Mathematik Thema Vielecke
|
|
|
- Detlef Hase
- vor 10 Jahren
- Abrufe
Transkript
1 Them Vielecke Im Jnur 2006 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 1 von 15
2 INHALTSVERZEICHNES 1. EINLEITUNG 3 2. ARTEN VON VIELECKEN DREIECK VIERECK RECHTECK QUADRAT PARALLELOGRAMM RAUTE TRAPEZ DRACHE FÜNFECK (PENTAGON) ACHTECK (OKTOGON) BERÜHMTES VIELECK 6 3. BERECHNUNG VON VIELECKEN UMFANG DREIECK RAUTE FÜNFECK 8 FLÄCHE DREIECK RAUTE FÜNFECK WINKEL DREIECK VIELECKE ZUSAMMENFASSUNG QUELLENANGABEN 15 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 2 von 15
3 1. Einleitung Der Inhlt meiner Präsenttion behndelt Rute und Vielecke. Hierbei hndelt es sich um Flächen. Flächen sind zweidimensionl. Der mthemtische Fchusdruck lutet Polygon. Ein Vieleck ist eine ebene Fläche us mindestens drei oder mehr Punkten die durch Strecken miteinnder verbunden sind, so ds eine geschlossene Figur entsteht. Ws knn mn in einem Vieleck berechnen? Umfng Flächen Winkel Vielecke können regelmäßig und unregelmäßig sein. Bei regelmäßigen Vielecken sind lle Innenwinkel und lle Verbindungsstrecken der Eckpunkte gleich groß. Florin Vetter, Klsse 8, Riegelhof Relschule Seite 3 von 15
4 2. Arten von Vielecken Typische Vertreter von Vielecken sind: 2.1. Dreieck regelmäßig unregelmäßig 2.2. Viereck Rechteck regelmäßig unregelmäßig Qudrt regelmäßig unregelmäßig Prllelogrmm regelmäßig unregelmäßig Florin Vetter, Klsse 8, Riegelhof Relschule Seite 4 von 15
5 Rute regelmäßig unregelmäßig Trpez regelmäßig unregelmäßig Drche regelmäßig unregelmäßig 2.3. Fünfeck (Pentgon) regelmäßig unregelmäßig Florin Vetter, Klsse 8, Riegelhof Relschule Seite 5 von 15
6 2.4. Achteck (Oktogon) regelmäßig unregelmäßig 2.5. Berühmtes Vieleck Ds Pentgon ist der Huptsitz des US-meriknischen Verteidigungsministeriums. Florin Vetter, Klsse 8, Riegelhof Relschule Seite 6 von 15
7 3. Berechnung von Vielecken Ws knn mn in einem Vieleck berechnen? Umfng Flächen Winkel 3.1. Umfng Der Umfng ist die Länge des Rndes einer Fläche in der Zeichenebene. Umfng = Summe ller Seitenlängen Dreieck C b A c B Im Dreieck ist der Umfng die Summe der Seitenlängen plus b plus c. u = +b+c Florin Vetter, Klsse 8, Riegelhof Relschule Seite 7 von 15
8 Rute C D B A In der Rute sind lle Seitenlängen gleich lng. Der Umfng ist dher 4ml eine Seitenlänge. u = Fünfeck D d c E C e b A B Im Fünfeck ist der Umfng die Summe ller Seitenlängen. u = +b+c+d+e Florin Vetter, Klsse 8, Riegelhof Relschule Seite 8 von 15
9 Fläche Eine Fläche ist ein nch Länge und Breite flch usgedehnter Bereich. Um Flächeninhlte bei Vielecken berechnen zu können müssen diese entweder in Teilflächen zerlegt oder sinnvoll ergänzt werden. Bsp.: Teilen von Flächen Bsp.: Ergänzen von Flächen Florin Vetter, Klsse 8, Riegelhof Relschule Seite 9 von 15
10 Dreieck C b c h c h b h A B A = ½ **h Rute C c b D e B f d A = e * ½ f = ½ * e * f A Florin Vetter, Klsse 8, Riegelhof Relschule Seite 10 von 15
11 Fünfeck D D d c d c E C E A 1 A 3 C A 2 e b e b A B A B A = A1+A2+A3+ +An Eine Möglichkeit der Flächenberechnung im N-Eck ist dessen Zerlegung in Teilflächen. Nun können die Teilflächen entsprechend berechnet werden. Florin Vetter, Klsse 8, Riegelhof Relschule Seite 11 von 15
12 3.2. Winkel Die Winkelsumme im Vieleck berechnet mn, indem mn die einzelnen Winkel ddiert Dreieck In jedem Dreieck ist die Winkelsumme 180 α+β+γ = Vielecke Vielecke können in zwei oder mehrere Dreiecke ufgeteilt werden. Ein Viereck in 2 Dreiecke, ein Fünfeck in 3 Dreiecke, ein Sechseck in 4 Dreiecke, und so weiter. Florin Vetter, Klsse 8, Riegelhof Relschule Seite 12 von 15
13 Dher ergibt sich folgende Berechnung: Figur Winkelsumme Dreieck 180 Viereck (4-2)*180 =360 Fünfeck (5-2)*180 =540 Sechseck (6-2)*180 =720 Siebeneck (7-2)*180 =900 n-eck (n-2)*180 Logisch, oder? Bei regelmäßigen Vielecken sind die Innenwinkel immer gleich groß, d.h. die Winkelsumme geteilt durch die Anzhl der Ecken ergibt den Innenwinkel. n-eck Innenwinkel Winkelsumme Dreieck Viereck Fünfeck Sechseck Achteck Eck Florin Vetter, Klsse 8, Riegelhof Relschule Seite 13 von 15
14 4. Zusmmenfssung Der Umfng bei Vielecken ist die Länge des Rndes einer Fläche in der Zeichenebene. Umfng = Summe ller Seitenlängen Um Flächeninhlte bei Vielecken berechnen zu können müssen diese entweder in Teilflächen zerlegt oder sinnvoll ergänzt werden. Der Flächeninhlt eines Qudrtes knn us dem Qudrt der Seitenlänge berechnet werden. Der Flächeninhlt eines Rechteckes knn us dem Produkt der Seitenlänge berechnet werden. Der Flächeninhlt eines Prllelogrmms knn us dem Produkt einer Seitenlänge und der Länge der zugehörigen Höhe berechnet werden. Der Flächeninhlt eines Dreiecks knn us dem hlben Produkt einer Seitenlänge und der Länge der zugehörigen Höhe berechnet werden. Der Flächeninhlt eines Trpezes knn us dem Produkt der Mittelprllele und der Höhe berechnet werden. Der Flächeninhlt einer Rute bzw.eines Drchens knn us dem hlben Produkt der beiden Digonlen berechnet werden. Die Winkelsumme ergibt sich us der Addition ller Einzelwinkel im Vieleck. In jedem Dreieck ist die Winkelsumme 180 Die Winkelsumme im Vieleck mit n Eckpunkten beträgt (n-2)*180 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 14 von 15
15 5. Quellenngben Bücher: Schnittpunkt, Ernst Klett Verlg, Stuttgrt Lexikon der Mthemtik, Lexikogrphisches Institut, München Internet Internetsuchmschine Eine freie Internet-Enzyklopädie Deutschlnds größter Online-Verlg im Schul- und Bildungswesen Universität Flensburg Florin Vetter, Klsse 8, Riegelhof Relschule Seite 15 von 15
Grundwissen Mathematik 7I
Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises
Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man
die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40
Dreiecke als Bausteine
e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten
Definition und Begriffe
Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist
2.2. Aufgaben zu Figuren
2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Mathematik. Name, Vorname:
Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig
Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III
Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen
Lösung: a) 1093 1100 b) 1093 1090
OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der
Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)
Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck
1 Kurvendiskussion /40
009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.
Gymnasium. Testform B
Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Gymnasium Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau im
Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999
Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden
Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:
Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken
Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.
6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich
Basteln und Zeichnen
Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle
Jedes Jahr mehr Zinsen!
Aufgabe 21 Zinsen erhält man für gewöhnlich nur für ein Jahr. Wenn man aber schon vorher an Erspartes möchte, muss man die Tageszinsen ermitteln. Erstelle eine Tabelle, die nach der Eingabe von Kapital,
JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten)
KLASSE: NAME: VORNAME: Mögliche Punktzahl: 51 48 Pte. = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK 1. Klassen Kantonschule Reussbühl Luzern 7. Mai 014 Zeit: 1:10 14:40 (90 Minuten) Allgemeines
Kreis und Kreisteile. - Aufgaben Teil 2 -
- Aufgben Teil - Am Ende der Aufgbensmmlung finden Sie eine Formelübersicht 61. Bestimme den Inhlt 6. Bestimme den Inhlt Abhängigkeit von r. Abhängigkeit von. 63. Berechne r in Abhängigkeit von 64. Berechne
http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen
7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit
Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss
Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:
Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule
Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule - 1 - ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben sind kurz,
Bruchrechnung Wir teilen gerecht auf
Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen
Quadratische Gleichungen
Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl
3 Wiederholung des Bruchrechnens
3 Wiederholung des Bruchrechnens Ein Bruch entsteht, wenn ein Gnzes in mehrere gleiche Teile zerlegt wird. Jeder Bruch besteht us dem Zähler, der Zhl über dem Bruchstrich, und dem Nenner, der Zhl unter
Formelsammlung zur Kreisgleichung
zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
Falten regelmäßiger Vielecke
Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.
Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)
Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine
Klassenarbeit zu linearen Gleichungssystemen
Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge
1. Voraussetzung. 2. Web-Account anlegen. 3. Einloggen. 4. Kunden-Portal verwenden 5. Sub-Accounts 5.1Sub-Account anlegen. 5.2 Sub-Account bearbeiten
Anleitung DER WEG ZUM TOLL COLLECT KUNDEN-PORTAL Inhlt 1. Vorussetzung 2. Web-Account nlegen 3. Einloggen 4. Kunden-Portl verwenden 5. Sub-Accounts 5.1Sub-Account nlegen 5.2 Sub-Account berbeiten 5.3 Sub-Account
Aufgabensammlung Bruchrechnen
Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................
Repetitionsaufgaben Wurzelgleichungen
Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen
Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:
Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch
Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!
Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3
Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.
Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.
Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.
Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen
Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011
Leseprobe Monika Noack, lexander Unger, Robert Geretschläger, Hansjürg Stocker Mathe mit dem Känguru 3 Die schönsten ufgaben von 009 bis 011 ISN: 978-3-446-480-1 Weitere Informationen oder estellungen
Übungsaufgaben Klasse 7
Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.
Übungsblatt Gleichungssysteme Klasse 8
Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem
Ein Rechteck hat zwei Symmetrieachsen: je eine durch die Hlften der gegenber liegenden
1 Vierecke Vierecke haben - wie der Name schon sagt - vier Ecken und vier Seiten. Die vier Ecken des Vierecks werden in der Regel mit A, B, C und D bezeichnet. Die Seite zwischen den Punkten A und B ist
http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen
2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion
Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Leica 3D Disto CAD-Werkzeuge
Leica 3D Disto CAD-Werkzeuge Wann werden sie benötigt? um Fenster, Türen und andere Wanddetails zu messen um verdeckte Punkte zu messen 90 um Ecken von genau 90.000 zu erzeugen 45 um Sollmaße zu erzeugen
Eignungstest Mathematik
Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für
Aufgabe 1. BMS Mathematik - G Abschlussprüfung_11 Seite: 1/14. a) Vereinfachen Sie die Terme so weit wie möglich: (I) = (II)
Aufgbe 1 BMS Mthemtik - G Abschlussprüfung_11 Seite: 1/14 ) Vereinfchen Sie die Terme so weit wie möglich: 9 h + h + h (I) 7 8 h + h 8 7 (II) n n 4 n n+ 4 b) Bestimmen Sie die Lösungsmenge für : ln 1 3
Zahlensysteme. von Christian Bartl
von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät
Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten
Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Name: Datum: Zeit: 60:00 Minuten Frage 1 von 20 Theo und Jenny sollen für eine Messeveranstaltung einen Holztisch mit 100 cm x 100 cm und
Erster Prüfungsteil: Aufgabe 1
Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis
Die Formelsammlung: Meine Mathematische Werkzeugkiste Formel, Skizze Formel, Skizze Beispiel(e)
1. Rechenvorteile, Rechengesetze Summnd 12 plus Summnd 4 ist gleich dem Wert der Summe: 46. Minuend 10 minus Subtrhend 7 ist gleich dem Wert der Differenz: Dividend 10 geteilt durch Divisor 4 ist gleich
Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre
Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt
Mathematik schriftlich
WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe
Unterrichtseinheit. Code ist cool - Kinder lernen programmieren. Autoren
ICT und Medien für PS 07:00 Minuten Autoren Zusammenfassung Pascal Lütscher und Bernhard Matter Fachbereich Mathematik der Pädagogischen Hochschule Graubünden Ob Getränkeautomat, Parkuhr, Fernseher, MP3-Player,
Diagnostisches Interview zur Bruchrechnung
Diagnostisches Interview zur Bruchrechnung (1) Tortendiagramm Zeigen Sie der Schülerin/dem Schüler das Tortendiagramm. a) Wie groß ist der Teil B des Kreises? b) Wie groß ist der Teil D des Kreises? (2)
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht
Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)
Hauptschule G-Kurs. Testform B
Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Hauptschule G-Kurs Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau
Die Größe von Flächen vergleichen
Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2
Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum.
gnz klr: Mthemtik - Ds Ferienheft mit Erfolgsnzeiger 8 Rettungsring Berechnungen m Dreieck & Viereck Begriffe: Umfng und Flächeninhlt 1 Muss der Umfng (u) oder der Flächeninhlt (A) erechnet werden? Kreuze
Tag der Mathematik 2012
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Bepunktung Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner
Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik
Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere
Parallelogramme und Dreiecke A512-03
12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56
Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])
3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere
meinpflegedienst.com Release Notes 3.4
meinpflegedienst.com Release Notes 3.4 Brönnerstr. 17 60313 Frankfurt am Main www.dealsoft.de Seite 1 von 7 Inhaltsverzeichnis 1Vorwort...3 2Notizen...3 3Mitarbeiterarbeitsverhältnis...5 4Medikamentenplan
Geometrie. Umfang/Fläche (eckige Körper)
Seite 1 Hier lernst du, Umfänge und Flächen bei folgenden geometrischen Flächen zu ermitteln: Quadrat, Rechteck, Parallelogramm, Dreieck, Trapez Und einfache zusammengesetzte Formen Prinzipielle Grundlagen
Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:
Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist
2.2. Figuren Dreiecke Winkelsumme in Dreiecken Besondere Dreiecke Vierecke
.. Figuren Figuren sind zweidimensionle Geilde in der Eene. Die einfhsten Figuren sind Dreieke und Viereke.... Dreieke Bezeihnungen in Dreieken werden die Ekpunkte A, B, sowie die dzugehörigen Innenwinkel,,
BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)
Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel
3. LINEARE GLEICHUNGSSYSTEME
176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an
Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1
Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße
2 Trigonometrische Formeln
Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen
Lineare Gleichungssysteme I (Matrixgleichungen)
Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst
Lösung. Prüfungsteil 1: Aufgabe 1
Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015
Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen
ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm
ARBEITSBLATT 1-13 13 Mßeinheiten 1. Längenmße 1000 10 10 10 km m dm cm mm Beispiel: Schreib mehrnmig:,03801 km Lösung:,03801 km = km 3 m 8 dm 1 mm Beispiel: Drücke in km us: 4 km 0 m 3 cm Lösung: 4 km
A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3)
Ein Raumviereck ABCD kann eben sein oder aus zwei gegeneinander geneigten Dreiecken bestehen. In einem ebenen Viereck schneiden sich die Diagonalen. Überprüfen Sie, ob die gegebenen Vierecke eben sind.
Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)
Mathematik I Prüfung für den Übertritt aus der 9. Klasse
Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Euch fällt mit Sicherheit noch viel mehr ein!
MEMOBOARD Dieses Memoboard ist vielseitig einsetzbar. Es passt in dein persönliches Nähzimmer, denn du kannst daran alle deine Ideen und Bilder sammeln. Es passt in das Büro deines Liebsten, denn er kann
http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen
4. Mathematik Olympiade Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
MB1 LU 5 und 12 Geometrische Grundbegriffe
M1 LU 5 und 12 Geometrische Grundbegriffe Ds Wort Geometrie ist ltgriechischen Ursprungs und setzt sich us den Wörtern geo = Erde und metron = messen zusmmen. Die Geometrie wr die Wissenschft, die sich
MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN Hinweis : Von jeder Schülerin / jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet, so werden die mit der besten Punktzahl
partie 1 52 défis mathématiques pour les classes bilingues (cycle 3) traduit à partir du site de J-L SIGRIST www.jlsigrist.com
52 défis mathématiques pour les classes bilingues (cycle 3) partie 1 traduit à partir du site de J-L SIGRIST www.jlsigrist.com par ILTIS Stéphane STUDER Yann-Noël HEINTZ Yannick Wie viele Vierecke siehst
Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3
Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5
1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?
Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht
T Nach- bzw. Wiederholungsprüfung:
Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:
Aktualisierung des Internet-Browsers
Marketingtipp Aktualisierung des Internet-Browsers Landesverband Bauernhof- und Landurlaub Bayern e.v. Was ist ein Internet-Browser? Der Internet-Browser ist das Programm, das Sie benutzen um im Internet
Grundwissen Mathematik 7.Klasse Gymnasium SOB
1 Grundwissen Mathematik 7.Klasse Gymnasium SOB 1.Figurengeometrie 1.1.Achsensymmetrie Sind zwei Punkte P und P achsensymmetrisch bezüglich der Achse a, dann gilt [PP ] a und a halbiert [PP ]. a Jeder
Mischungsrechnen. 2006 Berufskolleg Werther Brücke Wuppertal Autor: Hedwig Bäumer
Seite 1 Beim gibt es zwei Aufgabengruppen. Die erste umfasst Aufgaben, die mit Hilfe der wirksamen Substanz ( = 100 % ) innerhalb einer Lösung oder mit der Mischungsformel errechnet werden können. Bei
Computer-AG Klasse 4. Modellversuch zum Geometrieunterricht mit integriertem Computereinsatz an Grundschulen in Duisburg und Essen
Themen aus der Computer-AG Klasse 4 Schuljahre 1999 bis 2007 Modellversuch zum Geometrieunterricht mit integriertem Computereinsatz an Grundschulen in Duisburg und Essen Computersoftware: IGEL-PROGRAMM
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
BÜrO HYPER aufgebautes BÜrOsYsteM
5 JAHRE NACHKAUFGARANTIE BÜrO HYPER UFGeBUtes BÜrOsYsteM Gerundete ecken und Knten nch din-fchbericht 147 schreibtisch und ergonomische Mße nch din En 527-1 sthl-orgzrge mit verdeckter Führung, Präzisionsuszüge
Tag der Mathematik 2011
Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.
Der Berufseinstieg von Absolventen der Wirtschafts- und Sozialwissenschaften
Der Berufseinstieg von Absolventen der Wirtschafts- und Sozialwissenschaften Wie die folgenden Grafiken zu lesen sind: Auf der waagrechten Achse sind die ersten 15 Monate nach dem Abschluss aufgetragen.
Formelsammlung Mathematik
Formelsmmlung Mthemtik Inhlt Mßumwnlungen... Längenmße... Flähenmße... Rum- un Hohlmße... Zeitmße... Rehtek... Qurt... llgemeines Dreiek... 4 Rehtwinkeliges Dreiek... 4 Gleihshenkliges Dreiek... 5 Gleihseitiges
Handbuch. NAFI Online-Spezial. Kunden- / Datenverwaltung. 1. Auflage. (Stand: 24.09.2014)
Handbuch NAFI Online-Spezial 1. Auflage (Stand: 24.09.2014) Copyright 2016 by NAFI GmbH Unerlaubte Vervielfältigungen sind untersagt! Inhaltsangabe Einleitung... 3 Kundenauswahl... 3 Kunde hinzufügen...
