaustausch und Verluste

III. Energieaustausch und Verluste III. Energieaustausch und Verluste Entwurf einer Strömungsmaschine: Betrachtung der Strömung durch alle Komponenten detaillierte Verlustbetrachtung Grundelemente der Strömungsmaschine: Laufrad Leitrad

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Technische Universität Hamburg

Technische Universität Hamburg NAME, Vorname Studiengang Technische Universität Hamburg ÈÖÓ º Öº¹ÁÒ º Ö Ö Ë Ñ ØÞ Prüfung am 16. 08. 2016 im Fach Technische Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer:

Mehr

Klausur 12. September Teil 1

Klausur 12. September Teil 1 Institut für Energie- und Verfahrenstechnik Thermodynam mik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Rationelle Energienutzung Klausur 12. September 2014 Teil 1 Gesamte Bearbeitungszeit:

Mehr

Übungen zu Experimentalphysik 2 für MSE

Übungen zu Experimentalphysik 2 für MSE Physik-Department LS für Funktionelle Materialien SS 208 Übungen zu Experimentalphysik 2 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. olker Körstgens, Sebastian Grott, Julian Heger, Dr. Neelima Paul,

Mehr

Thermodynamik. Springer Vieweg. Grundlagen und technische Anwendungen. Band 1: Einstoffsysteme. Schaber

Thermodynamik. Springer Vieweg. Grundlagen und technische Anwendungen. Band 1: Einstoffsysteme. Schaber Schaber Peter Stephan Karlheinz Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 19., ergänzte Auflage Springer Vieweg Inhaltsverzeichnis Liste der

Mehr

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 16., vollständig neu bearbeitete Auflage Mit 195 Abbildungen und

Mehr

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse?

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse? Aufgabe 11: Das Betriebsverhalten eines Viertakt- Dieselmotors kann durch folgenden reversiblen Kreisprozess näherungsweise beschrieben werden, wobei kinetische und potenzielle Energien zu vernachlässigen

Mehr

Thermodynamik 2 Klausur 19. September 2013

Thermodynamik 2 Klausur 19. September 2013 Thermodynamik 2 Klausur 19. September 2013 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 18. März 2011 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II NAME, Vorname Matr.-Nr. Studiengang Prof. Dr.-Ing. G. Schmitz Prüfung am 16. 07. 2012 im Fach Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 20 Minuten 1. (4 Punkte) Skizzieren

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Klausur Technische Strömungslehre z g

Klausur Technische Strömungslehre z g ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 11. 03. 2009 1. Aufgabe (12 Punkte) p a z g Ein Forscher taucht mit einem kleinen U-Boot der Masse m B = 3200kg (Taucher und Boot)

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II NAME, Vorname Matr.-Nr. Studiengang ÈÖÓ º Öº¹ÁÒ º º Ë Ñ ØÞ Prüfung am 12. 08. 2014 im Fach Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 15 Minuten Regeln Nur eine eindeutige

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Grundlagen der Strömungsmaschinen. Fachhochschule Münster Abteilung Steinfurt Fachbereich Maschinenbau Prof. Dr. R. Ullrich. Übungen zur Vorlesung

Grundlagen der Strömungsmaschinen. Fachhochschule Münster Abteilung Steinfurt Fachbereich Maschinenbau Prof. Dr. R. Ullrich. Übungen zur Vorlesung Fachhochschule Münster Abteilung Steinfurt Fachbereich Maschinenbau Prof. Dr. R. Ullrich Übungen zur Vorlesung Grundlagen der Strömungsmaschinen Version 1/00 D:\FH\strömg\scripte\Uestro1-0a.doc 27. März

Mehr

Regeln. Lösung zum Fragenteil. Fragen mit Ankreuzmöglichkeit:

Regeln. Lösung zum Fragenteil. Fragen mit Ankreuzmöglichkeit: Klausurlösungen T. Thermodynamik II Sommersemester 2018 Fragenteil Lösung zum Fragenteil Regeln Fragen mit Ankreuzmöglichkeit: Nur eine eindeutige Markierung wird bewertet, z. B.: Für eine Korrektur kann

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen

Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen Übungsaufgaben zur Vorlesung Kraft- und Arbeitsmaschinen Aufgabe 1.3-1 Ein Heizgerät verbraucht 5 m³/h Leuchtgas (H u = 21018 kj/m³) und erwärmt 850 dm³/h Wasser um 30 C. Die Wärmekapazitä t des Wassers

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit)

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) LTT ERLANGEN 1 VON 5 FRAGENSAMMLUNG Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) Neben den Fragen können einfachste Rechenaufgaben gestellt werden. Bei einigen

Mehr

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: /

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / Schriftliche Prüfung aus VO Kraftwerke am 23.01.2017 KW 01/2017 Name/Vorname: / Matr.-Nr./Knz.: / 1. CO 2 Vergleich (25 Punkte) Zur Erzeugung von elektrischer Energie stehen zwei Kraftwerkstypen zur Auswahl:

Mehr

Energie- und Kältetechnik Klausur WS 2009/2010

Energie- und Kältetechnik Klausur WS 2009/2010 Prof. Dr. G. Wilhelms Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0.

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0. 3 Lösungen Lösung zu 65. (a) Siehe Abbildung 1. (b) Schritt I: freie adiabatische Expansion, also ist δw 0, δq 0 und damit. Folglich ist nach 1. Hauptsatz auch U 0. Schritt II: isobare Kompression, also

Mehr

Deutsches Zentrum für Luft- und Raumfahrt e. V. DLR-Mitteilung Thermische Turbomaschinen Grundlagen - Aerodynamische Auslegung und Berechnung

Deutsches Zentrum für Luft- und Raumfahrt e. V. DLR-Mitteilung Thermische Turbomaschinen Grundlagen - Aerodynamische Auslegung und Berechnung Deutsches Zentrum für Luft- und Raumfahrt e. V. DLR-Mitteilung 2004-03 Thermische Turbomaschinen Grundlagen - Aerodynamische Auslegung und Berechnung Heinz Wolf Dresden 531 Seiten 205 Bilder 12 Tabellen

Mehr