Mathematik schriftlich
|
|
|
- Mina Pfeiffer
- vor 9 Jahren
- Abrufe
Transkript
1 WS KV Chur Abschlussprüfungen 010 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe 10. Aufgabe 8 3. Aufgabe Aufgabe Aufgabe Aufgabe 9 7. Aufgabe Aufgabe 9 Total 100 Note: Material Hilfsmittel Zeit Arbeitsblätter, Zusatzblätter Taschenrechner, Formelblatt 150 Minuten Hinweise Der Lösungsweg muss überall übersichtlich dargestellt werden; unbelegte Resultate werden nicht berücksichtigt! Mehrfachlösungen sind nicht gestattet; Ungültiges ist deutlich zu streichen. Die gültigen Schlussresultate sind doppelt zu unterstreichen. Alle Ausrechnungen und Resultate schreiben Sie auf diese Blätter, wenn nötig auch auf die Rückseite. Für reine Entwürfe und Versuche verwenden Sie das Zusatzpapier. Diese Prüfungsaufgabe darf erst ab 01 zu Übungszwecken im Unterricht verwendet werden.
2 1. Algebraische Umformungen ( /10) a) Vereinfachen Sie so weit wie möglich und schreiben Sie die Lösung als Wurzel. a a b) Berechnen Sie folgenden Logarithmus-Term. Vereinfachen Sie zuerst. loga ( a 3 6 ) log a a a Mathematik LAP 010 Seite /16 WS KV Chur
3 Mathematik LAP 010 Seite 3/16 WS KV Chur c) Vereinfachen Sie folgenden Ausdruck, und schreiben Sie das Resultat ohne Parameter im Nenner, sondern allenfalls mit negativem Exponenten: ( ) ( ) a b b c a
4 . Gleichungssysteme mit zwei Variablen ( /8) Bestimmen Sie die Definitions- und Lösungsmenge des folgenden Gleichungssystems in der Grundmenge G = R x R x + 7 6y 0 x y =.5 = Mathematik LAP 010 Seite 4/16 WS KV Chur
5 3. Gleichungen ( /13) a) Bestimme Sie die Definitionsmenge und die Lösungsmenge folgender Gleichung in der Grundmenge R. x a a = x ax a Mathematik LAP 010 Seite 5/16 WS KV Chur
6 b) Bestimmen Sie die Lösung der folgenden Gleichung in der Grundmenge R. Die Definitionsmenge und die Lösungsmenge sind anzugeben. Runden Sie auf Nachkommastellen. 5 = 10 4 x+ 1 x Mathematik LAP 010 Seite 6/16 WS KV Chur
7 4. Lineare Funktionen ( /15) Die Firma Sporti produziert Sportsocken. Die Kosten für die Herstellung verlaufen linear, so wie unten dargestellt. Kosten (90 / 480) CHF (30 / 40) Stück a) Formulieren Sie die Funktionsgleichung für diese Kostenfunktion. b) Bei 10 verkauften Stück macht die Firma Sporti CHF 10.- Gewinn. Sie muss aber bei 30 verkauften Stück mit einem Verlust von CHF 60.- rechnen. Mathematik LAP 010 Seite 7/16 WS KV Chur
8 b1) Wie lautet die Gleichung für die Gewinnfunktion? b) Wie lautet die Gleichung für die Erlösfunktion? c) Zeichnen Sie die Funktionen von b) in das obige Koordinatensystem ein. Alle Funktionen sind anzuschreiben. d) Bestimmen Sie die Gewinnschwelle (Nutzschwelle) grafisch (einzeichnen) und rechnerisch? 5. Quadratische Funktionen ( /19) Mathematik LAP 010 Seite 8/16 WS KV Chur
9 Gegeben sind folgende zwei Funktionen: f 1 : y = x 8x + 1 f : y = x 4 a) Berechnen Sie von der Parabel den Scheitelpunkt und die Schnittpunkte mit den beiden Koordinatenachsen. b) Berechnen Sie allfällige Schnittpunkte von f 1 mit f : c) Skizzieren Sie die Graphen der beiden Funktionen von a) in das vorgegebene Koordinatensystem. (Für die Parabel zeichnen Sie mindestens die Punkte von a) ein!) Mathematik LAP 010 Seite 9/16 WS KV Chur
10 d) Gegeben sind nun folgende zwei Funktionen: f 1 : y = x 8x + 1 f : y = x + q Wie gross muss q bei f sein, damit die Parabel und Gerade nur einen Schnittpunkt (Berührungspunkt) haben? 6. Ungleichungen ( /9) Lösen Sie folgende Ungleichung in der Grundmenge der rationalen Zahlen. Mathematik LAP 010 Seite 10/16 WS KV Chur
11 5 4 7x + 3 x 3 x + 3 x 9 Mathematik LAP 010 Seite 11/16 WS KV Chur
12 7. Lineare Optimierung ( /17) Die Firma Trendy handelt mit zwei verschiedene Armbändchen. Das erste Modell ist aus Leder und das zweite aus Plastik. Von den Ledernen will sie höchstens 5 mal so viele verkaufen wie von denen aus Plastik, aber mindestens gleich viele. Insgesamt werden höchstens 50 Armbändchen pro Monat verkauft. Der Einkaufspreis für ein Leder-Armband liegt bei CHF 7.-, der eines aus Plastik bei CHF 4.-. Das Jahresbudget der Firma von CHF 16`000.- soll beim Einkauf nicht überschritten werden. Der Verkaufspreis für ein Leder-Armband liegt bei CHF 17.-, für ein Plastik-Armband bei CHF 9.-. Die Firma Trendy möchte ihren Gewinn maximieren. a) Geben Sie die Definitionsmenge und die Ungleichungen, die zu den Bedingungen gehören, an. x gibt die Anzahl Lederarmbändchen im Monat und y die Plastikarmbändchen im Monat an. (Keine Grafik!) b) Bestimmen Sie die Zielfunktion rechnerisch. Mathematik LAP 010 Seite 1/16 WS KV Chur
13 c) Eine andere Firma, wristlet-store, handelt mit den gleichen Armbändchen. Sie kam auf folgende Bedingungen und Zielfunktion: 1) 4x + y 80 ) y 5x 3) y x 4) y 0.5x 10 Zielfunktion: z = 4 x + 5y Schreiben Sie alle Bedingungen für wristlet-store als Geraden und zeichnen Sie diese in das vorgegebene Koordinatensystem ein (jeweils mit entsprechendem Richtungspfeil). Alle Geraden sind zu beschriften. Die Lösungsfläche ist farblich oder durch Schraffur hervorzuheben y / Stück x / Stück Mathematik LAP 010 Seite 13/16 WS KV Chur
14 d) Bestimmen Sie für wristlet-store grafisch (einzeichnen) und rechnerisch die Anzahl der Armbändchen, die zu einem maximalen Gewinn führen. e) Wie gross ist der maximale Gewinn von wristlet-store? Mathematik LAP 010 Seite 14/16 WS KV Chur
15 8. Finanzmathematik ( /9) a) Ein Darlehen von CHF 30'000.- soll in zwei gleich hohen Raten zurückbezahlt werden. 1. Rate, nach 5 Jahren. Rate, nach weiteren 5 Jahren Wie hoch sind die beiden Raten, wenn die Verzinsung 9% beträgt? Mathematik LAP 010 Seite 15/16 WS KV Chur
16 b) Beim Erwerb einer Eigentumswohnung liegt folgende vertragliche Vereinbarung zugrunde: Barzahlung von CHF 300'000.- sofort 1. Rate von CHF 350'000.-, zahlbar nach 5 Jahren. Rate von CHF 400'000.-, zahlbar nach 10 Jahren Wie hoch ist der effektive Kaufpreis der Eigentumswohnung, wenn mit einem Zinssatz von 9% gerechnet wird? Mathematik LAP 010 Seite 16/16 WS KV Chur
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 009 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 2008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich LÖSUNGEN Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte.
Mathematik schriftlich
WSKV Chur Lehrabschlussprüfungen 2006 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WSKV Chur Lehrabschlussprüfungen 2007 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Abschlussprüfung 2015 Mathematik
Abschlussprüfung 2015 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
LAP Berufsmatura Mathematik 1. Juni 2015
LAP Berufsmatura Mathematik. Juni 0 Abschlussprüfung 0 Mathematik Lösungen Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
Abschlussprüfung 2014 Mathematik
Abschlussprüfung 2014 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
LAP Berufsmatura Mathematik 30. Mai 2013
LAP Berufsmatura Mathematik 0. Mai 0 Abschlussprüfung 0 Mathematik Lösungen Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
Abschlussprüfung 2013 Mathematik
Abschlussprüfung 2013 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
LAP Berufsmatura Mathematik 28. Mai 2014
LAP Berufsmatura Mathematik 8. Mai 04 Abschlussprüfung 04 Mathematik en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 50
LAP Berufsmatura Mathematik 28. Mai 2014
LAP Berufsmatura Mathematik 8. Mai 04 Abschlussprüfung 04 Mathematik en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 50
Kaufmännische Berufsmatura 2016
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
LAP Berufsmatura BM2 Mathematik 2. Juni 2016
LAP Berufsmatura BM Mathematik. Juni 06 Abschlussprüfung 06 Mathematik BM Lösungen Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
Berufsmaturitätsprüfung M-Profil Mathematik 2015
Kanton St. Gallen Bildungsdepartement Berufs- und Weiterbildungszentrum Berufsmaturitätsprüfung M-Profil Mathematik 2015 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer
Abschlussprüfung 2016 BM2 Mathematik
Abschlussprüfung 2016 BM2 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 120
Mathematik schriftlich
WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe
Berufsmaturitätsprüfung M-Profil Mathematik 2015
Kanton St. Gallen Bildungsdepartement Berufs- und Weiterbildungszentrum Berufsmaturitätsprüfung M-Profil Mathematik 015 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer
Berufsmaturitätsprüfung Mathematik 2016
sprüfung Mathematik 2016 BM-Ausrichtung Wirtschaft und Dienstleistungen, Typ Wirtschaft Serie 1 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer Taschenrechner (keine
Kaufmännische Berufsmatura 2008 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Berufsmaturitätsprüfung Mathematik 2015
Berufsmaturitätsprüfung Mathematik 015 Name und Nummer der Kandidatin/des Kandidaten... Nr... Prüfungsinformationen Dauer der Prüfung 10 Minuten Hilfsmittel Netzunabhängiger, nicht druckender Taschenrechner
Abschlussprüfung 2017 BM2 Mathematik
Abschlussprüfung 2017 BM2 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 120
Berufsmaturitätsprüfung Mathematik 2011
Berufsmaturitätsprüfung Mathematik 2011 Name und Nummer der Kandidatin/des Kandidaten... Prüfungsinformationen Dauer der Prüfung 120 Minuten Hilfsmittel Netzunabhängiger, nicht druckender Taschenrechner
Kaufmännische Berufsmatura 2016
Kaufmännische Berufsmatura 06 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Lösungen. Berufsfachschulen in den Kantonen St. Gallen, Appenzell AI und AR und Glarus Berufsmaturität. Berufsmaturitätsprüfung Mathematik 2016
sprüfung Mathematik 2016 BM-Ausrichtung Wirtschaft und Dienstleistungen, Typ Wirtschaft Serie 1 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer Taschenrechner (keine
Kaufmännische Berufsmatura 2011 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Berufsmaturität Wirtschaft 2018
Prüfungsdauer: Hilfsmittel: Beachten Sie: 120 Minuten Taschenrechner ohne CAS/Solver, nicht programmierbar Beigelegte Formelsammlung 1. Unbelegte Resultate (fehlender Lösungsweg) werden nicht berücksichtigt.
Kaufmännische Berufsmatura 2017
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Mathematik (RLP 2012)
(RLP 2012) Prüfungsdauer: 120 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner ohne CAS, ohne Solver, nicht grafikfähig, nicht programmierbar Beigelegte Formelsammlung Dokumentieren Sie
Mathematik (RLP 2012)
Kaufmännische Berufsmatura 06 (RLP 0) Serie A - Lösungen Prüfungsdauer: Max. zahl: 0 Minuten 80 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Kaufmännische Berufsmatura 2013 Kanton Zürich Serie 2
Serie 2 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden
Kaufmännische Berufsmatura 2017
Prüfungsdauer: 120 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner ohne CAS, ohne Solver, nicht grafikfähig, nicht programmierbar Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg
2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.
Kaufmännische Berufsmatura Kanton Zürich 007 Mathematik Serie Serie - en Prüfungsdauer: Max. Punktzahl: 50 Minuten 00 Allgemeine Bewertungshinweise:. Mehrfachlösungen sind nicht gestattet.. Als Resultate
Mathematik Serie: 1 Ausrichtung: WD-D
Kanton Zürich Bildungsdirektion Berufsmaturitätsprüfung 2017 Mathematik Serie: 1 Ausrichtung: Dauer: Hilfsmittel: Hinweise: 120 Minuten - Formelsammlung (mitzubringen) - Taschenrechner ohne CAS / nicht
Kaufmännische Berufsmatura 2014
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura 2017
Kaufmännische Berufsmatura 07 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Kaufmännische Berufsmatura 2014
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura 2012 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden
LAP Berufsmaturität BM2 Mathematik 2. Juni 2017
LAP Berufsmaturität BM Mathematik. Juni 017 Abschlussprüfung 017 Mathematik BM en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
Berufsmaturität Wirtschaft 2018
Serie A - Lösungen Prüfungsdauer: Max. zahl: 0 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze. Die Diagramme
Kaufmännische Berufsmatura 2015
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1
BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1 Mathematik KandidatIn (Name, Vorname): Klasse BMS A 6 Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede vollständig
Kaufmännische Berufsmatura Kanton Zürich 2006 Mathematik Serie 1. Mathematik Serie 1
Kaufmännische Berufsmatura Kanton Zürich 006 Mathematik Serie 1 Mathematik Serie 1 Prüfungsdauer: Max. Punktzahl: 150 Minuten 100 Punkte Prüfungsbedingungen: 1. Kontrollieren Sie Ihr Prüfungsexemplar bei
Lineare Funktionen und Gleichungssysteme, GSBM 2014
Lineare Funktionen und Gleichungssysteme, GSBM 2014 Prüfungsdauer Hilfsmittel Bedingungen 80 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg
Lineare Optimierung, M2a
Prüfungsdauer Hilfsmittel Bedingungen 50 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Aufgabe 2 ohne Grafik, Aufgabe 4 mit Grafik! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg muss
Kaufmännische Berufsmatura 2017
Kaufmännische Berufsmatura 07 Serie A - Lösungen Prüfungsdauer: Max. zahl: 0 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen,
Kaufmännische Berufsmatura 2014
Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
AUFNAHMEPRÜFUNG BERUFSMATURA 2013 MATHEMATIK
Berufsfachschulen Graubünden 3. April 2013 AUFNAHMEPRÜFUNG BERUFSMATURA 2013 MATHEMATIK Name:. Vorname:.. Zeitrahmen 90 Minuten Hinweise: Löse die Aufgaben auf den beigelegten leeren Blättern. Alle Lösungsblätter
Kaufmännische Berufsmatura 2015
Kaufmännische Berufsmatura 05 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Kaufmännische Berufsmatura 2014
Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Berufsmaturitätsprüfung 2016
Kanton Zürich Bildungsdirektion Berufsmaturitätsprüfung 2016 Mathematik Serie: 1 Ausrichtungen: WD-D Dauer: Hilfsmittel: Hinweise: 120 Minuten - Formelsammlung (mitzubringen) - Taschenrechner ohne CAS
Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4
Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 017/018 Übung Aufgabe 1 : Äquivalenzumformungen Bestimmen Sie ohne Taschenrechner die Lösungsmengen für folgende Gleichungen/Ungleichungen
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK
Berufsfachschulen Graubünden 2. April 2014 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten
Aufnahmeprüfung 2014 Mathematik
Aufnahmeprüfung Berufsmatura Mathematik 2. April 201 Berufsfachschulen Graubünden Aufnahmeprüfung 201 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen.
WHB12 - Mathematik Übungen für die Klausur am
Aufgabe 1: Sie sehen den Graphen der Gewinnfunktion eines Monopolisten. Sie lautet G(x) = -0,4x² + 3,6x 3,2. G(x) (Euro) 6 5 4 3 2 1-1 1 2 3 4 5 6 7 8 9 10 x (Stück) -2-3 -4 a) Wie hoch sind die Fixkosten
Lineare Funktionen und Gleichungssysteme, GSBM 2014
Lineare Funktionen und Gleichungssysteme, GSBM 04 Prüfungsdauer Hilfsmittel Bedingungen 80 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer:
Kanton Zürich Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: E1 basierend auf dem Lehrmittel Mathematik Hohl Hilfsmittel: Vorschriften: Bewertung:
Kaufmännische Berufsmatura 2011
Kaufmännische Berufsmatura 0 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
1. Vereinfachen Sie die folgenden Terme soweit als möglich: 10 a) Lösen Sie auf diesem Blatt! (2)
Terme 1. Vereinfachen Sie die folgenden Terme soweit als möglich: a) Lösen Sie auf diesem Blatt! a 2 3 a 5 12 6 a 18 (2) b) log a ( 1 a2) (2) c) Richtig oder falsch? (6) (wenn alle richtig, sonst je 1)
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer:
Kanton Zürich Aufnahmeprüfung 2017 für die Mathematik Dauer: 90 Minuten Serie: E2 basierend auf dem Lehrmittel Mathematik Hohl Hilfsmittel: Vorschriften: Bewertung: - Zeichenutensilien, Taschenrechner,
BM Mathematik T1 Grundlagenprüfung_16 Seite: 1/7
BM Mathematik T Grundlagenprüfung_6 Seite: /7 Abschlussprüfung BM Mathematik Grundlagen TAL Teil Prüfungsdauer 75 Minuten, ohne Hilfsmittel Die Lösungen werden nur bewertet, wenn der Lösungsweg klar ersichtlich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E1 Basierend auf dem Lehrmittel Mathematik Hohl Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:
Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 4. (iii) = 33. (iv)
Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 01/016 Übung Aufgabe 1 : Lineare Gleichungen (a) Für welche x R gilt (i) 31 6(x + 1) = 9 (ii) 11(x ) = ( + 1x) (iii) + = 33
Gewerbliche Richtung Berufsmaturitätsprüfung Juni 2012 / BMS 2 Mathematik
BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Juni 2012 / BMS 2 Mathematik KandidatIn (Name, Vorname): Klassen BMS W 2 A Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede
Berufsmaturitätsprüfung Mathematik
Berufsmaturitätsprüfung 2006 - Mathematik Bedingungen o Die Prüfungsdauer beträgt 240 Minuten (ohne Pause) o Grundsätzlich müssen alle Aufgaben von Hand gelöst werden. Der Taschenrechner darf nur für arithmetische
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E2 Basierend auf dem Lehrmittel Mathematik Hohl Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:
Aufgabenpool zur Quereinstiegsvorbereitung Q1
Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a
BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.
BMS Mathematik T Abschlussprüfung_ Seite: /7 Abschlussprüfung Mathematik technische BMS Teil Prüfungsdauer 0 Minuten Der Teil der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.
12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen
1. Berechnung und Darstellung betriebswirtschaftlicher Funktionen 1..1 Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF 1.--. Die anteilmässigen
Anwendungen lineare Funktionen 2015, M2a
Prüfungsdauer Hilfsmittel Bedingungen 60 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg muss klar ersichtlich sein. Es ist anzugeben was
1. Selbsttest Heron-Verfahren Gleichungen
1. Selbsttest 1.1. Heron-Verfahren Mit dem Heron-Verfahren soll ein Näherungswert für 15 gefunden werden. Führe die ersten drei Schritte des Heron- Verfahrens durch. Gib dann unter Verwendung der Werte
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Klausur: Mathematik/BWL WS 2017/18
Eignungsprüfung für den Hochschulzugang Klausur: Mathematik/BWL WS 2017/18 Bewerber Name, Vorname... Geburtsdatum:.. Hilfsmittel: Bearbeitungszeit: einfacher Taschenrechner 120 Minuten maximale Punktzahl:
Übungsbeispiel 1: Quadratische Modellierung
Übungsbeispiel 1: Quadratische Modellierung Ein Uhrenhersteller möchte den Preis für sein neues Modell festlegen und führt dazu eine Marktanalyse durch. Das Ergebnis lautet: Bei einem Preis von 60 ist
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Wirtschaftsmathematik - Übungen SS 2019
Wirtschaftsmathematik - Übungen SS 09 Blatt 0: Wiederholung der Grundlagen Dieses Blatt 0 dient zur Orientierung und Selbsteinschätzung der Studierenden. Die Beispiele behandeln Inhalte, die in der Wirtschaftsmathematik
Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft
Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 15. September 2014 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.
Lösungen. Aufnahmeprüfung 2014 Mathematik Name: Berufsfachschulen Graubünden. Note: Vorname: Ergebnis (bitte leer lassen)
Berufsfachschulen Graubünden Aufnahmeprüfung 2014 Mathematik Name: Vorname: - Teil A und B dauern je 45 Minuten. - Teil A ist ohne Taschenrechner zu lösen. - Teil B darf mit Taschenrechner gelöst werden.
Funktionen, Gleichungen, geometrische Körper und Trigonometrie
Mathematik-Klassenarbeit Nr. 4 VERGL. Klassen 9 02.07.14 Funktionen, Gleichungen, geometrische Körper und Trigonometrie Hilfsmittel: Nicht programmierbarer Taschenrechner Hinweise: Bei allen Rechnungen
Technische Oberschule Stuttgart. Aufgabensammlung zur Aufnahmeprüfung Mathematik 2015
Aufgabensammlung zur Aufnahmeprüfung Mathematik 05 Aufgabe Lösen Sie die folgenden Gleichungen möglichst geschickt. a) (x 3) (3 + x) = 0 b) x 36 = 0 5 c) x 5x 0 + = 4 d) ( x 6) (3x + 8) = 0 Aufgabe Bestimmen
Mathematik Serie 1. 2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.
Kaufmännische Berufsmatura Kanton Zürich 006 Mathematik Serie : Lösungen Mathematik Serie Serie Lösungen Prüfungsdauer: Ma. Punktzahl: 50 Minuten 00 Punkte Allgemeine Bewertungshinweise:. Mehrfachlösungen
Kaufmännische Berufsmatura 2007 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25
Inhaltsverzeichnis I Grundlagen 1. Grundlagen 13 1.1 Von Mengen... 13 1.2 Mengenschreibweise... 13 1.3 Zahlenmengen... 14 1.4 Die Grundoperationen... 16 1.5 Rechenhierarchie (1. Teil)... 16 1.6 Reihenfolge
Mathematik Grundlagen Teil 1
BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de
Klausur Wirtschaftsmathematik VO
Klausur Wirtschaftsmathematik VO 28. September 2017 Bitte leserlich in Druckbuchstaben ausfüllen! NACHNAME: VORNAME: MATRIKELNUMMER: ERLAUBT: nur die Formelsammlung des Instituts! VERBOTEN: Taschenrechner
12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen
. Berechnung und Darstellung betriebswirtschaftlicher Funktionen.. Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF.--. Die anteilmässigen
Die Prüfung umfasst 7 Aufgaben. Total Punktzahl: 28; 24 Punkte ergibt die Note 6. Gesamtnote: Unterschriften:
BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Eingescannt aus «Mathematik für die Fachschule Technik» von Heinz Rapp.
13 Eingescannt aus «Mathematik für die Fachschule Technik» von Heinz Rapp. 13.1 Einführung 13. Äquivalenzumformungen bei 1 3 13.3 Einfache lineare 13.4 Bruchungleichungen 4 5 6 Andere Schreibweise der
Mathematik Grundlagen Teil 1
BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de
Mathematik Grundlagen
BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de
Mathematik Schwerpunkt Teil 1
BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de
