Mathematik schriftlich

Größe: px
Ab Seite anzeigen:

Download "Mathematik schriftlich"

Transkript

1 WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe 8 3. Aufgbe 3. Aufgbe. Aufgbe 9 6. Aufgbe 9 7. Aufgbe 7 8. Aufgbe 9 Totl 00 Note: Mteril Hilfsmittel Zeit Arbeitsblätter, Zustzblätter Tschenrechner, Formelbltt 0 Minuten Hinweise Der Lösungsweg muss überll übersichtlich drgestellt werden; unbelegte Resultte werden nicht berücksichtigt! Mehrfchlösungen sind nicht gestttet; Ungültiges ist deutlich zu streichen. Die gültigen Schlussresultte sind doppelt zu unterstreichen. Alle Ausrechnungen und Resultte schreiben Sie uf diese Blätter, wenn nötig uch uf die Rückseite. Für reine Entwürfe und Versuche verwenden Sie ds Zustzppier. Diese Prüfungsufgbe drf erst b 0 zu Übungszwecken im Unterricht verwendet werden.

2 . Algebrische Umformungen ) Vereinfchen Sie so weit wie möglich und schreiben Sie die Lösung ls Wurzel. 3 Lösung: Vereinfchung vom Term 3 Pro Fehler/Unvollständigkeit: b) Berechnen Sie folgenden Logrithmus-Term. Vereinfchen Sie zuerst. Lösung: log ( 3 6 ) log 6 6 log ( ) log 3 log. log. ( ) 0. Vereinfchung vom Term 3 Pro Fehler/Unvollständigkeit: Mthemtik LAP 00 Seite /8 WS KV Chur

3 Mthemtik LAP 00 Seite 3/8 WS KV Chur c) Vereinfchen Sie folgenden Ausdruck, und schreiben Sie ds Resultt ohne Prmeter im Nenner, sondern llenflls mit negtivem Eponenten: ( ) ( ) 3 b b c Lösung: c c b c b b b c b Vereinfchung vom Term Pro Fehler/Unvollständigkeit:

4 . Gleichungssysteme mit zwei Vriblen Bestimmen Sie die Definitions- und Lösungsmenge des folgenden Gleichungssystems in der Grundmenge G R R y y. Lösung: D R\{-9} R\{0} () 3 () y 8 6y ( + 9) ( + 9) in (): y 6 + y 6 y 6 8y y L {( / ) } Definitionsmenge Für und y: - berechnen 3 pro Verfhrensfehler:- pro Rechenfehler:- y berechnen pro Fehler: - Lösungsmenge Fehler:- Mthemtik LAP 00 Seite /8 WS KV Chur

5 3. Gleichungen ) Bestimme Sie die Definitionsmenge und die Lösungsmenge folgender Gleichung in der Grundmenge R. Lösung: D R\{} ^ 0 ( )( ) ( ( + ) ) + L +, bei 0; Definitionsmenge Ausschluss flsch: - Bed. Prmeter: - berechnen 3 pro Fehler:- Lösungsmenge Fehler: - Resultt, Bed. Prmeter: Pkt. Mthemtik LAP 00 Seite /8 WS KV Chur

6 b) Bestimmen Sie die Lösung der folgenden Gleichung in der Grundmenge R. Die Definitionsmenge und die Lösungsmenge sind nzugeben. Runden Sie uf Nchkommstellen. 0 + Lösung: D R log L {.} Definitionsmenge Fehler: - berechnen pro Fehler:- Lösungsmenge Fehler: - Mthemtik LAP 00 Seite 6/8 WS KV Chur

7 . Linere Funktionen Die Firm Sporti produziert Sportsocken. Die Kosten für die Herstellung verlufen liner, so wie unten drgestellt (90 / 80) CHF (30 / 0) GS Stück ) Formulieren Sie die Funktionsgleichung für diese Kostenfunktion. P (30 / 0), P (90 / 80) 80 0 m q 0 y + 0 ( heruslesbr! ) m berechnen oder heruslesen Fehler: - q berecnen oder heruslesen Fehler: - Funktionsgleichung pro Fehler:- Mthemtik LAP 00 Seite 7/8 WS KV Chur

8 b) Bei 0 verkuften Stück mcht die Firm Sporti CHF 0.- Gewinn. Sie muss ber bei 30 verkuften Stück mit einem Verlust von CHF 60.- rechnen. b) Wie lutet die Gleichung für die Gewinnfunktion? b) Wie lutet die Gleichung für die Erlösfunktion? Gewinnfunktion: 0 m 0 + q 60 m 30 + q 0 0m 60 30m in I: q q 0 y 0 m Erlösfunktion: Gewinnfunktion + Kostenfunktion Erlösfunktion: y 0 + y + 0 y 6 Gleichungssystem und usrechnen: 3 Fehler: - (m Pkte, q Pkt.) Funktionsgleichungen pro Fehler:- Erlösfunktion usrechnen ( Pkt.) Fehler:- Gleichung ( Pkt.) c) Zeichnen Sie die Funktionen von b) in ds obige Koordintensystem ein. Alle Funktionen sind nzuschreiben. Je Gerde Punkt Fehler: - Mthemtik LAP 00 Seite 8/8 WS KV Chur

9 d) Bestimmen Sie die Gewinnschwelle (Nutzschwelle) grfisch (einzeichnen) und rechnerisch?. Vrinte:. Vrinte: (Gewinnfunktion Null setzen) (Erlös- mit Kostenfunktion gleich setzen) Einzeichnen Fehler: - Gewinnschwelle berechnet Fehler:- wenn Idee flsch, dnn 0 Punkte! Mthemtik LAP 00 Seite 9/8 WS KV Chur

10 . Qudrtische Funktionen Gegeben sind folgende zwei Funktionen: f : y 8 + f : y + q ) Berechnen Sie von der Prbel den Scheitelpunkt und die Schnittpunkte mit den beiden Koordintenchsen. Lösung ): Nullstellen: ( )( 6), 6 N ( / 0), N (6 / 0) Scheitelpunkt:. Vrinte:. Vrinte: s + 6 y () s 8() + S ( / ) b b S / c 8 6 S / Schnittpunkt mit y-koordintenchse: S (0 / c) S y y (0 /) und berechnen (je ) pro Fehler: - s und y s berechnen (je ) pro Fehler: - Nullstellen und Scheitelpunkt lso Punkt korrekt drgestellt pro Fehler: - Sy berechnen und ngeben pro Fehler: - Mthemtik LAP 00 Seite 0/8 WS KV Chur

11 b) Wie gross muss q bei f sein, dmit die Prbel und Gerde nur einen Schnittpunkt (Berührungspunkt) hben? Lösung b): q 0 + q 0 Diskrimnte 0 b c 0 00 ( q) q 3 0 q q Gleichsetzen der Fkt.-Glg en Fehler: - Gemeinsme Gleichung (qudr. Normlf.) pro Fehler:- Idee Diskrimnte Null setzen Fehler: - Einsetzen und berechnen Fehler: - c) Berechnen Sie llfällige Schnittpunkte der Funktion y 8 + mit y ( )( 8) 0, 8 In eine von beiden Funktionsgleichung: y, y S ( / 0), S (8 /) 0 Mthemtik LAP 00 Seite /8 WS KV Chur

12 Gleichsetzen der Fkt.-Glg en Fehler: - und berechnen pro Fehler:- y und y berechnen Fehler: - Beide Lösungen ls Punkte drgestellt Fehler: - d) Skizzieren Sie die Grphen der beiden Funktionen von c) in ds vorgegebene Koordintensystem. (Für die Prbel zeichnen Sie mindestens die Punkte von ) ein!) Lösung c): Prbel (mit mind. S, S y, und Nullstellen) pro Fehler: - Gerde Fehler:- 6. Ungleichungen Mthemtik LAP 00 Seite /8 WS KV Chur

13 Lösen Sie folgende Ungleichung in der Grundmenge der rtionlen Zhlen Lösung: D Q\{-3,3} ( 3)( + 3) ( + 3) ( 3) ( 3)( + 3), wenn ( 3)( + 3) positiv, wenn ( 3)( + 3) negtiv Fll positiv negtiv positiv Bereich < 3 3 < < 3 > 3 Lösung effektive Lösung < 3 { } 3 < L { Q < 3 3 < } Definitionsmenge Fehler: - Ungl. nch ufgelöst 3 Fehler: - Gnze Anlyse pro Fehler: - Lösungsmenge Fehler: - 7. Linere Optimierung Mthemtik LAP 00 Seite 3/8 WS KV Chur

14 Die Firm Trendy hndelt mit zwei verschiedene Armbändchen. Ds erste Modell ist us Leder und ds zweite us Plstik. Von den Ledernen will sie höchstens ml so viele verkufen wie von denen us Plstik, ber mindestens gleich viele. Insgesmt werden höchstens 0 Armbändchen pro Mont verkuft. Der Einkufspreis für ein Leder-Armbnd liegt bei CHF 7.-, der eines us Plstik bei CHF.-. Ds Jhresbudget der Firm von CHF 6`000.- soll beim Einkuf nicht überschritten werden. Der Verkufspreis für ein Leder-Armbnd liegt bei CHF 7.-, für ein Plstik-Armbnd bei CHF 9.-. Die Firm Trendy möchte ihren Gewinn mimieren. ) Geben Sie die Definitionsmenge und die Ungleichungen, die zu den Bedingungen gehören, n. gibt die Anzhl Lederrmbändchen im Mont und y die Plstikrmbänchen im Mont n. (Keine Grfik!) Lösung ): D N 0 N 0 ) y ) y 3) + y ) 7 + y Definitionsmenge Fehler: - Bedingungen: je Pkt. Bed. flsch: - b) Bestimmen Sie die Zielfunktion rechnerisch. Lösung b): z (7 7) + (9 ) y z 0 + y Gewinn Erlös minus Kosten Fehler: - Zielfunktion Fehler: - c) Eine ndere Firm, wristlet-store, hndelt mit den gleichen Armbändchen. Sie km uf folgende Bedingungen und Zielfunktion: Mthemtik LAP 00 Seite /8 WS KV Chur

15 ) + y 80 ) y 3) y ) y 0. 0 Zielfunktion: z + y Schreiben Sie lle Bedingungen für wristlet-store ls Gerden und zeichnen Sie diese in ds vorgegebene Koordintensystem ein (jeweils mit entsprechendem Richtungspfeil). Alle Gerden sind beschriften. Die Lösungsfläche ist frblich oder durch Schrffur hervorzuheben. Lösung c): ) + y 80 y + 0, ) y y, 3) y y, ) y 0. 0 y , z + y z y + 0 y / Stück S m g g3 g "z" g / Stück d) Bestimmen Sie für wristlet-store grfisch (einzeichnen) und rechnerisch die Anzhl der Armbändchen, die zu einem mimlen Gewinn führen. Lösung d): Mthemtik LAP 00 Seite /8 WS KV Chur

16 g und g geschnitten bei S m : y 0 00 S m (0 /00) Alle Bed. und Zielfunktion uf Gerdenglg. mit Reltion und eingezeichnet (je Pkt.) m. pro Gerde: - Lösungsfläche Fehler: - S m berechnet ( Pkte) und eingezeichnet ( Pkt.) 3 pro Fehler: - e) Wie gross ist der mimle Gewinn von wristlet-store? Lösung e) z Also der mimle Gewinn ist CHF Mimler Gewinn (mit Einheit Frnken) Pro Fehler: - 8. Finnzmthemtik ) Ein Drlehen von CHF 30'000.- soll in zwei gleich hohen Rten zurückbezhlt werden.. Rte, nch Jhren. Rte, nch weiteren Jhren Mthemtik LAP 00 Seite 6/8 WS KV Chur

17 Wie hoch sind die beiden Rten, wenn die Verzinsung 9% beträgt? Lösung ): ( ) ( +.09 ) +.09 Jede Rte ist CHF 7`976. hoch. Gleichung 3 pro Fehler: - Auflösen Fehler: - b) Beim Erwerb einer Eigentumswohnung liegt folgende vertrgliche Vereinbrung zugrunde: Brzhlung von CHF 300'000.- sofort. Rte von CHF 30'000.-, zhlbr nch Jhren. Rte von CHF 00'000.-, zhlbr nch 0 Jhren Mthemtik LAP 00 Seite 7/8 WS KV Chur

18 Wie hoch ist der effektive Kufpreis der Eigentumswohnung, wenn mit einem Zinsstz von 9% gerechnet wird? Lösung b): ` Formel Brwert Fehler: - Idee/Struktur Fehler: - Berechnung Fehler: - Mthemtik LAP 00 Seite 8/8 WS KV Chur

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 010 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Kaufmännische Berufsmatura 2011

Kaufmännische Berufsmatura 2011 Kaufmännische Berufsmatura 0 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Lehrabschlussprüfungen 009 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Lehrabschlussprüfungen 2008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Kaufmännische Berufsmatura 2007 Kanton Zürich Serie 1

Kaufmännische Berufsmatura 2007 Kanton Zürich Serie 1 Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: [email protected] Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Lehrabschlussprüfungen 008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich LÖSUNGEN Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte.

Mehr

3 Wiederholung des Bruchrechnens

3 Wiederholung des Bruchrechnens 3 Wiederholung des Bruchrechnens Ein Bruch entsteht, wenn ein Gnzes in mehrere gleiche Teile zerlegt wird. Jeder Bruch besteht us dem Zähler, der Zhl über dem Bruchstrich, und dem Nenner, der Zhl unter

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Kaufmännische Berufsmatura 2010 Kanton Zürich Serie 1

Kaufmännische Berufsmatura 2010 Kanton Zürich Serie 1 Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Nullserie zur Prüfungsvorbereitung

Nullserie zur Prüfungsvorbereitung Nullserie zur Prüfungsvorbereitung Die folgenden Hilfsmittel und Bedingungen sind an der Prüfung zu beachten. Erlaubte Hilfsmittel Beliebiger Taschenrechner (Der Einsatz von Lösungs- und Hilfsprogrammen

Mehr

Aufgabe 1. BMS Mathematik - G Abschlussprüfung_11 Seite: 1/14. a) Vereinfachen Sie die Terme so weit wie möglich: (I) = (II)

Aufgabe 1. BMS Mathematik - G Abschlussprüfung_11 Seite: 1/14. a) Vereinfachen Sie die Terme so weit wie möglich: (I) = (II) Aufgbe 1 BMS Mthemtik - G Abschlussprüfung_11 Seite: 1/14 ) Vereinfchen Sie die Terme so weit wie möglich: 9 h + h + h (I) 7 8 h + h 8 7 (II) n n 4 n n+ 4 b) Bestimmen Sie die Lösungsmenge für : ln 1 3

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen. R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Mathematik Serie 1 (60 Min.)

Mathematik Serie 1 (60 Min.) Aufnahmeprüfung 011 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! - Die

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel

Mehr

Kaufmännische Berufsmatura 2013

Kaufmännische Berufsmatura 2013 Kaufmännische Berufsmatura 03 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

AUFNAHMEPRÜFUNG BERUFSMATURA 2013 LÖSUNGEN MATHEMATIK

AUFNAHMEPRÜFUNG BERUFSMATURA 2013 LÖSUNGEN MATHEMATIK Berufsfachschulen Graubünden 3. April 03 AUFNAHMEPRÜFUNG BERUFSMATURA 03 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten Hinweise: Löse die Aufgaben auf den beigelegten leeren Blättern. Alle Lösungsblätter sind

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

TEST Basiswissen Mathematik für Ingenieurstudiengänge

TEST Basiswissen Mathematik für Ingenieurstudiengänge TEST Basiswissen Mathematik für Ingenieurstudiengänge Erste Fassung März 2013 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten

Mehr

Zinsrechnung 2 leicht 1

Zinsrechnung 2 leicht 1 Zinsrechnung 2 leicht 1 Berechne! a) b) c) Kapital 3 400 a) 16 000 b) 24 500 c) Zinsen 2,5% 85 400 612,50 Kapital 3 400 16 000 24 500 KESt (25% der Zinsen) 21,25 100 153,13 Zinsen effektive (2,5 Zinsen

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

5. Lineare Funktionen

5. Lineare Funktionen 5. Lineare Funktionen Lernziele: -Eine lineare Funktion grafisch darstellen -Geradengleichung (Funktionsgleichung einer linearen Funktion) -Deutung von k- und d-wert -Grafische Lösung von Gleichungssystemen

Mehr

Tag der Mathematik 2012

Tag der Mathematik 2012 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Bepunktung Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt? Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht

Mehr

Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min

Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min Aufgabe 1: Wortvorschriften Gib zu den Wortvorschriften je eine Funktionsgleichung an: a) Jeder Zahl wird das Doppelte zugeordnet b) Jeder Zahl wird das um 6 verminderte Dreifache zugeordnet c) Jeder Zahl

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät

Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät Liebe Studieninteressentin, lieber Studieninteressent, wir freuen uns, dass Sie sich für ein wirtschaftswissenschaftliches Studium an der

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) Aufgabe 1: Tanzkurs ( * ) Zu einem Tanzkurs erscheinen dreimal so viele Mädchen wie Jungen. Nachdem 15 Mädchen gegangen sind, sind noch doppelt so viele

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (B) Prüfungstag 5. April Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN)

1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN) 1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN) D A S S O L L T E N N A C H E U R E M R E F E R A T A L L E K Ö N N E N : Kostenfunktion, Erlösfunktion und Gewinnfunktion aufstellen, graphisch

Mehr

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen Name: Note: Punkte: von 50 (in %: ) Unterschrift des Lehrers : Zugelassene Hilfsmittel: Taschenrechner, Geodreieck, Lineal Wichtig: Schreiben Sie Ihren Namen oben auf das Klausurblatt und geben Sie dieses

Mehr

Lerninhalte Fakten-Regeln-Beispiele Quelle. -fache

Lerninhalte Fakten-Regeln-Beispiele Quelle. -fache Friedrich-Alender-Gymnsium Grundwissen Mthemtik. Jhrgngsstufe Lerninhlte Fkten-Regeln-Beispiele Quelle Proportionlität Gehört bei einer Zuordnung zum r-fchen der einen Größe ds r-fche der nderen Größe,

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr