Mathematik schriftlich
|
|
|
- Claudia Gärtner
- vor 9 Jahren
- Abrufe
Transkript
1 WS KV Chur Lehrabschlussprüfungen 008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich LÖSUNGEN Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgabe 9. Aufgabe 9 3. Aufgabe 4. Aufgabe 5. Aufgabe 3 6. Aufgabe 5. Aufgabe 8. Aufgabe 9. Aufgabe 8 Total 00 Note: Material Hilfsmittel Zeit Arbeitsblätter, Zusatzblätter Taschenrechner, Formelblatt 50 Minuten Hinweise Der Lösungsweg muss überall übersichtlich dargestellt werden; unbelegte Resultate werden nicht berücksichtigt! Mehrfachlösungen sind nicht gestattet; Ungültiges ist deutlich zu streichen. Die gültigen Schlussresultate sind doppelt zu unterstreichen. Alle Ausrechnungen und Resultate schreiben Sie auf diese Blätter, wenn nötig auch auf die Rückseite. Für reine Entwürfe und Versuche verwenden Sie das Zusatzpapier. Diese Prüfungsaufgabe darf erst ab 009 zu Übungszwecken im Unterricht verwendet werden.
2 . Rechnen mit Brüchen a) Berechnen Sie folgende Summe bzw. Differenz und vereinfachen Sie so weit wie möglich. a 3 b 9 a + b 5 a + b 3 6 a 3b 9a + b 5a b a 9b + 8a + 4b 5a + b + = = a 4b a b = 6 3 Pro Fehler Punkte Abzug 4 b) Berechnen Sie folgenden Quotienten und vereinfachen Sie so weit wie möglich = = Pro Fehler Punkte Abzug 5 Mathematik LAP 008 Seite /3 WS KV Chur
3 . Gleichungssysteme mit zwei Variablen Lösen Sie folgendes Gleichungssystem in der Grundmenge G = Q Q. I) 3 = + y II ) 6 + = 5 + y I) 3 = + y 6 II ) + = 5 + y { } Q { } D = Q \ \ II ) = 5 + y I + II) 8 + = = = 6 = 4 I) = = 5 y 5 y 4 8( y ) 5 = 5( y ) 8y 6 5 = 5y 0 3y = y y = L = ; 4 Definitionsmenge Lösungsmenge und y berechnen je 3 Punkte 6 Mathematik LAP 008 Seite 3/3 WS KV Chur
4 3. Potenzen und Wurzeln a) Berechnen Sie folgenden Ausdruck: y ( 35 y ) : 3 3 a b y 35 y a b ( 35 y ) : 3 3 = a b y a b y 00 = a b y Pro Fehler Punkte Abzug 4 b) Lösen Sie die folgende Wurzelgleichung. Die Definitionsmenge und die Lösungsmenge sind anzugeben. + + = 4 { R } D = + + = 4 + = 4 + = = 8 9 = 4( ) = 4 = 4 L = 4 Definitionsmenge bestimmen, pro Fehler Punkte Abzug 5 Mathematik LAP 008 Seite 4/3 WS KV Chur
5 4. Logarithmen a) Drücken Sie den folgenden logarithmischen Term durch einen Logarithmus aus und vereinfachen Sie so weit als möglich: 3 log a log a log a a 3 log a log a loga a 6 log 6 log = log log = log a a a a a Pro Fehler Punkte Abzug 5 b) Bestimmen Sie die Lösung der folgenden Gleichungen in der Grundmenge R. Die Definitionsmenge und die Lösungsmenge sind anzugeben. 4 3 = 4 D = R 3 4 = 3lg + (4 8 )lg = lg 4 8 = = L = 9 9 Definitionsmenge bestimmen, pro Fehler Punkte Abzug 5 Lösungsvariante: 3 ( ) 4 = = = 8 = 9 Mathematik LAP 008 Seite 5/3 WS KV Chur
6 5. Lineare Funktionen Von einem Fahrradhersteller kennen Sie folgende Zahlen: Stückzahl () Gesamtkosten in CHF Erlös in CHF 0 95' '990 04'930 Erlös, Kosten und Gewinn entwickeln sich linear. a) Wie lauten die Gleichungen für die Gesamtkostenfunktion (= Selbstkostenfunktion), die Erlösfunktion (= Nettoerlösfunktion) und die Gewinnfunktion (= Erfolgsfunktion). b) Zeichnen Sie die Funktionen in das vorgegebene Koordinatensystem ein. Alle drei Geraden sind anzuschreiben. c) Bei welcher Produktionszahl liegt die Gewinnschwelle (mengenmässige Nutzschwelle)? Wie hoch ist dort der Erlös (wertmässige Nutzschwelle)? Lösung a): Gesamtkosten Erlös 54'990 49'990 = 0m + 95'000 m = = '409 0 y = ' '000 04'930 = 0m m = '863 y = '863 Gewinn y = '000 Gesamtkosten Erlös und Gewinn je Punkt 4 Mathematik LAP 008 Seite 6/3 WS KV Chur
7 Lösung b): '000 CHF Selbstkosten Nettoerlös Gewinn Kosten Erlös Gewinn Stück Für jede richtige Gerade Punkt. 3 Lösung c): 95'000 = 454 = 09.5 Die Gewinnschwelle liegt bei 0 Stück. Der Erlös beträgt 0*863 = 39'30 CHF. ausrechnen Satz mit aufgerundetem Erlös Mathematik LAP 008 Seite /3 WS KV Chur
8 6. Quadratische Funktionen Gegeben sind folgende Funktionen: I) y = + II ) y = + a) Berechnen Sie die Nullstellen (Schnittpunkt mit der -Achse) der beiden Funktionen auf drei Dezimalstellen genau. Die Resultate sind mathematisch korrekt anzugeben; dies gilt auch für b) bis d). b) Berechnen Sie die Koordinaten des Scheitelpunktes der Parabel. c) Zeichnen Sie die Graphen der beiden Funktionen in das vorgegebene Koordinatensystem. d) Berechnen Sie die Schnittpunkte der beiden Funktionen auf drei Dezimalstellen genau. Lösung a): 0 = + 5 = ± + = ± 4,, 5 5 = = 0.68 = =.68 0 = + = Nullstellen der Parabel: N (0.68;0) und N (-.68;0) Nullstelle der Geraden: N 3 (-;0) und ausrechnen je Punkt. N und N angeben N 3 Lösung b): 5 5 s = + = ys = 0.5 =.5 Scheitelpunkt der Parabel: S(-0.5;-.5) Scheitelpunkt Mathematik LAP 008 Seite 8/3 WS KV Chur
9 Lösung c): Parabel Gerade Parabel 3 Gerade Lösung d): = = 0, 3 ± ± 05 = = = = = = y = + =.453 y = + = 0. Schnittpunkte der Geraden mit der Parabel: P (0.906;.453) und P(-.656;0.) 3 ± 05 8 Pro Schnittpunkt Punkt; korrekte Darstellung P. 3 Mathematik LAP 008 Seite 9/3 WS KV Chur
10 . Ungleichungen Lösen Sie folgende Ungleichung in der Grundmenge der rationalen Zahlen D = Q \ 4;5 { } I) 5 > > 0 { } II ) 5 < < 0 < 4 III ) 5 > < 0 { } IV ) 5 < > 0 < 5 L = Q < 4 < 5 Definitionsmenge berechnen Zwei Fälle, die zu keiner leeren Menge führen 4 Lösungsmenge Lösungsvariante: 4 5 Fall Bereich 4 Lösung eff. Lösung 4 < 4 < < 5 5 < < < 5 { } Mathematik LAP 008 Seite 0/3 WS KV Chur
11 8. Lineare Optimierung Ein Harry Potter Buch wird in zwei Versionen gedruckt: Eine Paperback-Ausgabe und eine gebundene Ausgabe. Von der Paperback-Ausgabe sollen pro Tag mindestens 00 Eemplare, von der gebundenen Ausgabe mindestens 80 Stück produziert werden. Es sollen höchstens doppelt so viele gebundene Ausgaben wie Paperback-Ausgaben gedruckt werden. Aufgrund technischer Möglichkeiten können pro Tag höchstens 600 Paperback-Ausgaben oder '500 gebundene Ausgaben oder eine beliebige Kombination produziert werden, wobei die Summe der zwei prozentualen Anteile (Produktion in % der maimal möglichen Produktion) 00% nicht übersteigen darf. Der Gewinn pro Buch ist bei der Paperback-Ausgabe 9 CHF und bei der gebundenen Ausgabe 5 CHF. Die Geschäftsleitung strebt einen maimalen Gewinn an. a) Geben Sie die Definitionsmenge und die drei Ungleichungen, die zu den Bedingungen gehören an. gibt die Anzahl Paperback-Ausgaben und y die Anzahl gebundene Ausgaben an. Die vierte Bedingung ist gegeben, muss jedoch noch in das Diagramm eingezeichnet. b) Bestimmen Sie die Zielfunktion rechnerisch. c) Zeichnen Sie die drei Bedingungen in das vorgegebene Koordinatensystem ein (jeweils mit entsprechendem Richtungspfeil). Die Zielgerade zeichnen Sie gestrichelt ein. Das Lösungspolygon ist farblich oder durch Schraffur hervorzuheben. d) Bestimmen Sie grafisch (einzeichnen) und rechnerisch die Anzahl Paperback-Ausgaben und gebundene Ausgaben, die zu einem maimalen Gewinn führen. e) Wie gross ist der maimale Tagesgewinn? Lösung a): D = N 0 N 0 I) 00 II) 80 y III ) y y 5 IV ) + y '500 = Paperback Ausgaben y = Gebundene Ausgaben Definitionsmenge Bedingungen: je Punkt, Nr. III) Punkte 4 Lösung b): z = 9 + 5y 9 z 3 z y = + y = Zielfunktion Mathematik LAP 008 Seite /3 WS KV Chur
12 Lösung c bis e): 00 y / Stück geb. Ausgabe g4 g S ma z g3 g g g g3 g4 z / Stück Paperback Schnittpunkt von g3 und g4 bestimmen: 5 = = = 3000 = Zu = 333 gehört auf g3 der y-wert 666. Der Gewinn beträgt 9* *666 = '98 CHF Zu = 334 gehört auf g4 der y-wert 665. Der Gewinn beträgt 9* *665 = '98 CHF Der maimale Tagesgewinn von '98 CHF entsteht, wenn 333 Paperback-Ausgaben und 666 gebundene Ausgaben pro Tag hergestellt werden. Pro richtige Gerade ein Punkt 5 Polygon Koordinaten des Punkts der zum maimalen Gewinn führt Maimaler Tagesgewinn Mathematik LAP 008 Seite /3 WS KV Chur
13 9. Zinseszinsrechnungen Tamara hat bei der CS ein Guthaben von 50'000 CHF. Der Jahreszins beträgt.4%. Sandra hat bei der GKB ein Guthaben von 5'000 CHF. Der Jahreszins beträgt.8%. Für Aufgabe b und c gilt: Zinsen werden pro Jahr gutgeschrieben. a) Wie viel Geld hat Tamara nach 0 Jahren auf ihrem Konto? Das Ergebnis ist auf Rappen zu runden. Zinsen werden pro Quartal gutgeschrieben b) In wie vielen Jahren wird zum ersten Mal mindestens Sandra 30'000 CHF auf ihrem Konto haben? c) Wie hoch muss der Jahreszins sein, damit Sandra das Sparziel von 30'000 CHF in 0 Jahren erreicht? Der Jahreszins ist in Prozent mit zwei Dezimalstellen anzugeben. Lösung a: 80 K 0 = 50' = 4'063.3 In 0 Jahren hat Tamara 4'063.3 CHF auf ihrem Konto. auf Rp. gerundetes Resultat Lösung b: lg 30'000 lg5'000 n = = 5.0 lg.08 In 6 Jahren hat Sandra zum ersten Mal mindestens 30'000 CHF auf ihrem Konto. n=5.0 6 Jahre Lösung c: q 30'000 5' = = 0 ( ) p = 00 = 3.53% Bei einem Jahreszins von 3.53% erreicht Sandra das Sparziel von 30'000 CHF in 0 Jahren. q = 0 p=3.53% Mathematik LAP 008 Seite 3/3 WS KV Chur
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 2008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 009 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WS KV Chur Abschlussprüfungen 010 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WSKV Chur Lehrabschlussprüfungen 2006 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WSKV Chur Lehrabschlussprüfungen 2007 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
LAP Berufsmatura Mathematik 30. Mai 2013
LAP Berufsmatura Mathematik 0. Mai 0 Abschlussprüfung 0 Mathematik Lösungen Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
Abschlussprüfung 2013 Mathematik
Abschlussprüfung 2013 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
LAP Berufsmatura Mathematik 28. Mai 2014
LAP Berufsmatura Mathematik 8. Mai 04 Abschlussprüfung 04 Mathematik en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 50
Berufsmaturitätsprüfung M-Profil Mathematik 2015
Kanton St. Gallen Bildungsdepartement Berufs- und Weiterbildungszentrum Berufsmaturitätsprüfung M-Profil Mathematik 015 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer
2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.
Kaufmännische Berufsmatura Kanton Zürich 007 Mathematik Serie Serie - en Prüfungsdauer: Max. Punktzahl: 50 Minuten 00 Allgemeine Bewertungshinweise:. Mehrfachlösungen sind nicht gestattet.. Als Resultate
Kaufmännische Berufsmatura 2016
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Berufsmaturitätsprüfung Mathematik 2011
Berufsmaturitätsprüfung Mathematik 2011 Name und Nummer der Kandidatin/des Kandidaten... Prüfungsinformationen Dauer der Prüfung 120 Minuten Hilfsmittel Netzunabhängiger, nicht druckender Taschenrechner
Kaufmännische Berufsmatura 2011 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Kaufmännische Berufsmatura 2016
Kaufmännische Berufsmatura 06 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Berufsmaturitätsprüfung Mathematik 2015
Berufsmaturitätsprüfung Mathematik 015 Name und Nummer der Kandidatin/des Kandidaten... Nr... Prüfungsinformationen Dauer der Prüfung 10 Minuten Hilfsmittel Netzunabhängiger, nicht druckender Taschenrechner
Kaufmännische Berufsmatura 2013 Kanton Zürich Serie 2
Serie 2 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden
Abschlussprüfung 2016 BM2 Mathematik
Abschlussprüfung 2016 BM2 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 120
Kaufmännische Berufsmatura Kanton Zürich 2006 Mathematik Serie 1. Mathematik Serie 1
Kaufmännische Berufsmatura Kanton Zürich 006 Mathematik Serie 1 Mathematik Serie 1 Prüfungsdauer: Max. Punktzahl: 150 Minuten 100 Punkte Prüfungsbedingungen: 1. Kontrollieren Sie Ihr Prüfungsexemplar bei
Kaufmännische Berufsmatura 2008 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Mathematik schriftlich
WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe
Kaufmännische Berufsmatura 2007 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Kaufmännische Berufsmatura 2014
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura 2012 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden
Kaufmännische Berufsmatura 2014
Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Kaufmännische Berufsmatura 2014
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Lineare Funktionen und Gleichungssysteme, GSBM 2014
Lineare Funktionen und Gleichungssysteme, GSBM 2014 Prüfungsdauer Hilfsmittel Bedingungen 80 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg
Kaufmännische Berufsmatura 2013
Kaufmännische Berufsmatura 03 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Mathematik Serie 1. 2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.
Kaufmännische Berufsmatura Kanton Zürich 006 Mathematik Serie : Lösungen Mathematik Serie Serie Lösungen Prüfungsdauer: Ma. Punktzahl: 50 Minuten 00 Punkte Allgemeine Bewertungshinweise:. Mehrfachlösungen
Mathematik (RLP 2012)
Kaufmännische Berufsmatura 06 (RLP 0) Serie A - Lösungen Prüfungsdauer: Max. zahl: 0 Minuten 80 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie
Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK
Berufsfachschulen Graubünden 2. April 2014 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten
Kaufmännische Berufsmatura 2014
Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Kaufmännische Berufsmatura 2011
Kaufmännische Berufsmatura 0 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen
. Berechnung und Darstellung betriebswirtschaftlicher Funktionen.. Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF.--. Die anteilmässigen
Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1
BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1 Mathematik KandidatIn (Name, Vorname): Klasse BMS A 6 Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede vollständig
Aufnahmeprüfung 2014 Mathematik
Aufnahmeprüfung Berufsmatura Mathematik 2. April 201 Berufsfachschulen Graubünden Aufnahmeprüfung 201 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen.
Kaufmännische Berufsmatura 2015
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura 2015
Kaufmännische Berufsmatura 05 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen
1. Berechnung und Darstellung betriebswirtschaftlicher Funktionen 1..1 Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF 1.--. Die anteilmässigen
Es seien A, B, C Aussagen. Prüfen Sie mit Hilfe von Wahrheitstafeln die Gültigkeit der folgenden Regeln.
Bergische Universiät Wuppertal Fakultät für Mathematik und Naturwissenschaften Prof. Dr. Margareta Heilmann, Britta Schulze, M. Sc. Vorkurs Mathematik für Wirtschaftswissenschaftler Aufgabensammlung Wintersemester
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer:
Kanton Zürich Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: E1 basierend auf dem Lehrmittel Mathematik Hohl Hilfsmittel: Vorschriften: Bewertung:
Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25
Inhaltsverzeichnis I Grundlagen 1. Grundlagen 13 1.1 Von Mengen... 13 1.2 Mengenschreibweise... 13 1.3 Zahlenmengen... 14 1.4 Die Grundoperationen... 16 1.5 Rechenhierarchie (1. Teil)... 16 1.6 Reihenfolge
Kantonsschule Trogen / BBZ Herisau Aufnahmeprüfung BM (BBZ / BFS W) und FMS September Teil 2 Mit Taschenrechner
Kantonsschule Trogen / BBZ Herisau Aufnahmeprüfung BM (BBZ / BFS W) und FMS September 2012 Mathematik Teil 2 Mit Taschenrechner Prüfungsbedingungen: Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner),
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner Prüfungsbedingungen Der Taschenrechner darf nicht verwendet werden. Die Aufgaben sind direkt unterhalb der Aufgabe zu
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Funktionen, Gleichungen, geometrische Körper und Trigonometrie
Mathematik-Klassenarbeit Nr. 4 VERGL. Klassen 9 02.07.14 Funktionen, Gleichungen, geometrische Körper und Trigonometrie Hilfsmittel: Nicht programmierbarer Taschenrechner Hinweise: Bei allen Rechnungen
Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft
Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 15. September 2014 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.
Technische Oberschule Stuttgart. Aufgabensammlung zur Aufnahmeprüfung Mathematik 2015
Aufgabensammlung zur Aufnahmeprüfung Mathematik 05 Aufgabe Lösen Sie die folgenden Gleichungen möglichst geschickt. a) (x 3) (3 + x) = 0 b) x 36 = 0 5 c) x 5x 0 + = 4 d) ( x 6) (3x + 8) = 0 Aufgabe Bestimmen
Gewerbliche Richtung Berufsmaturitätsprüfung Juni 2012 / BMS 2 Mathematik
BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Juni 2012 / BMS 2 Mathematik KandidatIn (Name, Vorname): Klassen BMS W 2 A Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Lösungen. Aufnahmeprüfung 2014 Mathematik Name: Berufsfachschulen Graubünden. Note: Vorname: Ergebnis (bitte leer lassen)
Berufsfachschulen Graubünden Aufnahmeprüfung 2014 Mathematik Name: Vorname: - Teil A und B dauern je 45 Minuten. - Teil A ist ohne Taschenrechner zu lösen. - Teil B darf mit Taschenrechner gelöst werden.
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf dem Lehrmittel: «Mathematik Sekundarstufe I» Serie: B2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Klausur: Mathematik/BWL WS 2017/18
Eignungsprüfung für den Hochschulzugang Klausur: Mathematik/BWL WS 2017/18 Bewerber Name, Vorname... Geburtsdatum:.. Hilfsmittel: Bearbeitungszeit: einfacher Taschenrechner 120 Minuten maximale Punktzahl:
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf dem Lehrmittel: «Mathematik Sekundarstufe I» Serie: B1 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Eingescannt aus «Mathematik für die Fachschule Technik» von Heinz Rapp.
13 Eingescannt aus «Mathematik für die Fachschule Technik» von Heinz Rapp. 13.1 Einführung 13. Äquivalenzumformungen bei 1 3 13.3 Einfache lineare 13.4 Bruchungleichungen 4 5 6 Andere Schreibweise der
AUFNAHMEPRÜFUNG BERUFSMATURA 2013 MATHEMATIK
Berufsfachschulen Graubünden 3. April 2013 AUFNAHMEPRÜFUNG BERUFSMATURA 2013 MATHEMATIK Name:. Vorname:.. Zeitrahmen 90 Minuten Hinweise: Löse die Aufgaben auf den beigelegten leeren Blättern. Alle Lösungsblätter
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel «Mathematik Sekundarstufe I» Serie: A1 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel «Mathematik Sekundarstufe I» Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 01 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! - Die
Teil 1 Ohne Taschenrechner
Kantonsschule Trogen / BBZ Herisau Aufnahmeprüfung BM (BBZ / BFS W) und FMS September 2012 Mathematik Prüfungsbedingungen: Der Taschenrechner darf nicht gebraucht werden! Teil 1 Ohne Taschenrechner Die
Aufnahmeprüfung 2012 LÖSUNGEN Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 01 LÖSUNGEN Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt!
1. Funktionen. 1.3 Steigung von Funktionsgraphen
Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine
Abschlussprüfung 2015 Mathematik
Abschlussprüfung 2015 Mathematik Klassen F12a und F12b Kantonsschule Solothurn Fachmittelschule Hinweise zur Bearbeitung der Prüfung: Zur Lösung der Aufgaben stehen drei volle Stunden zur Verfügung. Jede
BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.
BMS Mathematik T Abschlussprüfung_ Seite: /7 Abschlussprüfung Mathematik technische BMS Teil Prüfungsdauer 0 Minuten Der Teil der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen
Minimalziele Mathematik
Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen
Eingangstest aus der Mathematik
Staatliche Fachoberschule und Berufsoberschule Coburg FOS: Technik Wirtschaft, Verwaltung und Rechtspflege Sozialwesen BOS: Technik - Wirtschaft REGIOMONTANUS-SCHULE C O B U R G Eingangstest aus der Mathematik
Einführungsbeispiel Kostenfunktion
Einführungsbeispiel Kostenfunktion Sie bauen eine Fabrik für Luxusautos auf und steigern die Produktion jeden Monat um 1000 Stück. Dabei messen Sie die jeweiligen Kosten und stellen sie grafisch dar. Die
Illustrierende Aufgaben zum LehrplanPLUS. Quadratische Ungleichungen graphisch lösen
Quadratische Ungleichungen graphisch lösen Stand: 28.09.2017 Jahrgangsstufen FOS/BOS 10 Fach/Fächer Mathematik Übergreifende Bildungs- und Erziehungsziele Zeitrahmen Benötigtes Material 60-90 Minuten Diese
gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind
Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl
Übungen zu dem Mathe-Fit Kurs
Hochschule Darmstadt Fachbereich Mathematik und Naturwissenschaften WS 00/ Übungen zu dem Mathe-Fit Kurs Thema : Mengen A.. Durch welche charakterisierenden Eigenschaften können die folgenden Mengen beschrieben
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 2013 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! -
Logarithmische Skalen
Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1
Kaufmännische Berufsmatura 2012
Kaufmännische Berufsmatura 0 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Montag, 31. August 2015, Uhr
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 2 Mit Taschenrechner Prüfungsbedingungen: Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner), keine Handys! Die Aufgaben sind direkt
MATHEMATIK. Name: Vorname: maximale Punkte 1 a), b) 4 2 a), b), c) 6 3 a), b) Gesamtpunktzahl 38. Die Experten: 1.
Berufsmaturität Kanton Glarus Aufnahmeprüfung 2013 Kaufmännische Berufsfachschule Glarus Kaufmännische Richtung MATHEMATIK Name: Vorname: Note Aufgabe Nr. Teilaufgaben erreichte Punkte maximale Punkte
1. Zeichnen Sie die Geraden g, h und k in ein rechtwinkliges Koordinatensystem. 2. Bestimmen Sie die Gleichungen der Geraden g, h und k.
Zweijährige zur Prüfung der Fachschulreife führende Berufsfachschule (BFS) Mathematik (9) Hauptprüfung 007 Aufgaben Aufgabe A. Die Geraden g, h und k schneiden sich im Punkt P(,). Der Punkt Q(,) liegt
Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen
Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:
= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen.
Gleichungen Eine Gleichung ist eine Aussage, in der die Gleichheit zweier Terme durch Mathematische Symbol ausgedrückt wird. Dies wird durch das Gleichheitssymbol = symbolisiert G : = T 2 Definitionsmenge
Kaufmännische Berufsmatura 2010 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Jede korrekt gelöste Aufgabe aus den Prüfungsteilen 1 und 2 zählt 4 Punkte. Jeder Prüfungsteil umfasst 6 Aufgaben.
BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de
F u n k t i o n e n Quadratische Funktionen
F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die
Systeme von linearen Ungleichungen
Systeme von linearen Ungleichungen ALGEBRA Kapitel 6 WRProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2016 Überblick über die bisherigen ALGEBRA
Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion
Datum:.0.0 Thema: Quadratische Funktionen. Formen Sie die Scheitel(punkt)form der quadratischen Funktion f mit f(x) = ( x ) + in die Polynomdarstellung um und bestimmen Sie die Nullstellen und den Schnittpunkt
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2016 Teil 2 Mit Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2016 Teil 2 Mit Taschenrechner Prüfungsbedingungen: Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner), keine Handys! Die Aufgaben sind direkt
Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM
Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM 1. Siehe: Einstiegsvoraussetzungen für das 1. Semester 2. Bereich: Zahlen und Maße 2.1. Fehlerrechnung (Begriffe absoluter und relativer
Gleichungssysteme und Ungleichungen 2012, TBM
Prüfungsdauer Hilfsmittel 70 Minuten Taschenrechner ohne CAS! Bedingungen Wahlaufgaben bzw. 5: 5 Sie können wählen, welche Aufgabe Sie lösen. Es wird nur eine Wahlaufgabe bewertet! Dokumentieren Sie den
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner Prüfungsbedingungen Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner), keine Handys! Die Aufgaben sind direkt unterhalb
Mathematik Serie 2 (60 Min.)
Aufnahmeprüfung 01 Mathematik Serie (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! - Die
WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen
Name: Note: Punkte: von 50 (in %: ) Unterschrift des Lehrers : Zugelassene Hilfsmittel: Taschenrechner, Geodreieck, Lineal Wichtig: Schreiben Sie Ihren Namen oben auf das Klausurblatt und geben Sie dieses
Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra A 2015
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra A 2015 Totalzeit: 90 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl:
Klassenarbeit Mathematik Bearbeitungszeit 90 min. Mi SG22 D Gruppe A NAME:
R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Klassenarbeit Mathematik Bearbeitungszeit 90 min. Mi 0.0.0 SG D Gruppe A NAME: Hilfsmittel: Taschenrechner, außer bei Alle Ergebnisse sind soweit möglich
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002
Aufnahmeprüfung. Mathematik 2016
Aufnahmeprüfung Mathematik 2016 Name, Vorname Kandidaten- Nummer Note Zeit: 75 Minuten Hilfsmittel: Taschenrechner Bewertung: Lösen Sie die Aufgaben auf den Blättern dieser Broschüre. Es werden keine weiteren
FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner. Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe
Aufnahmeprüfung 2012 Mathematik FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner Name:....................... Kandidatennummer/ Gruppennummer Vorname:....................... Aufgabe Nr.: 1 2 4 5 6 7 Summe
Übungsblatt 1 zum Propädeutikum
Übungsblatt 1 zum Propädeutikum 1. Gegeben seien die Mengen A = {,, 6, 7}, B = {,, 6} und C = {,,, 1}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geben Sie diese in aufzählender Form an.. Geben
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 6 6 5 5 5 4 31 Die Prüfung dauert
Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.
Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,
