Mathematik schriftlich
|
|
|
- Catharina Hausler
- vor 9 Jahren
- Abrufe
Transkript
1 WSKV Chur Lehrabschlussprüfungen 2006 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe Aufgabe 5 3. Aufgabe 8 4. Aufgabe Aufgabe Aufgabe Aufgabe 4 8. Aufgabe 6 9. Aufgabe 13 Total 100 Note: Material Hilfsmittel Zeit Arbeitsblätter, Lösungsblätter Taschenrechner, Formelblatt 150 Minuten Hinweise Der Lösungsweg muss übersichtlich dargestellt werden; unbelegte Resultate werden nicht berücksichtigt. Mehrfachlösungen sind nicht gestattet; Ungültiges ist deutlich zu streichen. Die Schlussresultate sind doppelt zu unterstreichen. Alle Ausrechnungen und Resultate schreiben Sie auf diese Blätter, wenn nötig auch auf die Rückseite. Für reine Entwürfe und Versuche verwenden Sie das Zusatzpapier. Diese Prüfungsaufgabe darf erst ab 2007 zu Übungszwecken im Unterricht verwendet werden.
2 1. Division von Summen, Termumformung, Doppelbruch a) Berechnen Sie den folgenden Quotienten: ( s 5 + 2s 2 + 3s s 4 ) : ( s 2 + 2s) Mathematik LAP 2006 Seite 2/18 M-Profil
3 b) Berechnen und vereinfachen Sie so weit wie möglich: x 4 x 4x + 4 x x : i x 1 x + 2x + 1 x + 2x Mathematik LAP 2006 Seite 3/18 M-Profil
4 c) Berechnen und vereinfachen Sie so weit wie möglich: a + 1 = 3a a 3 3 a Mathematik LAP 2006 Seite 4/18 M-Profil
5 2. Lineare Gleichungen mit zwei Unbekannten Bestimmen Sie die Lösungen der folgenden Gleichungen in der Grundmenge QxQ. Die Definitionsmenge muss bestimmt werden. (1) (2) = 3x + 5 2y = 3x + 5 2y 3 6 Mathematik LAP 2006 Seite 5/18 M-Profil
6 3. Ungleichung mit einer Unbekannten a) Bestimmen Sie die Lösungen der folgenden Ungleichung in der Grundmenge Q. Die Definitionsmenge ist ebenfalls zu bestimmen. 7x 13 3x 6 3x 4 + x + 2 x 2 2 x 4 Mathematik LAP 2006 Seite 6/18 M-Profil
7 b) Stellen Sie die Lösung grafisch auf dieser Zahlengeraden dar. 4. Potenzen, Wurzeln, Exponentialgleichungen und Logarithmen a) Vereinfachen Sie den folgenden Wurzelausdruck so weit wie möglich. Die Lösung darf in Potenz- oder in Wurzelform geschrieben werden a b 2 81a b Mathematik LAP 2006 Seite 7/18 M-Profil
8 b) Vereinfachen Sie den folgenden Term so weit wie möglich. Das Resultat ist in Potenzform anzugeben u : (v i 7 uv) : 3 (uv) 2 6 uv Mathematik LAP 2006 Seite 8/18 M-Profil
9 c) Bestimmen Sie die Lösungsmenge(n) folgender Wurzelgleichung in der Grundmenge R. Die Definitionsmenge ist ebenfalls anzugeben. 6 x + 9 = 2x 10 Mathematik LAP 2006 Seite 9/18 M-Profil
10 d) Lösen Sie die folgende Gleichung nach x auf: 16 = 2 2x 2 3x 2 e) Wahr oder falsch? e1) log = 1 + log 3 36 wahr falsch e2) loga a 1 = 4 a 8 wahr falsch e3) Die Funktion y = log a x ist die Umkehrung der Funktion y = a x wahr falsch e4) Jede Logarithmusfunktion verläuft durch den Punkt 0/1 wahr falsch Mathematik LAP 2006 Seite 10/18 M-Profil
11 5. Lineare und quadratische Funktion mit grafischer Darstellung Gegeben sei die Gerade durch die Punkte P( 3/1) und Q(6/3) sowie die Parabel mit der Funktion y = x x a) Berechnen Sie die Nullstellen und den Scheitelpunkt der Parabel und stellen Sie die Resultate formal richtig dar. Mathematik LAP 2006 Seite 11/18 M-Profil
12 b) Zeichnen Sie beide Funktionen (Gerade und Parabel) in das Koordinatensystem ein und erstellen Sie eine Wertetabelle für die Parabel mit mind. 6 geeigneten x-werten (saubere Darstellung und geeignete Auswahl wird bewertet!) Wertetabelle Parabel: x y Mathematik LAP 2006 Seite 12/18 M-Profil
13 c) Bestimmen Sie die Funktionsgleichung der Geraden. d) Bestimmen Sie rechnerisch die Schnittpunkte dieser Parabel mit der neuen Geraden y = ½ x Mathematik LAP 2006 Seite 13/18 M-Profil
14 6. Kosten-, Gewinn- und Erlösfunktion Die Firma FirstHandy bietet zwei Abonnements-Varianten an. Variante I) Die Grundgebühr pro Monat beträgt CHF 18.. Zusätzlich werden pro Gesprächsminute 70 Rappen belastet. Variante II) Es gibt keine Grundgebühr pro Monat, pro Minute wird ein fester Betrag in Rechnung gestellt. Nadja hat die Variante II) gewählt. Für den letzten Monat hat Nadja für 70 Gesprächsminuten eine Rechnung von CHF 90.. erhalten. a) Bestimmen Sie für Variante I die Funktionsgleichung (y CHF für x Minuten). b) Grafische Darstellung Tragen Sie in dieses Koordinatenystem die zwei Funktionen der beiden Varianten ein und schreiben Sie sie an. Schreiben Sie zudem auch die beiden Achsen an und die Masse an Mathematik LAP 2006 Seite 14/18 M-Profil
15 c) Berechnen Sie, ab wie vielen Gesprächsminuten pro Monat Variante I günstiger ist als Variante II. Mathematik LAP 2006 Seite 15/18 M-Profil
16 7. Textgleichungen 150 Personen, Erwachsene und Kinder, nehmen an einem Skiausflug teil. Die Gesamtkosten für die Kinder betragen 5400 Franken, diejenigen für die Erwachsenen 750 Franken, wobei ein Erwachsener 10 Franken mehr als ein Kind bezahlen muss. Wie viele Erwachsene und wie viele Kinder nehmen am Skiausflug teil? Mathematik LAP 2006 Seite 16/18 M-Profil
17 8. Abschreibungen Die Transportfirma Brunner AG kauft einen neuen Lastwagen für 230'000 Franken. Linear kann Herr Brunner 10 % des Anschaffungswerts pro Jahr abschreiben. Degressiv kann Herr Brunner 20 % des jeweiligen Buchwerts abschreiben. a) Formulieren Sie für jede der beiden Abschreibungsmethoden die Funktionsgleichung für den Buchwert im Jahre n. 9. Lineare Optimierung Die Firma Mediamarkt kann für höchstens CHF 42'000. Fernsehgeräte und Videorekorder bei einer Aktion bei Bang&Olufson einkaufen. Die Anzahl der Fernsehgeräte soll wenigstens 1/3 und höchstens die gleiche Anzahl der Videorekorder betragen. Ein Fernsehgerät kostet im Einkauf CHF und ein Videorekorder CHF Der Gewinn beträgt beim Verkauf eines Fernsehgerätes CHF 160., beim Verkauf eines Videorekordes CHF 80.. a) Führen Sie alle Definitionen auf. b) Geben Sie alle Bedingungen einschliesslich der Zielgeraden. c) Stellen Sie die Situation grafisch dar (die Zielgerade zeichnen Sie gestrichelt durch den Maximumpunkt). d) Bei welchen Koordinaten liegt das Gewinnmaximum? (je Anzahl Geräte angeben) e) Wie gross ist dieser maximierte Gewinn in CHF? Mathematik LAP 2006 Seite 17/18 M-Profil
18 a) Definitionen: b) Bedingungen: c) Grafische Darstellung: 80 Videorekorder y x Fernsehgeräte d) Maximum: e) Maximaler Gewinn: Mathematik LAP 2006 Seite 18/18 M-Profil
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 2008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich LÖSUNGEN Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte.
Mathematik schriftlich
WSKV Chur Lehrabschlussprüfungen 2007 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 009 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WS KV Chur Abschlussprüfungen 010 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Abschlussprüfung 2015 Mathematik
Abschlussprüfung 2015 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
LAP Berufsmatura Mathematik 1. Juni 2015
LAP Berufsmatura Mathematik. Juni 0 Abschlussprüfung 0 Mathematik Lösungen Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
Abschlussprüfung 2014 Mathematik
Abschlussprüfung 2014 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
LAP Berufsmatura Mathematik 30. Mai 2013
LAP Berufsmatura Mathematik 0. Mai 0 Abschlussprüfung 0 Mathematik Lösungen Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
LAP Berufsmatura Mathematik 28. Mai 2014
LAP Berufsmatura Mathematik 8. Mai 04 Abschlussprüfung 04 Mathematik en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 50
LAP Berufsmatura Mathematik 28. Mai 2014
LAP Berufsmatura Mathematik 8. Mai 04 Abschlussprüfung 04 Mathematik en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 50
Abschlussprüfung 2013 Mathematik
Abschlussprüfung 2013 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
LAP Berufsmatura BM2 Mathematik 2. Juni 2016
LAP Berufsmatura BM Mathematik. Juni 06 Abschlussprüfung 06 Mathematik BM Lösungen Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
Abschlussprüfung 2016 BM2 Mathematik
Abschlussprüfung 2016 BM2 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 120
Berufsmaturitätsprüfung M-Profil Mathematik 2015
Kanton St. Gallen Bildungsdepartement Berufs- und Weiterbildungszentrum Berufsmaturitätsprüfung M-Profil Mathematik 2015 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer
Kaufmännische Berufsmatura 2016
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura 2017
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Berufsmaturitätsprüfung Mathematik 2016
sprüfung Mathematik 2016 BM-Ausrichtung Wirtschaft und Dienstleistungen, Typ Wirtschaft Serie 1 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer Taschenrechner (keine
Kaufmännische Berufsmatura 2012 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden
Abschlussprüfung 2017 BM2 Mathematik
Abschlussprüfung 2017 BM2 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 120
Kaufmännische Berufsmatura 2008 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Berufsmaturitätsprüfung M-Profil Mathematik 2015
Kanton St. Gallen Bildungsdepartement Berufs- und Weiterbildungszentrum Berufsmaturitätsprüfung M-Profil Mathematik 015 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer
Berufsmaturitätsprüfung Mathematik 2011
Berufsmaturitätsprüfung Mathematik 2011 Name und Nummer der Kandidatin/des Kandidaten... Prüfungsinformationen Dauer der Prüfung 120 Minuten Hilfsmittel Netzunabhängiger, nicht druckender Taschenrechner
Kaufmännische Berufsmatura 2011 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Kaufmännische Berufsmatura Kanton Zürich 2006 Mathematik Serie 1. Mathematik Serie 1
Kaufmännische Berufsmatura Kanton Zürich 006 Mathematik Serie 1 Mathematik Serie 1 Prüfungsdauer: Max. Punktzahl: 150 Minuten 100 Punkte Prüfungsbedingungen: 1. Kontrollieren Sie Ihr Prüfungsexemplar bei
Kaufmännische Berufsmatura 2017
Kaufmännische Berufsmatura 07 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Kaufmännische Berufsmatura 2016
Kaufmännische Berufsmatura 06 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Kaufmännische Berufsmatura 2017
Prüfungsdauer: 120 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner ohne CAS, ohne Solver, nicht grafikfähig, nicht programmierbar Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg
Kaufmännische Berufsmatura 2014
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura 2015
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura 2014
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Lösungen. Berufsfachschulen in den Kantonen St. Gallen, Appenzell AI und AR und Glarus Berufsmaturität. Berufsmaturitätsprüfung Mathematik 2016
sprüfung Mathematik 2016 BM-Ausrichtung Wirtschaft und Dienstleistungen, Typ Wirtschaft Serie 1 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer Taschenrechner (keine
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK
Berufsfachschulen Graubünden 2. April 2014 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten
Berufsmaturität Wirtschaft 2018
Prüfungsdauer: Hilfsmittel: Beachten Sie: 120 Minuten Taschenrechner ohne CAS/Solver, nicht programmierbar Beigelegte Formelsammlung 1. Unbelegte Resultate (fehlender Lösungsweg) werden nicht berücksichtigt.
2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.
Kaufmännische Berufsmatura Kanton Zürich 007 Mathematik Serie Serie - en Prüfungsdauer: Max. Punktzahl: 50 Minuten 00 Allgemeine Bewertungshinweise:. Mehrfachlösungen sind nicht gestattet.. Als Resultate
Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1
BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1 Mathematik KandidatIn (Name, Vorname): Klasse BMS A 6 Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede vollständig
Kaufmännische Berufsmatura 2013 Kanton Zürich Serie 2
Serie 2 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden
Aufnahmeprüfung 2014 Mathematik
Aufnahmeprüfung Berufsmatura Mathematik 2. April 201 Berufsfachschulen Graubünden Aufnahmeprüfung 201 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen.
LAP Berufsmaturität BM2 Mathematik 2. Juni 2017
LAP Berufsmaturität BM Mathematik. Juni 017 Abschlussprüfung 017 Mathematik BM en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
Kaufmännische Berufsmatura 2014
Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Kaufmännische Berufsmatura 2017
Kaufmännische Berufsmatura 07 Serie A - Lösungen Prüfungsdauer: Max. zahl: 0 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen,
Berufsmaturitätsprüfung Mathematik 2015
Berufsmaturitätsprüfung Mathematik 015 Name und Nummer der Kandidatin/des Kandidaten... Nr... Prüfungsinformationen Dauer der Prüfung 10 Minuten Hilfsmittel Netzunabhängiger, nicht druckender Taschenrechner
Mathematik (RLP 2012)
(RLP 2012) Prüfungsdauer: 120 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner ohne CAS, ohne Solver, nicht grafikfähig, nicht programmierbar Beigelegte Formelsammlung Dokumentieren Sie
AUFNAHMEPRÜFUNG BERUFSMATURA 2013 MATHEMATIK
Berufsfachschulen Graubünden 3. April 2013 AUFNAHMEPRÜFUNG BERUFSMATURA 2013 MATHEMATIK Name:. Vorname:.. Zeitrahmen 90 Minuten Hinweise: Löse die Aufgaben auf den beigelegten leeren Blättern. Alle Lösungsblätter
Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25
Inhaltsverzeichnis I Grundlagen 1. Grundlagen 13 1.1 Von Mengen... 13 1.2 Mengenschreibweise... 13 1.3 Zahlenmengen... 14 1.4 Die Grundoperationen... 16 1.5 Rechenhierarchie (1. Teil)... 16 1.6 Reihenfolge
Lineare Funktionen. Beispiele: y = 3x 1 y = 2x y = x 3 3. Im Koordinatensystem dargestellt erhalten wir folgende Geraden:
Lineare Funktionen Eine Funktion der Form x mx + b hat als Funktionsgleichung eine Gleichung der Form y = mx + b. Der Graph der Funktion ist eine Gerade mit der Steigung m und dem y-achsenabschnitt b.
Technische Oberschule Stuttgart. Aufgabensammlung zur Aufnahmeprüfung Mathematik 2015
Aufgabensammlung zur Aufnahmeprüfung Mathematik 05 Aufgabe Lösen Sie die folgenden Gleichungen möglichst geschickt. a) (x 3) (3 + x) = 0 b) x 36 = 0 5 c) x 5x 0 + = 4 d) ( x 6) (3x + 8) = 0 Aufgabe Bestimmen
Mathematik Serie: 1 Ausrichtung: WD-D
Kanton Zürich Bildungsdirektion Berufsmaturitätsprüfung 2017 Mathematik Serie: 1 Ausrichtung: Dauer: Hilfsmittel: Hinweise: 120 Minuten - Formelsammlung (mitzubringen) - Taschenrechner ohne CAS / nicht
Kaufmännische Berufsmatura 2015
Kaufmännische Berufsmatura 05 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Kaufmännische Berufsmatura 2014
Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Quadratische Funktionen Arbeitsblatt 1
Quadratische Funktionen Arbeitsblatt 1 Spezielle quadratische Funktion Die Funktionsgleichung einer speziellen quadratischen Funktion hat die Form y = 3 x 2. Der dazugehörige Graph heißt Parabel. Bei einer
- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.
MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren
Mathematik (RLP 2012)
Kaufmännische Berufsmatura 06 (RLP 0) Serie A - Lösungen Prüfungsdauer: Max. zahl: 0 Minuten 80 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SB22 Z Gruppe A NAME:
R. Brinkmann http://brinkmann-du.de Seite 0..0 Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di.0.0 SB Z Gruppe A NAME: Hilfsmittel: Taschenrechner Alle se sind soweit möglich durch Rechnung zu begründen..
Übungsklausur zur Eignungsprüfung Mathematik E1
Übungsklausur zur Eignungsprüfung Mathematik E1 Bearbeitungshinweise Bearbeitungszeit: 90 Minuten Verbotene Hilfsmittel: Handy, Formelsammlung Erlaubte Hilfsmittel: Taschenrechner, schülereigene Wörterbücher
Lineare Funktionen. Die lineare Funktion
1 Die lineare Funktion Für alle m, t, aus der Zahlenmenge Q heißt die Funktion f: x m x + t lineare Funktion. Die Definitionsmenge ist Q (oder je nach Zusammenhang ein Teil davon). Der Graph der linearen
Lineare Funktionen und Gleichungssysteme, GSBM 2014
Lineare Funktionen und Gleichungssysteme, GSBM 2014 Prüfungsdauer Hilfsmittel Bedingungen 80 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg
Mathematik Serie 1. 2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.
Kaufmännische Berufsmatura Kanton Zürich 006 Mathematik Serie : Lösungen Mathematik Serie Serie Lösungen Prüfungsdauer: Ma. Punktzahl: 50 Minuten 00 Punkte Allgemeine Bewertungshinweise:. Mehrfachlösungen
Anwendungen lineare Funktionen 2015, M2a
Prüfungsdauer Hilfsmittel Bedingungen 60 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg muss klar ersichtlich sein. Es ist anzugeben was
Mathematik Schwerpunkt Teil 1
BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de
Funktionen, Gleichungen, geometrische Körper und Trigonometrie
Mathematik-Klassenarbeit Nr. 4 VERGL. Klassen 9 02.07.14 Funktionen, Gleichungen, geometrische Körper und Trigonometrie Hilfsmittel: Nicht programmierbarer Taschenrechner Hinweise: Bei allen Rechnungen
Berufsmaturität Wirtschaft 2018
Serie A - Lösungen Prüfungsdauer: Max. zahl: 0 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze. Die Diagramme
Berufsmaturitätsprüfung 2016
Kanton Zürich Bildungsdirektion Berufsmaturitätsprüfung 2016 Mathematik Serie: 1 Ausrichtungen: WD-D Dauer: Hilfsmittel: Hinweise: 120 Minuten - Formelsammlung (mitzubringen) - Taschenrechner ohne CAS
Lineare Funktionen und Gleichungssysteme, GSBM 2014
Lineare Funktionen und Gleichungssysteme, GSBM 04 Prüfungsdauer Hilfsmittel Bedingungen 80 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 6 6 5 5 5 4 31 Die Prüfung dauert
Mathematik 1 (ohne Taschenrechner)
Kanton St. Gallen Bildungsdepartement BMS / FMS / WMS / WMI / IMS Aufnahmeprüfung Herbst 2018 Mathematik 1 (ohne Taschenrechner) Dauer: 60 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:
Aufgabenpool zur Quereinstiegsvorbereitung Q1
Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer:
Kanton Zürich Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: E1 basierend auf dem Lehrmittel Mathematik Hohl Hilfsmittel: Vorschriften: Bewertung:
JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr
KLASSE: NAME: VORNAME: Mögliche Punktzahl: 5 50 Punkte = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK. KLASSEN KANTONSSCHULE REUSSBÜHL 6. Mai 014 Zeit: 1.10 14.40 Uhr Allgemeines: unbedingt
Thurgau~~ Mathematik. Zweiter Teil - mit Taschenrechner. 5 6 Total. Thurgauische Kantonsschulen Aufnahmeprüfung FMS I HMS 2.
Mathematik Zweiter Teil - mit Taschenrechner Die Prüfung dauert 45 Minuten. Die Benützung des Taschenrechners ist gestattet. Alle Aufgaben sind auf den Aufgabenblättern zu lösen. Die Rückseite kann auch
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts
Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen Funktionen Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Ein Lesetext Informationen - Überblick Datei Nr. 800 Stand:
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden
Gewerbliche Richtung Berufsmaturitätsprüfung Juni 2012 / BMS 2 Mathematik
BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Juni 2012 / BMS 2 Mathematik KandidatIn (Name, Vorname): Klassen BMS W 2 A Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede
Mathematik 1. Klassenarbeit Klasse 10e- Gr. A 28. Sept Quadratische Funktionen - ups -
Mathematik. Klassenarbeit Klasse 0e- Gr. A 8. Sept. 006 Quadratische Funktionen - ups - Name:.... Aufgabe:. Die Tabellen gehören zu quadratischen Funktionen der Form y=x²+bx+c. ergänze die fehlenden Zahlen
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer:
Kanton Zürich Aufnahmeprüfung 2017 für die Mathematik Dauer: 90 Minuten Serie: E2 basierend auf dem Lehrmittel Mathematik Hohl Hilfsmittel: Vorschriften: Bewertung: - Zeichenutensilien, Taschenrechner,
KLASSE: NAME: VORNAME: Erreichte Punktzahl: LÖSUNG JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit:
KLASSE: NAME: VORNAME: Mögliche Punktzahl: 5 50 Punkte = Note 6 Erreichte Punktzahl: LÖSUNG Note: JAHRESPRÜFUNG MATHEMATIK. KLASSEN KANTONSSCHULE REUSSBÜHL 6. Mai 014 Zeit: 1.10 14.40 Uhr Allgemeines:
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E1 Basierend auf dem Lehrmittel Mathematik Hohl Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:
Lineare Optimierung, M2a
Prüfungsdauer Hilfsmittel Bedingungen 50 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Aufgabe 2 ohne Grafik, Aufgabe 4 mit Grafik! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg muss
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Download. Hausaufgaben: Quadratische Funktionen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:
Download Otto Mar Hausaufgaben: Quadratische Funktionen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Quadratische Funktionen Üben in drei Differenzierungsstufen
Lösungen. Aufnahmeprüfung 2014 Mathematik Name: Berufsfachschulen Graubünden. Note: Vorname: Ergebnis (bitte leer lassen)
Berufsfachschulen Graubünden Aufnahmeprüfung 2014 Mathematik Name: Vorname: - Teil A und B dauern je 45 Minuten. - Teil A ist ohne Taschenrechner zu lösen. - Teil B darf mit Taschenrechner gelöst werden.
Semesterprüfung Mathematik 2. Klasse KSR 2010
Erreichte Punktezahl: / 58 Note: (Maximale Punktezahl: 58) Semesterprüfung Mathematik 2. Klasse KSR 2010 Montag, 31. Mai 2010 13.10-14.40 Das GROSSGEDRUCKTE: Unbedingt zuerst durchlesen! Prüfung auf jeder
BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.
BMS Mathematik T Abschlussprüfung_ Seite: /7 Abschlussprüfung Mathematik technische BMS Teil Prüfungsdauer 0 Minuten Der Teil der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.
Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion
Datum:.0.0 Thema: Quadratische Funktionen. Formen Sie die Scheitel(punkt)form der quadratischen Funktion f mit f(x) = ( x ) + in die Polynomdarstellung um und bestimmen Sie die Nullstellen und den Schnittpunkt
Kaufmännische Berufsmatura 2007 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SG10 D Gruppe A NAME:
R. Brinkmann http://brinkmann-du.de Seite 8.. Klassenarbeit Mathematik Bearbeitungszeit 9 min. Di 8.. SG D Gruppe A NAME: Hilfsmittel: Taschenrechner Alle Ergebnisse sind soweit möglich durch Rechnung
Lineare und quadratische Funktionen, GSBM
Prüfungsdauer Hilfsmittel Bedingungen 70 Minuten Taschenrechner ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg muss klar ersichtlich sein. Das Resultat ist soweit als möglich zu vereinfachen.
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E2 Basierend auf dem Lehrmittel Mathematik Hohl Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:
Bildungsziele und Stoffinhalte Mathematik. kaufm. Berufsmatura (M-Profil und BMS 2)
Bildungsziele und Stoffinhalte kaufm. (M-Profil und BMS 2) M-Profil 3. Sem. 4. Sem. 5. Sem. 6. Sem. Total 40 L. 40 L. 40 L. 40 L. 160 L. BMS 2 1. Sem. 2. Sem. Total 100 L. 100 L. 200 L. Stoffplankatalog
BM Mathematik T1 Grundlagenprüfung_16 Seite: 1/7
BM Mathematik T Grundlagenprüfung_6 Seite: /7 Abschlussprüfung BM Mathematik Grundlagen TAL Teil Prüfungsdauer 75 Minuten, ohne Hilfsmittel Die Lösungen werden nur bewertet, wenn der Lösungsweg klar ersichtlich
Kantonsschule Trogen / BBZ Herisau Aufnahmeprüfung BM (BBZ / BFS W) und FMS September Teil 2 Mit Taschenrechner
Kantonsschule Trogen / BBZ Herisau Aufnahmeprüfung BM (BBZ / BFS W) und FMS September 2012 Mathematik Teil 2 Mit Taschenrechner Prüfungsbedingungen: Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner),
