Große Lösungsräume. Leon Schmidtchen Hallo Welt Seminar - LS Leon Schmidtchen Große Lösungsräume Hallo Welt Seminar - LS2

Größe: px
Ab Seite anzeigen:

Download "Große Lösungsräume. Leon Schmidtchen Hallo Welt Seminar - LS Leon Schmidtchen Große Lösungsräume Hallo Welt Seminar - LS2"

Transkript

1 Große Lösungsräume Leon Schmidtchen Hallo Welt Seminar - LS 2!1

2 Gliederung Motivation Brute Force Backtracking Pruning Leon Schmidtchen Branch & Bound Hallo Welt Seminar - LS 2 Wann soll ich das im ICPC verwenden? A* Iterative Deepening A*!2

3 Motivation Leon Schmidtchen Hallo Welt Seminar - LS 2!3

4 Motivation Leon Schmidtchen Hallo Welt Seminar - LS 2!4

5 Brute Force!5

6 Brute Force Lösungen sind Vektoren Komponenten sind einzelne Schritte der Lösung ( abzählbar endlich) Trägermengen vom Problem abhängig, oft unterschiedliche Bspw. Knoten, Zahlen, Permutationen, Züge von Spielern, Endliche Menge an potentiellen Lösungen Wir probieren einfach jede aus!6

7 Backtracking!

8 Backtracking Schlaueres Brute Force Lösungsvektoren können Schritt für Schritt aufgebaut werden Wenn wir aus currsol keinen korrekten, vollständigen Vektor mehr bauen können currsol verwerfen!

9 Backtracking c = currsol issol(c) // true wenn c bereits valid solution ist notpartofvalidsol(c) // true wenn c nicht zu korrekter Lösung // erweitert werden kann firstextension(c) nextextension(c) // erweitert c um a_i+1 // wählt nächstes Element für a_i+1 Backtrack(c) if issol(c) print(c) if notpartofvalidsol(c) return e = firstextension(c) while (e!= null) Backtrack(e) e = nextextension(e)!9

10 Pruning!10

11 Pruning Anderer Name für notpartofvalidsol(c). prune(c)!11

12 Pruning a0 1 a a3 4 a2 2 1 ( ) (1) (2) (3) (4) (1,1) (1,2) (1,3) (1,4) (1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,2,2,1) (1,2,2,2) (1,2,2,3) (1,2,2,4) Teilbäume, die auf keine richtige Lösung führen, können wir beim ersten betreten abschneiden!12

13 Pruning a0 1 a a3 4 a2 2 1 ( ) Backtrack(c) if issol(c) print(c) if prune(c) return e = firstextension(c) while (e!= null) Backtrack(e) e = nextextension(e)!13

14 Pruning a0 1 a a3 4 a2 2 1 (1) ( ) Backtrack(c) if issol(c) print(c) if prune(c) return e = firstextension(c) while (e!= null) Backtrack(e) e = nextextension(e)!14

15 Pruning a0 1 a a3 4 a2 2 1 (1) ( ) Backtrack(c) if issol(c) print(c) if prune(c) return e = firstextension(c) while (e!= null) Backtrack(e) e = nextextension(e)!15

16 Pruning a0 1 a a3 4 a2 2 1 (1) (2) ( ) Backtrack(c) if issol(c) print(c) if prune(c) return e = firstextension(c) while (e!= null) Backtrack(e) e = nextextension(e)!16

17 Pruning a0 1 a a3 4 a2 2 1 (1) (2) ( ) Backtrack(c) if issol(c) print(c) if prune(c) return e = firstextension(c) while (e!= null) Backtrack(e) e = nextextension(e)!1

18 Pruning a0 1 a a3 4 a2 2 1 ( ) (1) (2) (3) (4) Backtrack(c) if issol(c) print(c) if prune(c) return e = firstextension(c) while (e!= null) Backtrack(e) e = nextextension(e)!1

19 Pruning a0 1 a a3 4 a2 2 1 ( ) (1) (2) (3) (4) (4,1) Backtrack(c) if issol(c) print(c) if prune(c) return e = firstextension(c) while (e!= null) Backtrack(e) e = nextextension(e)!19

20 Pruning a0 1 a a3 4 a2 2 1 ( ) (1) (2) (3) (4) (4,1) (4,2) Backtrack(c) if issol(c) print(c) if prune(c) return e = firstextension(c) while (e!= null) Backtrack(e) e = nextextension(e)!20

21 Pruning a0 1 a a3 4 a2 2 1 ( ) (1) (2) (3) (4) (4,1) (4,2) Backtrack(c) if issol(c) print(c) if prune(c) return e = firstextension(c) while (e!= null) Backtrack(e) e = nextextension(e) (4,2,1) (4,2,2) (4,2,3) (4,2,3,1) (4,2,3,2) (4,2,3,3)!21

22 Branch & Bound!22

23 Branch & Bound Pruning-Methode, die vor allem bei Optimierungsproblemen verwendet wird Im Weiteren wird versucht zu maximieren Alle möglichen Eingaben für Lösungsraum/Suchraum liegen in unserem B&B nutzt Heuristiken um rekursiv zu verkleinern!23

24 Einschub - Heuristik Schätzung Faustregel Intuitives und/oder intelligentes Raten Zusätzliche Hilfsannahmen durch konkretes Problem Für B&B sollte Heuristik schnell zu berechnen sein Je genauer Heuristik ist, desto schneller wird die optimale Lösung gefunden!24

25 Branch & Bound Globale Variable best, initialisiert auf 0, danach größte bisher gefundene Lösung. Untere Schranke für Branch: Teile den aktuellen Suchraum in zwei (rekursiver Abstieg) Nicht zwingend disjunkt, aber erwünscht Bound: Bestimme optimistische Schätzung für obere Schranke von F(x) für bestes x aus aktuellem Suchraum Falls Schätzung < best: Teilbaum kann verworfen werden!25

26 Branch & Bound Untere Schranke für Gesamtproblem kann auch auf anderen Wert initialisiert werden, falls bessere Schätzung bekannt ist Knoten mit größter oberen Schranke (Bound) immer zuerst besuchen Achtung! Falls best initial zu groß ist, wird keine Lösung gefunden. Heuristik, die im Bound-Schritt obere Schranke angibt, darf nie fälschlicherweise zu klein sein. Sonst werden Teilmengen abgeschnitten, die ein optimales Ergebnis enthalten könnten.!26

27 Backtracking und große Lösungsräume im ICPC!2

28 ICPC Woher wissen wir, dass es für ein Problem X (noch) keinen effizienten Algorithmus gibt? Zeige: SAT CLIQUE IS TSP <=p X!2

29 ICPC für manche Leute spaßig, für den ICPC eher ungeeignet Andere Frage: Woher wissen wir, dass X einen großen Lösungsraum hat? Optimierungsproblem Ausprobieren und kombinieren notwendig Abwandlung von bekannten NP-schweren Problemen Weder Greedy, noch DP, noch spezielle Algorithmen für Graphen, Flüsse, Zeichenketten, etc. sind anwendbar!29

30 ICPC Jedoch das einfachste Kriterium: Eingabegröße! Eingabe erwartete Laufzeit O(N) O(N log(n)) O(N^2) 100 O(N^3) 20 O(2^N) 15 O(N * 2^N) oder O(3^N) 9 O(N!) Bis N = 20 ist exponentielle Laufzeit sehr wahrscheinlich ein richtiger Weg. Dann können Backtracking-Algorithmen verwendet werden.!30

31 ICPC - Rechenbeispiel Berechne die Anzahl der Lösungen des -Damen-Problems!31

32 ICPC - Rechenbeispiel Berechne die Anzahl der Lösungen des -Damen-Problems Erster Ansatz: Lösungsvektor - Koordinaten einer Dame Brute Force wohl zu langsam!32

33 ICPC - Rechenbeispiel Berechne die Anzahl der Lösungen des -Damen-Problems Zweiter Ansatz: Lösungsvektor - Position der Dame in Spalte i Brute Force wohl immer noch zu langsam!33

34 ICPC - Rechenbeispiel Berechne die Anzahl der Lösungen des -Damen-Problems Dritter Ansatz: Lösungsvektor - Position der Dame in Spalte i Pro neuer Dame fällt eine mögliche Zeile für die restlichen Damen weg (Ignorieren der Diagonalen) Backtracking mit Prune-check auf besetzte Zeilen alleine sollte im Time Limit liegen!34

35 A*!35

36 A* (A star) Kürzester Pfad zwischen Startknoten S und Endknoten E in einem Graph Dijkstra ist uninformierter Suchalgorithmus, nutzt viele problembedingte Informationen nicht aus Dijkstra zerfällt bei uniformen Netzen zu Breitensuche Dijkstra-Algorithmus, erweitert um Heuristik Bessere ( klügere ) Knotenwahl führt schneller zum Ziel Benötigt positive Kantengewichte Findet immer optimale Lösung Exponentieller Zeit- und Speicheraufwand!36

37 A* (A star) OPEN Prioritätswarteschlange initial S auf 0, alle anderen Knoten auf Inf CLOSED vollständig bearbeitete Knoten initial leer Gewicht eines Knoten x in OPEN wird berechnet durch f(x) = g(x) + h(x) g(x) sei das Gewicht von S h(x) sei das geschätzte Gewicht zu E!3

38 A* (A star) Astar(nodes[], S, E) OPEN = PriorityQueue(S:0, rest:inf) CLOSED = EmptySet() k = OPEN.pop() while (k!= null) if (k == E) return foreach n //Nachbar von k, noch nicht in CLOSED cost = g(n) + h(n) if (cost < OPEN[n]) OPEN[n] = cost CLOSED.add(k) k = OPEN.pop()!3

39 A* (A star) Beispiel - Dijkstra S E!39

40 A* (A star) Beispiel - Dijkstra S E Markiert sind Knoten in OPEN!40

41 A* (A star) Beispiel - Dijkstra S E Markiert sind Knoten in OPEN!41

42 A* (A star) Beispiel - Dijkstra S E Markiert sind Knoten in OPEN!42

43 A* (A star) Beispiel - Dijkstra S E Markiert sind Knoten in OPEN!43

44 A* (A star) Beispiel - Dijkstra S E Markiert sind Knoten in OPEN!44

45 A* (A star) Beispiel - Dijkstra S E Markiert sind Knoten in OPEN!45

46 A* (A star) Beispiel - Dijkstra S E Markiert sind Knoten in OPEN!46

47 A* (A star) Beispiel - Dijkstra S E Markiert sind Knoten in OPEN!4

48 A* (A star) Beispiel - Dijkstra S E Markiert sind Knoten in OPEN!4

49 A* (A star) Beispiel - Dijkstra S E Markiert sind Knoten in OPEN!49

50 A* (A star) Beispiel - Dijkstra Bei uniformen Kantengewichten S ist Dijkstra effektiv Breitensuche E!50

51 A* (A star) Beispiel - A* S E Markiert sind Knoten in OPEN!51

52 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik S Markiert sind Knoten in OPEN E!52

53 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik S Markiert sind Knoten in OPEN E!53

54 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik S Markiert sind Knoten in OPEN E!54

55 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 4 S Markiert sind Knoten in OPEN E!55

56 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 4 S Markiert sind Knoten in OPEN E!56

57 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 4 S Markiert sind Knoten in OPEN E!5

58 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 4 S Markiert sind Knoten in OPEN E!5

59 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 S Markiert sind Knoten in OPEN E!59

60 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 S Markiert sind Knoten in OPEN E!60

61 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 S Markiert sind Knoten in OPEN E!61

62 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 S Markiert sind Knoten in OPEN E!62

63 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 S Markiert sind Knoten in OPEN E!63

64 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 S Markiert sind Knoten in OPEN E!64

65 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 S Markiert sind Knoten in OPEN E!65

66 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 S Markiert sind Knoten in OPEN E!66

67 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 S Markiert sind Knoten in OPEN E!6

68 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 S Markiert sind Knoten in OPEN E!6

69 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 S Markiert sind Knoten in OPEN E!69

70 A* (A star) Beispiel - A* Mit Manhattan Distanz Heuristik 6 A*-Algorithmus sucht durch Heuristik stets Knoten aus, Sdie tendenziell 5 5 näher am Ziel liegen E!0

71 Iterative Deepening A*!1

72 IDA* A* benötigt exponentiellen Speicher Durch Iterative Tiefensuche längere Laufzeit, aber deutlich geringerer Speicherverbrauch Durchsuche Graph mit A*, brich aber ab einer gewissen Tiefe ab (wenn Knotengewicht threshold überschreitet, füge Knoten nicht mehr in OPEN ein)!2

73 IDA* threshold für Tiefensuche: Zu Beginn threshold = f(s) = h(s) (mit Heuristik geschätzte Distanz zu E) In jedem Durchgang: Falls f(x) > threshold, füge Knoten x nicht mehr in OPEN ein, speichere aber niedrigstes f(x) Im nächsten Durchgang ist neuer threshold das niedrigste f(x) aus dem vorherigen Durchgang (Graph muss in jeder Iteration neu aufgebaut werden)!3

74 Quellen und Fragen!4

75 Quellen Folien aus den letzten Jahren: Hans Spath (2010) Christopher Bahn (2012) Marcel Rupprecht (2015) Nico Meyer (201) Brute Force, Backtracking, Pruning: Branch & Bound: A* und IDA*:

76 Danke für Eure Aufmerksamkeit! Fragen?!6

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Große Lösungsräume Maximilian Seitzer Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Große Lösungsräume Worum geht s hier? Für viele wichtige Probleme sind

Mehr

NP-vollständige Probleme

NP-vollständige Probleme Effiziente Algorithmen Lösen NP-vollständiger Probleme 256 NP-vollständige Probleme Keine polynomiellen Algorithmen, falls P NP. Viele wichtige Probleme sind NP-vollständig. Irgendwie müssen sie gelöst

Mehr

a b r a c a d a b r a

a b r a c a d a b r a Textalgorithmen Stringmatching Algorithmus von Rabin und Karp (Folie 446, Seite 81 im Skript) a b r a c a d a b r a Gegeben u und v mit v = m. Wähle eine geeignete Hashfunktion Σ N. 1 Berechne h(v) und

Mehr

Graph Suchalgorithmus Uninformierte Suche Informierte Suche. Pfadsuche. Mario Mohr. GWV-Tutorium 2013/ Januar 2014

Graph Suchalgorithmus Uninformierte Suche Informierte Suche. Pfadsuche. Mario Mohr. GWV-Tutorium 2013/ Januar 2014 Pfadsuche Mario Mohr GWV-Tutorium 2013/14 17. Januar 2014 4 Informierte Suche Heuristik Best-first A* 1 Graph 2 Suchalgorithmus 3 Uninformierte Suche Breadth-first Loop detection & multiple-path pruning

Mehr

Einführung in Heuristische Suche

Einführung in Heuristische Suche Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?

Mehr

Uninformierte Suche in Java Informierte Suchverfahren

Uninformierte Suche in Java Informierte Suchverfahren Uninformierte Suche in Java Informierte Suchverfahren Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Suchprobleme bestehen aus Zuständen

Mehr

Uninformierte Suche in Java Informierte Suchverfahren

Uninformierte Suche in Java Informierte Suchverfahren Uninformierte Suche in Java Informierte Suchverfahren Stephan Schwiebert WS 2008/2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln 8-Damen-Problem Gegeben: Schachbrett

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 14. Klassische Suche: IDA Malte Helmert Universität Basel 31. März 2014 Klassische Suche: Überblick Kapitelüberblick klassische Suche: 3. 5. Einführung 6. 9. Basisalgorithmen

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Vorlesung 4: Suchverfahren Informierte Suche 1/132 INFORMIERTE SUCHSTRATEGIEN (ISS) Benutzt neben der Definition des Problems auch problemspezifisches Wissen. Findet Lösungen effizienter

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

Das Problem des Handlungsreisenden

Das Problem des Handlungsreisenden Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme

Mehr

Der Branching-Operator B

Der Branching-Operator B Branching 1 / 17 Der Branching-Operator B Unser Ziel: Löse das allgemeine Minimierungsproblem minimiere f (x), so dass Lösung(x). B zerlegt eine Menge von Lösungen in disjunkte Teilmengen. Die wiederholte

Mehr

Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Exaktes Lösen NP-harter Probleme In manchen Anwendungen ist das garantierte Auffinden exakter

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 17 (8.7.2014) Minimale Spannbäume II Union Find, Prioritätswarteschlangen Algorithmen und Komplexität Minimaler Spannbaum Gegeben: Zus. hängender,

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Vorlesung 4: Suchverfahren Informierte Suche 1/135 WIEDERHOLUNG BISLANG... Uninformierte Strategien: bearbeiten den Suchraum systematisch, aber ohne problemspezifisches Wissen ab.

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Intelligente Systeme

Intelligente Systeme Intelligente Systeme Heuristische Suchalgorithmen Prof. Dr. R. Kruse C. Braune {rudolf.kruse,christian.braune}@ovgu.de Institut für Intelligente Kooperierende Systeme Fakultät für Informatik Otto-von-Guericke-Universität

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 208 (Algorithmen & Datenstrukturen) Vorlesung 4 (..208) Graphenalgorithmen III Algorithmen und Komplexität Bäume Gegeben: Zusammenhängender, ungerichteter Graph G = V, E Baum: Zusammenhängender,

Mehr

8.1 Blinde Suche. Grundlagen der Künstlichen Intelligenz. Klassische Suche: Überblick. 8. Klassische Suche: Breitensuche und uniforme Kostensuche

8.1 Blinde Suche. Grundlagen der Künstlichen Intelligenz. Klassische Suche: Überblick. 8. Klassische Suche: Breitensuche und uniforme Kostensuche Grundlagen der Künstlichen Intelligenz 17. März 2014 8. Klassische Suche: Breitensuche und uniforme Kostensuche Grundlagen der Künstlichen Intelligenz 8. Klassische Suche: Breitensuche und uniforme Kostensuche

Mehr

Grundlagen der Algorithmen und Datenstrukturen Kapitel 12

Grundlagen der Algorithmen und Datenstrukturen Kapitel 12 Grundlagen der Algorithmen und Datenstrukturen Kapitel 12 Christian Scheideler + Helmut Seidl SS 2009 28.06.09 Kapitel 12 1 Generische Optimierungsverfahren Techniken: Systematische Suche lass nichts aus

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 05 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute Einführung Grundlagen von Algorithmen Grundlagen

Mehr

Aufgaben zur Klausurvorbereitung

Aufgaben zur Klausurvorbereitung Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute Einführung Grundlagen von Algorithmen

Mehr

1 Einführung. 2 Grundlagen von Algorithmen. 3 Grundlagen von Datenstrukturen. 4 Grundlagen der Korrektheit von Algorithmen

1 Einführung. 2 Grundlagen von Algorithmen. 3 Grundlagen von Datenstrukturen. 4 Grundlagen der Korrektheit von Algorithmen Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 0 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Einführung Grundlagen von Algorithmen Grundlagen

Mehr

Beweise aus dem Fach Grundzüge der Künstlichen Intelligenz

Beweise aus dem Fach Grundzüge der Künstlichen Intelligenz Beweise aus dem Fach Grundzüge der Künstlichen Intelligenz Alexander Pacha TU Wien - Matr. Nr.: 0828440 alexander.pacha@tuwien.ac.at 1 Begriserklärungen Für die folgenden Beweise werden zuerst folgende

Mehr

Wissensbasierte Suche

Wissensbasierte Suche Wissensbasierte Suche Jürgen Dorn Inhalt uninformierte Suche wissensbasierte Suche A* und IDA* Algorithmus Suche in Und/Oder-Graphen Jürgen Dorn 2003 Wissensbasierte Suche 1 Suche Suche in (expliziten

Mehr

Optimierung. Vorlesung 12

Optimierung. Vorlesung 12 Optimierung Vorlesung 12 Letze Woche Approximieren von ILP durch randomisiertes Runden. Beispiel Set Cove Relaxiertes LP lösen und runden. Probleme: 1. Zielfunktionswert 2. Zulässigkeit 1. Linearität des

Mehr

12.4 Traveling Salesman Problem

12.4 Traveling Salesman Problem 96 KOMBINATORISCHE SUCHE.4 Traveling Salesman Problem Definition.3(TSP, Problem des Handlungsreisenden): Wir betrachten einen gerichteten, gewichteten Graphen G = (V,E) mit K : V R. K({u,v}) sind die Kosten

Mehr

Sokoban. Knowledge Engineering und Lernen in Spielen. Mark Sollweck Fachbereich 20 Seminar Knowledge Engineering Mark Sollweck 1

Sokoban. Knowledge Engineering und Lernen in Spielen. Mark Sollweck Fachbereich 20 Seminar Knowledge Engineering Mark Sollweck 1 Sokoban Knowledge Engineering und Lernen in Spielen Mark Sollweck 29.04.2010 Fachbereich 20 Seminar Knowledge Engineering Mark Sollweck 1 Überblick Sokoban Spielregeln Eigenschaften Lösungsansatz IDA*

Mehr

Weitere Algorithmenentwurfstechniken

Weitere Algorithmenentwurfstechniken Weitere Algorithmenentwurfstechniken 1 Backtracking Vier Damen Beim Schach bedroht die Figur der Dame alle Felder, die sich horizontal, vertikal oder diagonal von der entsprechenden Position der Dame befinden.

Mehr

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016 Algorithmen und Datenstrukturen 2 Übung 1 Stefan Florian Palkovits, BSc 0926364 e0926364@student.tuwien.ac.at 12. Juni 2016 Aufgabe 1: Es existiert eine Reduktion von Problem A auf Problem B in O(n 3 +

Mehr

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016 Algorithmen und Datenstrukturen Übung Stefan Florian Palkovits, BSc 09 e09@student.tuwien.ac.at 9. Juni 0 Aufgabe 9: Anwenden der Spanning Tree Heuristik auf symmetrisches TSP 9 8 7 8 8 7 Bilden eines

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Kürzeste Wege Maike Buchin 4. und 6.7.2017 Einführung Motivation: Bestimmung von kürzesten Wegen ist in vielen Anwendungen, z.b. Routenplanung, ein wichtiges Problem. Allgemeine

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Große Lösungsräume Valentin Rothberg Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Einleitung Rekursion Backtracking Pruning Branch and bound

Mehr

Traveling Salesman Problem (TSP)

Traveling Salesman Problem (TSP) Traveling Salesman Problem (TSP) Das Traveling Salesman Problem (TSP) ist ein bekanntes Optimierungsproblem. Ein Handlungsreisender soll in einer Rundreise (auch Tour genannt) n vorgegebene Städte besuchen.

Mehr

Intelligente Systeme

Intelligente Systeme Intelligente Systeme Heuristische Suchalgorithmen Prof. Dr. R. Kruse. raune. Doell {kruse,cbraune,doell}@iws.cs.uni-magdeburg.de Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke

Mehr

Kapitel 5: Suchverfahren: Backtracking

Kapitel 5: Suchverfahren: Backtracking Kapitel 5: Suchverfahren: Backtracking Prof. Dr. F. Otto (Universität Kassel) Entwurf und Analyse von Algorithmen 278 / 541 Suchverfahren: Backtracking Viele Probleme lassen sich als Suchprobleme formulieren.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

9. Heuristische Suche

9. Heuristische Suche 9. Heuristische Suche Prof. Dr. Rudolf Kruse University of Magdeburg Faculty of Computer Science Magdeburg, Germany rudolf.kruse@cs.uni-magdeburg.de S Heuristische Suche Idee: Wir nutzen eine (heuristische)

Mehr

Einführung in Algorithmen und Komplexität

Einführung in Algorithmen und Komplexität Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:

Mehr

Abschätzung der Suchbaumgröße

Abschätzung der Suchbaumgröße Effiziente Algorithmen Lösen NP-vollständiger Probleme 263 Abschätzung der Suchbaumgröße Der Schätzwert für die Suchbaumgröße war 3529. Lassen wir das Programm laufen, ergibt sich, daß 1830 gültige Positionen

Mehr

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 1 Agenda Kontrollfragen Graphen Graphenalgorithmen 2

Mehr

Übersicht. 1 Einführung. 2 Suchen und Sortieren. 3 Graphalgorithmen. 4 Algorithmische Geometrie. 5 Textalgorithmen. 6 Paradigmen

Übersicht. 1 Einführung. 2 Suchen und Sortieren. 3 Graphalgorithmen. 4 Algorithmische Geometrie. 5 Textalgorithmen. 6 Paradigmen Übersicht 1 Einführung 2 Suchen und Sortieren 3 Graphalgorithmen 4 Algorithmische Geometrie 5 6 Paradigmen Übersicht 5 Editdistanz (Folie 446, Seite 83 im Skript) Eingabe: Zwei Strings v und w Frage: Kommt

Mehr

Wissensbasierte Systeme. Kombinatorische Explosion und die Notwendigkeit Heuristischer Suche. Heuristiken und ihre Eigenschaften

Wissensbasierte Systeme. Kombinatorische Explosion und die Notwendigkeit Heuristischer Suche. Heuristiken und ihre Eigenschaften 1 Michael Beetz Technische Universität München Wintersemester 2004/05 Kombinatorische Explosion und die Notwendigkeit Heuristischer Suche 2 3 der Eigenschaften der 4 : 8-Puzzle 5 Heuristiken und ihre Eigenschaften

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

Graphenalgorithmen I

Graphenalgorithmen I Graphenalgorithmen I Vortrag im Seminar Hallo Welt! für Fortgeschrittene 7. Juni 211 Graphenalgorithmen I 1/33 Motivation Problem Wie komme ich am schnellsten ins Kanapee? Problem Wie kommt ein Datenpaket

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 6 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 16. Mai 2018 [Letzte Aktualisierung: 18/05/2018,

Mehr

Algorithmen I. Tutorium Sitzung. Dennis Felsing

Algorithmen I. Tutorium Sitzung. Dennis Felsing Algorithmen I Tutorium 1-10. Sitzung Dennis Felsing dennis.felsing@student.kit.edu www.stud.uni-karlsruhe.de/~ubcqr/algo 2011-06-20 Klausur Klausuranmeldung jetzt im Studienportal möglich! Klausur am 19.07.

Mehr

Übung 2 Algorithmen II

Übung 2 Algorithmen II Yaroslav Akhremtsev, Demian Hespe yaroslav.akhremtsev@kit.edu, hespe@kit.edu Mit Folien von Michael Axtmann (teilweise) http://algo2.iti.kit.edu/algorithmenii_ws17.php - 0 Akhremtsev, Hespe: KIT Universität

Mehr

Lösungen von Übungsblatt 12

Lösungen von Übungsblatt 12 Lösungen von Übungsblatt 12 Algorithmen (WS 2018, Ulrike von Luxburg) Lösungen zu Aufgabe 1 Eine (kanonische) Möglichkeit, die Branch-Schritte auszuführen ergibt sich wie folgt: Das ursprüngliche Problem

Mehr

Einführung in Suchverfahren

Einführung in Suchverfahren Einführung in Suchverfahren Alfred Kranstedt 0.0.0 Seminar Intelligente Algorithmen Was ist heute Thema?. Was ist ein Suchproblem? Definitionen, Darstellungen etc.. Suchstrategien Blinde Suche Heuristische

Mehr

Backtracking mit Heuristiken

Backtracking mit Heuristiken Backtracking mit Heuristiken Thomas Dübendorfer thomas@duebendorfer.ch 14. September 2000 Inhalt und Ablauf 1. Einführendes Beispiel (4 min) 2. Konzepte zu Backtracking (8 min) 3. Eingesperrt im Labyrinth

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Suchverfahren / Uninformierte Suche

Einführung in die Methoden der Künstlichen Intelligenz. Suchverfahren / Uninformierte Suche Einführung in die Methoden der Künstlichen Intelligenz Suchverfahren / Uninformierte Suche PD Dr. David Sabel SoSe 0 Stand der Folien:. pril 0 Einführung Blind Search n-damen Missionare & Kannibalen Modellierung

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Prof. Dr. Erika Ábrahám Datenstrukturen und Algorithmen 1/1 Datenstrukturen und Algorithmen Vorlesung 14: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/

Mehr

Kap. 7.3 Enumerationsverfahren Kap. 7.4 Branch-and-Bound Kap. 7.5 Dynamische Programmierung

Kap. 7.3 Enumerationsverfahren Kap. 7.4 Branch-and-Bound Kap. 7.5 Dynamische Programmierung Kap. 7.3 Enumerationsverfahren Kap. 7.4 Branch-and-Bound Kap. 7.5 Dynamische Programmierung Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund ACHTUNG: Die VO

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Lerneinheit 3: Greedy Algorithmen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2016 10.5.2016 Einleitung Einleitung Diese Lerneinheit

Mehr

Berechnung minimaler Spannbäume. Beispiel

Berechnung minimaler Spannbäume. Beispiel Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau

Mehr

12. Der Algorithmus von Dijkstra. Informatik II für Verkehrsingenieure

12. Der Algorithmus von Dijkstra. Informatik II für Verkehrsingenieure . Der Algorithmus von Dijkstra Informatik II für Verkehrsingenieure Problemstellung Gegeben: Graph G =(V, E, len) mit positiver Kantenfunktion len : E! R 0, Knoten s, t V Mögliche Aufgaben Berechne Distanz

Mehr

Effizienter Planaritätstest Vorlesung am

Effizienter Planaritätstest Vorlesung am Effizienter Planaritätstest Vorlesung am 23.04.2014 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER Satz Gegebenen einen Graphen G = (V, E) mit n Kanten und m Knoten, kann in O(n + m) Zeit

Mehr

Zustandsraumsuche: Blinde und Heuristische Suche. Blinde und Heuristische Suche

Zustandsraumsuche: Blinde und Heuristische Suche. Blinde und Heuristische Suche Zustandsraumsuche: Blinde und Heuristische Suche Einführung in die KI Übungsstunde am 01.11.04 Benmin Altmeyer 1 Heute im Angebot Was ist Suche? Suche als Probemlösung Zustandsraumsuche Vollständigkeit

Mehr

11. Übung Algorithmen I

11. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Motivation für Suchverfahren. Einführung in die Methoden der Künstlichen Intelligenz. Suchverfahren / Uninformierte Suche

Motivation für Suchverfahren. Einführung in die Methoden der Künstlichen Intelligenz. Suchverfahren / Uninformierte Suche Motivation für Suchverfahren Einführung in die Methoden der Künstlichen Intelligenz Suchverfahren / Uninformierte Suche Prof. Dr. Manfred Schmidt-Schauß SoSe 06 Beispiele: Spiele: Suche nach dem besten

Mehr

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Traveling Salesman

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Traveling Salesman Paper Computer Science Experiment Great Principles of Computing Computation (NP-Vollständigkeit) Thema Traveling Salesman Unterrichtsform Lernen am Modell Voraussetzung Wahrscheinlich kennen viele Schüler/innen

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Systems of Distinct Representatives

Systems of Distinct Representatives Systems of Distinct Representatives Seminar: Extremal Combinatorics Peter Fritz Lehr- und Forschungsgebiet Theoretische Informatik RWTH Aachen Systems of Distinct Representatives p. 1/41 Gliederung Einführung

Mehr

Algorithmen I - Tutorium 28 Nr. 9

Algorithmen I - Tutorium 28 Nr. 9 Algorithmen I - Tutorium 28 Nr. 9 29.06.2017: Spaß mit Graphen und Graphtraversierung Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN MÜLLER-QUADE

Mehr

Methoden für den Entwurf von Algorithmen

Methoden für den Entwurf von Algorithmen Methoden für den Entwurf von Algorithmen Greedy Algorithmen: - Löse ein einfaches Optimierungsproblem durch eine Folge vernünftiger Entscheidungen. - Eine getroffene Entscheidung wird nie zurückgenommen.

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 25. Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V17, 10.12.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick:

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die nformatik 2 raphenexploration Sven Kosub A Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 9 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 06. Juni 2018 [Letzte Aktualisierung: 06/07/2018,

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 20 (23.7.2014) All Pairs Shortest Paths, String Matching (Textsuche) Algorithmen und Komplexität Vorlesungsevaluation Sie sollten alle eine

Mehr

Das Problem des minimalen Steiner-Baumes

Das Problem des minimalen Steiner-Baumes Das Problem des minimalen Steiner-Baumes Ein polynomieller Approximationsalgorithmus Benedikt Wagner 4.05.208 INSTITUT FU R THEORETISCHE INFORMATIK, LEHRSTUHL ALGORITHMIK KIT Die Forschungsuniversita t

Mehr

Einführung in das Seminar Algorithmentechnik

Einführung in das Seminar Algorithmentechnik Einführung in das Seminar Algorithmentechnik 10. Mai 2012 Henning Meyerhenke, Roland Glantz 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Roland undglantz: nationales Einführung Forschungszentrum

Mehr

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y

Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y GRUNDZÜGE DER ALGORITHMISCHEN GEOMETRIE Klausur 18. Juli 2008, 10:15-12:15 Uhr Name:................................... Matrikelnummer:................................... Anzahl beschriebener Blätter (ohne

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Suchverfahren / Uninformierte Suche

Einführung in die Methoden der Künstlichen Intelligenz. Suchverfahren / Uninformierte Suche Einführung in die Methoden der Künstlichen Intelligenz Suchverfahren / Uninformierte Suche Prof. Dr. Manfred Schmidt-Schauß SoSe 08 Stand der Folien: 9. pril 08 Einführung Blind Search n-damen Missionare

Mehr

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität.

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Netzwerkalgorithmen Bipartites Matching (Folie 90, Seite 80 im Skript) Gegeben: Ein bipartiter, ungerichteter Graph (V, V, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Ein Matching ist eine

Mehr

void bellford ( List adjlst [n], int n, int i, int j){ int d[n] = + inf ; d[i] = 0;

void bellford ( List adjlst [n], int n, int i, int j){ int d[n] = + inf ; d[i] = 0; für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Datenstrukturen und Algorithmen SS5 hristian Dehnert, Friedrich Gretz, enjamin Kaminski, Thomas Ströder Tutoraufgabe (ellman-ford Algorithmus): a) Passen

Mehr

Rückblick: divide and conquer

Rückblick: divide and conquer Rückblick: divide and conquer pi = (xi,yi) } p å } ' }d(p,p) p ''=min(, ') F 0/0 p./95 weitere Algorithmentechniken Greedy-Algorithmen dynamische Programmierung Backtracking branch and bound Heuristiken

Mehr

Informatik II: Algorithmen und Datenstrukturen SS 2013

Informatik II: Algorithmen und Datenstrukturen SS 2013 Informatik II: Algorithmen und Datenstrukturen SS 2013 Vorlesung 11b, Mittwoch, 3. Juli 2013 (Editierdistanz, dynamische Programmierung) Prof. Dr. Hannah Bast Lehrstuhl für Algorithmen und Datenstrukturen

Mehr

3.6 Branch-and-Bound-Verfahren

3.6 Branch-and-Bound-Verfahren 36 Branch-and-Bound-Verfahren Die Branch-and-Bound -Methode beruht darauf, auf eine intelligente Weise alle zulässigen Lösungen eines kombinatorischen Optimierungsproblems aufzulisten und mit Hilfe von

Mehr

Das Traveling Salesman Problem und das Assignment Problem zweiter Ordnung. Gerold Jäger

Das Traveling Salesman Problem und das Assignment Problem zweiter Ordnung. Gerold Jäger Das Traveling Salesman Problem und das Assignment Problem zweiter Ordnung Gerold Jäger Martin-Luther-Universität Halle-Wittenberg Zusammenarbeit mit Frank Fischer, Anja Lau, Paul Molitor DFG-Projekt: Toleranzbasierte

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Geometrie II Benjamin Zenke Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Inhalt Closest Pair Divide & Conquer Bereichssuche Gitterverfahren k-d-tree Sweep-Line-Algorithmen

Mehr

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5)

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5) Praktikum Diskrete Optimierung (Teil 5) 6.05.009 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Kognitive Systeme 1. Heuristische Suche. Dr.-Ing. Bernd Ludwig. Lehrstuhl für Künstliche Intelligenz Friedrich-Alexander-Universität Erlangen-Nürnberg

Kognitive Systeme 1. Heuristische Suche. Dr.-Ing. Bernd Ludwig. Lehrstuhl für Künstliche Intelligenz Friedrich-Alexander-Universität Erlangen-Nürnberg Kognitive Systeme 1 Heuristische Suche Dr.-Ing. Bernd Ludwig Lehrstuhl für Künstliche Intelligenz Friedrich-Alexander-Universität Erlangen-Nürnberg 12.11.2009 Dr.-Ing. Bernd Ludwig (Lehrstuhl KI) Kognitive

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

Sandro Pirkwieser, (Bin Hu, Jakob Puchinger) SS 2010

Sandro Pirkwieser, (Bin Hu, Jakob Puchinger) SS 2010 Lösungsverfahren für Ganzzahlige Optimierung Sandro Pirkwieser, (Bin Hu, Jakob Puchinger) Fortgeschrittene Algorithmen und Datenstrukturen Arbeitsbereich für Algorithmen und Datenstrukturen Institut für

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 24. April 2019 [Letzte Aktualisierung: 24/04/2019,

Mehr

Graphentheorie. Vorkurs Informatik WS 2016/2017. Dennis Aumiller

Graphentheorie. Vorkurs Informatik WS 2016/2017. Dennis Aumiller Vorkurs Informatik WS 2016/2017 Dennis Aumiller Aumiller@stud.uni-heidelberg.de 14.10.2016 Über das Thema Wo alles begann Leider keine gesonderte Vorlesung dafür oft als Teilthema in anderen Vorlesungen

Mehr

Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS Oktober 2016

Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS Oktober 2016 Technische Universität Wien Institut für Computergraphik und Algorithmen Algorithms and Complexity Group 186.815 Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS 2016 5. Oktober 2016 Machen Sie

Mehr