Abschlussprüfung 2016 BM2 Mathematik
|
|
|
- Benedict Fertig
- vor 7 Jahren
- Abrufe
Transkript
1 Abschlussprüfung 2016 BM2 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 120 Minuten Hinweise Beschriften Sie alle Häuschenblätter, welche Sie benutzen, mit Ihrem Namen und Vornamen. Sie müssen nicht der Reihe nach arbeiten. Kennzeichnen Sie aber jede Aufgabe mit der entsprechenden Nummer. Der Lösungsweg muss überall übersichtlich dargestellt werden; unbelegte Resultate werden nicht berücksichtigt! Mehrfachlösungen sind nicht gestattet; Ungültiges ist deutlich zu streichen. Die gültigen Endergebnisse sind deutlich zu kennzeichnen. Die Lösungen und Lösungswege sind auf die bereitgelegten Häuschenblätter zu schreiben, nur die Grafiken werden direkt auf den Aufgabenblättern erstellt. Bewertung Aufgabe mögliche Punktzahl Aufgaben 80 erreichte Punktzahl Note: Unterschrift ExpertIn 1 Unterschrift ExpertIn 2
2 Name: Vorname: Seite 2/6
3 1. Lineare Gleichungssysteme ( /10) Bestimmen Sie die Definitions- und die Lösungsmenge des folgenden Gleichungssystems in der Grundmenge G = R x R: x x 2 1 = 8 5 3y 2x 5 4x 1 = y + 2 2y Gleichungen und Ungleichungen ( /17) a) Bestimmen Sie die Lösungsmenge L der folgenden Wurzelgleichung in G = R. (Die Definitionsmenge ist nicht verlangt.) (6) 2x 1 2 x = 3 b) Bestimmen Sie die Lösungsmenge L der folgenden Exponentialgleichung in G = R. 25 = 5 x 25x c) Geben Sie den Definitionsbereich D und die Lösungsmenge L der folgenden Ungleichung in G = Z an. (6) (3x 1 3x ) 4x (2x + 5)2 x (5 8x) (5) 3. Quadratische Funktionen ( /11) Eine Funktion y = x2 1 x + 10 beschreibt die Form des Tragseils einer Hängebrücke 3 gemäss untenstehender Skizze, wobei x und y Distanzen in Metern bedeuten. y Tragseil Aufhängeseile x = Fahrbahn a) Wie viele Meter hängt das Tragseil an seiner tiefsten Stelle über der Fahrbahn? (3) b) In welcher Distanz zur Brückenmitte befinden sich die Aufhängeseile, welche genau 8,042 Meter hoch sind? (4) Seite 3/6
4 c) Gegeben sei die Exponentialfunktion y = x (D = R). Bilden Sie die Umkehrfunktion und zeichnen Sie diese in das unten folgende Koordinatensystem ein. (4) 4. Finanzmathematik ( /7) a) Welches Kapital muss eine Stiftung anlegen, wenn sie in 10 Jahren ein ungefähres Stiftungsvermögen von CHF angehäuft haben will und sie mit einem Zinssatz von 0.75% rechnen kann (runden Sie auf CHF genau)? (2) b) Ein Kapital von CHF wird fest zu 1.25% verzinst. Nach 15 Jahren wird eine Einzahlung gemacht. Danach läuft das Konto weitere 5 Jahre. Damit hat sich ein Vermögen von CHF angehäuft. Wie hoch war die Einzahlung? (3) c) Wie viele Jahre muss ein Kapital von CHF zu 1.125% verzinst werden, damit es auf CHF anwächst. (2) 5. Textaufgaben ( /6) Eine Badewanne kann durch eine Kaltwasser- sowie eine Warmwasserzuleitung gefüllt und durch den Ablauf entleert werden. Ist bei geschlossenem Abfluss nur die Kaltwasserleitung offen, dauert das Füllen der leeren Badewanne 15 Minuten, die Warmwasserleitung alleine füllt die leere Badewanne in 12 Minuten. Der Ablauf alleine entleert die volle Badewanne in 20 Minuten. Nun wird die leere Badewanne bei geschlossenem Ablauf durch die voll aufgedrehten beiden Zuleitungen gefüllt. Weil das Badewasser zu heiss ist, wird in den letzten drei Minuten die Heisswasserzuleitung geschlossen und dafür der Abfluss maximal geöffnet. Wie lange dauert so das Füllen der Badewanne? Lösen Sie mit Hilfe einer Gleichung. Seite 4/6
5 6. Lineare Funktionen ( /13) In Ihrem letzten Urlaub haben Sie viele tolle Fotos geschossen. Einige von diesen möchten Sie nun als Fotoposter an die Wand hängen. Bei fotocolor.ch kostet ein solches Poster im Format 35x50 cm CHF 12.. Für eine Bestellung ab 10 solchen Ausdrucken offeriert Ihnen fotocolor.ch einen Rabatt von 37.5% auf jedes bestellte Poster. Bei printpicture.ch bezahlen Sie für 4 Poster CHF 38. und für 12 Poster CHF 94.. a) Geben Sie die Funktionsgleichungen für die Angebote von fotocolor.ch und printpicture.ch an. (6) b) Zeichnen Sie anschliessend diese Funktionsgleichungen ins folgende Koordinatensystem ein. (4) c) fotocolor.ch: Ab welcher Anzahl lohnt es sich schon, auf das Angebot mit den 37.5% Rabatt umzusteigen, anstatt den anderen Tarif zu zahlen? (1) d) Für welche Anzahl an Postern ist printpicture.ch günstiger als fotocolor.ch? Lesen Sie aus Ihrer Grafik ab oder berechnen Sie! (2) Seite 5/6
6 7. Algebraische Umformungen ( /10) a) Vereinfachen Sie den folgenden Logarithmus-Term so weit wie möglich: (5) lg(1 000uv 4 ) lg u lg(10v 2 ) b) Vereinfachen Sie und geben Sie das Ergebnis ohne negative und ohne gebrochene Exponenten an. (5) 4 a 7 3 a 5 a 2 a a Datenanalyse ( /6) Folgende Tabelle zeigt die Leistungen einer Klasse bei einer Prüfung in Mathematik. Note Anzahl Prüfungen a) Bestimmen Sie das arithmetische Mittel (auf Hundertstel genau) und den Median der Prüfungsergebnisse. (2) b) Bestimmen Sie die Standardabweichung der Daten (auf Hundertstel genau). (4) Seite 6/6
Abschlussprüfung 2013 Mathematik
Abschlussprüfung 2013 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
LAP Berufsmatura Mathematik 28. Mai 2014
LAP Berufsmatura Mathematik 8. Mai 04 Abschlussprüfung 04 Mathematik en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 50
LAP Berufsmatura Mathematik 30. Mai 2013
LAP Berufsmatura Mathematik 0. Mai 0 Abschlussprüfung 0 Mathematik Lösungen Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 009 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WS KV Chur Abschlussprüfungen 010 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WSKV Chur Lehrabschlussprüfungen 2006 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WSKV Chur Lehrabschlussprüfungen 2007 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 2008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich LÖSUNGEN Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte.
Aufnahmeprüfung 2014 Mathematik
Aufnahmeprüfung Berufsmatura Mathematik 2. April 201 Berufsfachschulen Graubünden Aufnahmeprüfung 201 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen.
Berufsmaturitätsprüfung Mathematik 2011
Berufsmaturitätsprüfung Mathematik 2011 Name und Nummer der Kandidatin/des Kandidaten... Prüfungsinformationen Dauer der Prüfung 120 Minuten Hilfsmittel Netzunabhängiger, nicht druckender Taschenrechner
Lineare Funktionen und Gleichungssysteme, GSBM 2014
Lineare Funktionen und Gleichungssysteme, GSBM 2014 Prüfungsdauer Hilfsmittel Bedingungen 80 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg
Kaufmännische Berufsmatura 2016
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura 2012 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden
Kaufmännische Berufsmatura 2013 Kanton Zürich Serie 2
Serie 2 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden
Kaufmännische Berufsmatura 2008 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Kaufmännische Berufsmatura 2014
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura 2014
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura Kanton Zürich 2006 Mathematik Serie 1. Mathematik Serie 1
Kaufmännische Berufsmatura Kanton Zürich 006 Mathematik Serie 1 Mathematik Serie 1 Prüfungsdauer: Max. Punktzahl: 150 Minuten 100 Punkte Prüfungsbedingungen: 1. Kontrollieren Sie Ihr Prüfungsexemplar bei
JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr
KLASSE: NAME: VORNAME: Mögliche Punktzahl: 5 50 Punkte = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK. KLASSEN KANTONSSCHULE REUSSBÜHL 6. Mai 014 Zeit: 1.10 14.40 Uhr Allgemeines: unbedingt
Kaufmännische Berufsmatura 2015
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Lösungen. Aufnahmeprüfung 2014 Mathematik Name: Berufsfachschulen Graubünden. Note: Vorname: Ergebnis (bitte leer lassen)
Berufsfachschulen Graubünden Aufnahmeprüfung 2014 Mathematik Name: Vorname: - Teil A und B dauern je 45 Minuten. - Teil A ist ohne Taschenrechner zu lösen. - Teil B darf mit Taschenrechner gelöst werden.
Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1
BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1 Mathematik KandidatIn (Name, Vorname): Klasse BMS A 6 Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede vollständig
Kaufmännische Berufsmatura 2011 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B2 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»
Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B1 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»
Prüfung zum mittleren Bildungsabschluss 2004
Prüfung zum mittleren Bildungsabschluss 2004 Pflichtaufgaben Mathematik x+3 45 Die Aufgabenblätter und die mit ausgegebene Formelsammlung sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK
Berufsfachschulen Graubünden 2. April 2014 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten
Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: A1 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»
Kaufmännische Berufsmatura 2007 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Berufsmaturitätsprüfung 2013 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste
Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen
6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf dem Lehrmittel: «Mathematik Sekundarstufe I» Serie: B2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner Prüfungsbedingungen Der Taschenrechner darf nicht verwendet werden. Die Aufgaben sind direkt unterhalb der Aufgabe zu
MATHEMATIK Serie 1. Name, Vorname
BMS 1 - Aufnahmeprüfung 2013 Kaufmännische Richtung Bern Biel Langenthal Thun MATHEMATIK Serie 1 Name, Vorname Alle Aufgaben sind direkt auf die Prüfungsblätter zu lösen. Der Lösungsweg ist klar ersichtlich
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 2013 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! -
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 4 5 6 6 6 6 33 Die Prüfung dauert 45 Minuten.
Mathematik (RLP 2012)
Kaufmännische Berufsmatura 06 (RLP 0) Serie A - Lösungen Prüfungsdauer: Max. zahl: 0 Minuten 80 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Mathematik. Name, Vorname:... Schule:... FMS Aarau / Wettingen / Wohlen. Aufnahmeprüfung FMS
FMS Aarau / Wettingen / Wohlen Aufnahmeprüfung 2015 Mathematik Name, Vorname:... Schule:... Hinweise: Alle Aufgaben sind direkt auf die Prüfungsblätter zu lösen. Eintragungen mit Bleistift sind ungültig
Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total
Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total Maximale Punktzahl Erreichte Punktzahl 3 3 3 3 3 3 18 Note Ø Die Algebra 1-Prüfung umfasst 6 Aufgaben. Ø Als Hilfsmittel ist ein nicht algebrafähiger und
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf dem Lehrmittel: «Mathematik Sekundarstufe I» Serie: B1 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner Prüfungsbedingungen Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner), keine Handys! Die Aufgaben sind direkt unterhalb
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra A 2011 Totalzeit: 90 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl:
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Klausur: Mathematik/BWL WS 2017/18
Eignungsprüfung für den Hochschulzugang Klausur: Mathematik/BWL WS 2017/18 Bewerber Name, Vorname... Geburtsdatum:.. Hilfsmittel: Bearbeitungszeit: einfacher Taschenrechner 120 Minuten maximale Punktzahl:
Kaufmännische Berufsmatura 2016
Kaufmännische Berufsmatura 06 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
AUFNAHMEPRÜFUNG 2015 MATHEMATIK. Name Vorname. Kandidaten Nr. Ausbildung HMS KVM MMK
AUFNAHMEPRÜFUNG 2015 MATHEMATIK Name Vorname Kandidaten Nr. Ausbildung HMS KVM MMK Die Entstehung des Resultats muss ersichtlich sein. Ist kein logischer Lösungsweg ersichtlich, wird die Aufgabe nicht
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: B2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Hauptschulabschlussprüfung 2005
Hauptschulabschlussprüfung 2005 Pflichtaufgaben 1. Teil Mathematik x+3 45 Name: Vorname: Klasse: Die Aufgabenblätter sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen versehen werden. Du
AUFNAHMEPRÜFUNG 2014
Luzerner Berufs- und Fachmittelschulen AUFNAHMEPRÜFUNG 2014 ARITHMETIK / ALGEBRA 1 15. März 2014 Name, Vorname Nr. Zeit Minuten Note Hilfsmittel Taschenrechner (nicht programmierbar, netzunabhängig) Ein
SAE. Arithmetik, Algebra und Stochastik Sek A Name: Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik, Algebra und Stochastik Sek A 2016 Totalzeit: 90 Minuten Hilfsmittel: Nicht programmierbarer Taschenrechner und Geometriewerkzeug (Geodreieck,
MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr
MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen
Taschenrechner TI 30, Formelsammlung Fundamentum
Ergänzungsprüfung Pädagogik - Lösungen Mathematik Bemerkungen Alle Berechnungen müssen in nachvollziehbaren Einzelschritten aufgeführt sein. Ungültiges ist durchzustreichen. Lösen Sie jede Aufgabe direkt
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 4 5 6 6 6 6 33 Die Prüfung dauert
Der Logarithmus als Umkehrung der Exponentiation
Der Logarithmus als Umkehrung der Exponentiation -E -E2 Voraussetzungen Umkehrfunktion: Welche Funktionen haben eine Umkehrfunktion? Warum sind Umkehrfunktionen so wichtig? Exponentialfunktion: Definition
Aufnahmeprüfung März 2017 Mathematik
Berufsmaturität für Erwachsene Aufnahmeprüfung März 2017 Kandidaten-Nr.: Name: Vorname: Geburtsdatum: / / 19 Total Punkte: / 20 Note : Examinator: Koexaminator: Allgemeine Hinweise: Dauer der Prüfung:
Ermitteln Sie zu folgenden linearen Gleichungssystemen die zugehörige Lösungsmenge. Die Lösungsvariablen sind x und y.
Aufnahmeprüfung Mathematik 004 Hochschulen für Wirtschaft Aufgabe : ( + = 4 Punkte ) Ermitteln Sie zu folgenden linearen Gleichungssystemen die zugehörige Lösungsmenge. Die Lösungsvariablen sind und y.
Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra A 2015
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra A 2015 Totalzeit: 90 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl:
Kaufmännische Berufsmatura 2013
Kaufmännische Berufsmatura 03 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
KANTONSSCHULE TROGEN. Name. Vorname. Bisherige Schule. Klasse. Erreichte Punktzahl. Note. Kantonsschule Trogen. Aufnahmeprüfung BFS W / FMS
KANTONSSCHULE TROGEN Name Vorname Bisherige Schule Klasse Erreichte Punktzahl Note Kantonsschule Trogen Aufnahmeprüfung BFS W / FMS MATHEMATIK ohne Taschenrechner / September 2013 Mathematik Teil 1 Ohne
Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra A Schreiben Sie ohne Klammern und vereinfachen Sie so weit wie möglich.
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra A 2014 Totalzeit: 90 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl:
MATHEMATIK. L ö s u n g e n
Berufsmittelschulen der Kantone St. Gallen, Appenzell und Glarus Aufnahmeprüfung 2012 Kaufmännische Richtung MATHEMATIK Name: Vorname: Nummer: L ö s u n g e n.... Aufgabe Nr. 1 (a + b) erreichte Punkte.
BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.
BMS Mathematik T Abschlussprüfung_ Seite: /7 Abschlussprüfung Mathematik technische BMS Teil Prüfungsdauer 0 Minuten Der Teil der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.
Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra Sek B 2016
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra Sek B 2016 Totalzeit: 90 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug (Geo-Dreieck, Zirkel,
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 6 6 4 5 4 6 31 Die Prüfung dauert 45 Minuten.
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 4 5 6 6 4 5 30 Die Prüfung dauert
Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung
Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe Aufgaben zur Wiederholung und Vertiefung Mathematik Einführungsphase gymnasiale Oberstufe Seite 1 Hinweise zum Umgang mit dem Aufgabenmaterial
Übungsblatt 1 zum Propädeutikum
Übungsblatt 1 zum Propädeutikum 1. Gegeben seien die Mengen A = {,, 6, 7}, B = {,, 6} und C = {,,, 1}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geben Sie diese in aufzählender Form an.. Geben
Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Nr. 7 Nr. 8 Total
Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Nr. 7 Nr. 8 Total Maximale Punktzahl Erreichte Punktzahl 6 3 7 6 4 6 8 6 46 Note Die Prüfung Algebra 1 umfasst 8 Aufgaben. Als Hilfsmittel ist ein nicht algebrafähiger
Kaufmännische Berufsfachschulen Bern Biel Langenthal La Neuveville Thun Aufnahmeprüfungen 2016
Kaufmännische Berufsfachschulen Bern Biel Langenthal La Neuveville Thun Aufnahmeprüfungen 2016 Serie 1 Bitte ankreuzen Name BM 1 Typ Wirtschaft Vorname BM 1 Typ Dienstleistungen Kand. Nr. BM 2 Typ Dienstleistungen
Sekundarschulabschluss für Erwachsene. Arithmetik, Algebra und Stochastik Sek A Lösungen 2017
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik, Algebra und Stochastik Sek A Lösungen 2017 Totalzeit: 90 Minuten Hilfsmittel: Nicht programmierbarer Taschenrechner und Geometriewerkzeug
Eingangstest im Fach Mathematik Lösungen der Aufgaben zur Wiederholung und Vertiefung
Eingangstest im Fach Mathematik Lösungen der Aufgaben zur Wiederholung und Vertiefung Hier finden Sie die Lösungen der Übungsaufgaben. Falls Sie weitere Fragen haben, wenden Sie sich bitte an Ihren Mathematiklehrer.
2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.
Kaufmännische Berufsmatura Kanton Zürich 007 Mathematik Serie Serie - en Prüfungsdauer: Max. Punktzahl: 50 Minuten 00 Allgemeine Bewertungshinweise:. Mehrfachlösungen sind nicht gestattet.. Als Resultate
Übungsblatt 1 zum Propädeutikum
Übungsblatt 1 zum Propädeutikum 1. Gegeben seien die Mengen A = {,, 6, 7}, B = {,, 6} und C = {,,, 1}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geben Sie diese in aufzählender Form an.. Geben
Mathematik, 2. Sekundarschule
Zentrale Aufnahmeprüfung 2009 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name:........................
Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie
Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1
Aufnahmeprüfung Mathematik
Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei
1. Sem. 2. Sem. 3. Sem. 4. Sem. 5. Sem. 6. Sem. Total
Fachspezifischer Schullehrplan WSKV Chur Fach Mathematik BM 1 BM 1 1. Sem. 2. Sem. 3. Sem. 4. Sem. 5. Sem. 6. Sem. Total 40 40 40 40 40 40 240 Lehrmittel: Mathematik für die kaufmännische Berufsmaturität;
2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a
2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels
Mathematik-Übungssammlung für die Studienrichtung Facility Management
Mathematik-Übungssammlung für die Studienrichtung Facility Management Auf den nachfolgenden Seiten finden Sie Übungen zum Stoff, welcher bei Studienbeginn vorausgesetzt wird. Der dazugehörige Stoff wird
Mathematik, 2. Sekundarschule
Zentrale Aufnahmeprüfung 2010 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name: Vorname:... Prüfungsnummer:
Mathematik, 3. Sekundarschule
Zentrale Aufnahmeprüfung 2009 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name:........................
Aufnahme in das 1. Ausbildungsjahr. Mathematik
Kantonale Fachmittelschulen Aufnahmeprüfung 04 Aufnahme in das. Ausbildungsjahr Mathematik Beachten Sie bitte: Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Prüfungsnummer. Zum Lösen der Aufgaben
MATHEMATIK. Name: Vorname: maximale Punkte 1 a), b) 4 2 a), b), c) 6 3 a), b) Gesamtpunktzahl 38. Die Experten: 1.
Berufsmaturität Kanton Glarus Aufnahmeprüfung 2013 Kaufmännische Berufsfachschule Glarus Kaufmännische Richtung MATHEMATIK Name: Vorname: Note Aufgabe Nr. Teilaufgaben erreichte Punkte maximale Punkte
Mathematik 1 Lösungen Datum Samstag, 11. März 2017
Kaufmännische Berufsfachschulen Bern Biel La Neuveville Langenthal Thun Aufnahmeprüfungen 2017 Bitte ankreuzen Name BM 1 Typ Wirtschaft Vorname BM 1 Typ Dienstleistungen Kand. Nr. BM 2 Typ Dienstleistungen
Mathematik 1 Lösungen Datum Samstag, 11. März 2017
Kaufmännische Berufsfachschulen Bern Biel La Neuveville Langenthal Thun Aufnahmeprüfungen 2017 Bitte ankreuzen Name BM 1 Typ Wirtschaft Vorname BM 1 Typ Dienstleistungen Kand. Nr. BM 2 Typ Dienstleistungen
Mathematik 2 Lösungen Datum Samstag, 11. März 2017
Kaufmännische Berufsfachschulen Bern Biel La Neuveville Langenthal Thun Aufnahmeprüfungen 2017 Bitte ankreuzen Name BM 1 Typ Wirtschaft Vorname BM 1 Typ Dienstleistungen Kand. Nr. BM 2 Typ Dienstleistungen
Resultate, die nicht ganzzahlig sind, sind auf zwei Stellen nach dem Dezimalpunkt zu runden.
Mathematik Zeit: 120 Minuten Löse jede Aufgabe auf dem dafür vorgesehenen Platz auf den Prüfungsblättern. Wenn zu wenig Platz vorhanden ist, kannst du die Rückseite benutzen. Zeige dies mit einem Pfeil
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 2011 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! -
Prüfung zum mittleren Bildungsabschluss 2006
Prüfung zum mittleren Bildungsabschluss 2006 Pflichtaufgaben Mathematik x+3 45 Name: Vorname: Klasse: Die Aufgabenblätter und die mit ausgegebene Formelsammlung sind Bestandteil der Prüfungsarbeit und
Kaufmännische Berufsmatura 2014
Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Kaufmännische Berufsmatura 2014
Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Mathematik 8. Jahrgangsstufe
Probeunterricht 2014 an Wirtschaftsschulen in Bayern Mathematik 8. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 6: 45 Minuten Arbeitszeit Teil II (Textrechnen) Seiten 7 bis 12: 45 Minuten
