Mathematik schriftlich
|
|
|
- Christa Vogel
- vor 9 Jahren
- Abrufe
Transkript
1 WS KV Chur Lehrabschlussprüfungen 2008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe 9 2. Aufgabe 9 3. Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe 7 8. Aufgabe Aufgabe 8 Total 100 Note: Material Hilfsmittel Zeit Arbeitsblätter, Zusatzblätter Taschenrechner, Formelblatt 150 Minuten Hinweise Der Lösungsweg muss überall übersichtlich dargestellt werden; unbelegte Resultate werden nicht berücksichtigt! Mehrfachlösungen sind nicht gestattet; Ungültiges ist deutlich zu streichen. Die gültigen Schlussresultate sind doppelt zu unterstreichen. Alle Ausrechnungen und Resultate schreiben Sie auf diese Blätter, wenn nötig auch auf die Rückseite. Für reine Entwürfe und Versuche verwenden Sie das Zusatzpapier. Diese Prüfungsaufgabe darf erst ab 2009 zu Übungszwecken im Unterricht verwendet werden.
2 1. Rechnen mit Brüchen a) Berechnen Sie folgende Summe bzw. Differenz und vereinfachen Sie so weit wie möglich. 7 a 3 b 9 a + 2 b 5 a + b Pro Fehler 2 Punkte Abzug 4 b) Berechnen Sie folgenden Quotienten und vereinfachen Sie so weit wie möglich. 1 x x + x + 1 Pro Fehler 2 Punkte Abzug 5 Mathematik LAP 2008 Seite 2/13 WS KV Chur
3 2. Gleichungssysteme mit zwei Variablen Lösen Sie folgendes Gleichungssystem in der Grundmenge G = Q x Q. 2 3 I) = 1 x + 1 y II ) + = 5 x + 1 y 2 Definitionsmenge 2 Lösungsmenge 1 x und y berechnen je 3 Punkte 6 Mathematik LAP 2008 Seite 3/13 WS KV Chur
4 3. Potenzen und Wurzeln a) Berechnen Sie folgenden Ausdruck: x y ( 35 x y ) : 3 3 2a b Pro Fehler 2 Punkte Abzug 4 b) Lösen Sie die folgende Wurzelgleichung. Die Definitionsmenge und die Lösungsmenge sind anzugeben. x x 2 = 4 Definitionsmenge 2 x bestimmen, pro Fehler 2 Punkte Abzug 5 Mathematik LAP 2008 Seite 4/13 WS KV Chur
5 4. Logarithmen a) Drücken Sie den folgenden logarithmischen Term durch einen Logarithmus aus und vereinfachen Sie so weit als möglich: 7 3 log2 a 2 log2 a log a a Pro Fehler 2 Punkte Abzug 5 b) Bestimmen Sie die Lösung der folgenden Gleichungen in der Grundmenge R. Die Definitionsmenge und die Lösungsmenge sind anzugeben. 4x x 2 = 2 4 Definitionsmenge 1 x bestimmen, pro Fehler 2 Punkte Abzug 5 Mathematik LAP 2008 Seite 5/13 WS KV Chur
6 5. Lineare Funktionen Von einem Fahrradhersteller kennen Sie folgende Zahlen: Stückzahl (x) Gesamtkosten in CHF Erlös in CHF 0 95' ' '930 Erlös, Kosten und Gewinn entwickeln sich linear. a) Wie lauten die Gleichungen für die Gesamtkostenfunktion (= Selbstkostenfunktion), die Erlösfunktion (= Nettoerlösfunktion) und die Gewinnfunktion (= Erfolgsfunktion). b) Zeichnen Sie die Funktionen in das vorgegebene Koordinatensystem ein. Alle drei Geraden sind anzuschreiben. c) Bei welcher Produktionszahl liegt die Gewinnschwelle (mengenmässige Nutzschwelle)? Wie hoch ist dort der Erlös (wertmässige Nutzschwelle)? Lösung a): Gesamtkosten 2 Erlös und Gewinn je 2 Punkt 4 Mathematik LAP 2008 Seite 6/13 WS KV Chur
7 Lösung b): '000 CHF Stück Für jede richtige Gerade 1 Punkt. 3 Lösung c): x ausrechnen 1 Gewinnschwelle 1 Erlös 2 Mathematik LAP 2008 Seite 7/13 WS KV Chur
8 6. Quadratische Funktionen Gegeben sind folgende Funktionen: 2 I) y = 2x + 2x 2 1 II ) y = x a) Berechnen Sie die Nullstellen (Schnittpunkt mit der x-achse) der beiden Funktionen auf drei Dezimalstellen genau. Die Resultate sind mathematisch korrekt anzugeben; dies gilt auch für b) bis d). b) Berechnen Sie die Koordinaten des Scheitelpunktes der Parabel. c) Zeichnen Sie die Graphen der beiden Funktionen in das vorgegebene Koordinatensystem. d) Berechnen Sie die Schnittpunkte der beiden Funktionen auf drei Dezimalstellen genau. Lösung a): x 1 und x 2 ausrechnen je 1 Punkt. 2 N 1 und N 2 angeben 1 N 3 1 Lösung b): Scheitelpunkt 2 Mathematik LAP 2008 Seite 8/13 WS KV Chur
9 Lösung c): Parabel 3 Gerade 1 Lösung d): Zwischenresultat 2 Pro Schnittpunkt 1 Punkt; korrekte Darstellung 1 P. 3 Mathematik LAP 2008 Seite 9/13 WS KV Chur
10 7. Ungleichungen Lösen Sie folgende Ungleichung in der Grundmenge der rationalen Zahlen. 2 5 x 5 x + 4 Definitionsmenge 1 x berechnen 1 Fälle, die zu keiner leeren Menge führen 4 Lösungsmenge 1 Mathematik LAP 2008 Seite 10/13 WS KV Chur
11 8. Lineare Optimierung Ein Harry Potter Buch wird in zwei Versionen gedruckt: Eine Paperback-Ausgabe und eine gebundene Ausgabe. Von der Paperback-Ausgabe sollen pro Tag mindestens 200 Exemplare, von der gebundenen Ausgabe mindestens 180 Stück produziert werden. Es sollen höchstens doppelt so viele gebundene Ausgaben wie Paperback-Ausgaben gedruckt werden. Aufgrund technischer Möglichkeiten können pro Tag höchstens 600 Paperback-Ausgaben oder 1'500 gebundene Ausgaben oder eine beliebige Kombination produziert werden, wobei die Summe der zwei prozentualen Anteile (Produktion in % der maximal möglichen Produktion) 100% nicht übersteigen darf. Der Gewinn pro Buch ist bei der Paperback-Ausgabe 9 CHF und bei der gebundenen Ausgabe 15 CHF. Die Geschäftsleitung strebt einen maximalen Gewinn an. a) Geben Sie die Definitionsmenge und die drei Ungleichungen, die zu den Bedingungen gehören an. x gibt die Anzahl Paperback-Ausgaben und y die Anzahl gebundene Ausgaben an. Die vierte Bedingung ist gegeben, muss jedoch noch in das Diagramm eingezeichnet werden. b) Bestimmen Sie die Zielfunktion rechnerisch. c) Zeichnen Sie die drei Bedingungen in das vorgegebene Koordinatensystem ein (jeweils mit entsprechendem Richtungspfeil). Die Zielgerade zeichnen Sie gestrichelt ein. Das Lösungspolygon ist farblich oder durch Schraffur hervorzuheben. d) Bestimmen Sie grafisch (einzeichnen) und rechnerisch die Anzahl Paperback-Ausgaben und gebundene Ausgaben, die zu einem maximalen Gewinn führen. e) Wie gross ist der maximale Tagesgewinn? Lösung a): 5 IV ) x + y 1 y x '500 2 Definitionsmenge 1 Bedingungen: je 1 Punkt, Nr. III) 2 Punkte 4 Lösung b): Zielfunktion 2 Mathematik LAP 2008 Seite 11/13 WS KV Chur
12 Lösung c bis e): y / Stück geb. Ausgabe x / Stück Paperback Pro richtige Gerade ein Punkt 5 Polygon 1 Koordinaten des Punkts der zum maximalen Gewinn führt 2 Maximaler Tagesgewinn 2 Mathematik LAP 2008 Seite 12/13 WS KV Chur
13 9. Zinseszinsrechnungen Tamara hat bei der CS ein Guthaben von 150'000 CHF. Der Jahreszins beträgt 2.4%. Sandra hat bei der GKB ein Guthaben von 115'000 CHF. Der Jahreszins beträgt 2.8%. Für Aufgabe b und c gilt: Zinsen werden pro Jahr gutgeschrieben. a) Wie viel Geld hat Tamara nach 20 Jahren auf ihrem Konto? Das Ergebnis ist auf Rappen zu runden. Zinsen werden pro Quartal gutgeschrieben b) In wie vielen Jahren wird Sandra zum ersten Mal mindestens 230'000 CHF auf ihrem Konto haben? c) Wie hoch muss der Jahreszins sein, damit Sandra das Sparziel von 230'000 CHF in 20 Jahren erreicht? Der Jahreszins ist in Prozent mit zwei Dezimalstellen anzugeben. Lösung a: auf 1 Rp. gerundetes Resultat 2 Lösung b: n 2 Anzahl Jahre 1 Lösung c: q 2 p 1 Mathematik LAP 2008 Seite 13/13 WS KV Chur
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich LÖSUNGEN Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte.
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 009 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WS KV Chur Abschlussprüfungen 010 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WSKV Chur Lehrabschlussprüfungen 2006 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik schriftlich
WSKV Chur Lehrabschlussprüfungen 2007 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Abschlussprüfung 2014 Mathematik
Abschlussprüfung 2014 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
Abschlussprüfung 2013 Mathematik
Abschlussprüfung 2013 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
LAP Berufsmatura Mathematik 30. Mai 2013
LAP Berufsmatura Mathematik 0. Mai 0 Abschlussprüfung 0 Mathematik Lösungen Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
LAP Berufsmatura Mathematik 1. Juni 2015
LAP Berufsmatura Mathematik. Juni 0 Abschlussprüfung 0 Mathematik Lösungen Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
LAP Berufsmatura Mathematik 28. Mai 2014
LAP Berufsmatura Mathematik 8. Mai 04 Abschlussprüfung 04 Mathematik en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 50
Abschlussprüfung 2015 Mathematik
Abschlussprüfung 2015 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 150 Minuten
LAP Berufsmatura Mathematik 28. Mai 2014
LAP Berufsmatura Mathematik 8. Mai 04 Abschlussprüfung 04 Mathematik en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 50
Berufsmaturitätsprüfung M-Profil Mathematik 2015
Kanton St. Gallen Bildungsdepartement Berufs- und Weiterbildungszentrum Berufsmaturitätsprüfung M-Profil Mathematik 015 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer
Lösungen. Berufsfachschulen in den Kantonen St. Gallen, Appenzell AI und AR und Glarus Berufsmaturität. Berufsmaturitätsprüfung Mathematik 2016
sprüfung Mathematik 2016 BM-Ausrichtung Wirtschaft und Dienstleistungen, Typ Wirtschaft Serie 1 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer Taschenrechner (keine
Berufsmaturitätsprüfung Mathematik 2016
sprüfung Mathematik 2016 BM-Ausrichtung Wirtschaft und Dienstleistungen, Typ Wirtschaft Serie 1 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer Taschenrechner (keine
Berufsmaturitätsprüfung M-Profil Mathematik 2015
Kanton St. Gallen Bildungsdepartement Berufs- und Weiterbildungszentrum Berufsmaturitätsprüfung M-Profil Mathematik 2015 Prüfungsbedingungen Erlaubte Hilfsmittel: netzunabhängiger, nicht programmierbarer
Kaufmännische Berufsmatura 2016
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Berufsmaturitätsprüfung Mathematik 2011
Berufsmaturitätsprüfung Mathematik 2011 Name und Nummer der Kandidatin/des Kandidaten... Prüfungsinformationen Dauer der Prüfung 120 Minuten Hilfsmittel Netzunabhängiger, nicht druckender Taschenrechner
Berufsmaturitätsprüfung Mathematik 2015
Berufsmaturitätsprüfung Mathematik 015 Name und Nummer der Kandidatin/des Kandidaten... Nr... Prüfungsinformationen Dauer der Prüfung 10 Minuten Hilfsmittel Netzunabhängiger, nicht druckender Taschenrechner
Kaufmännische Berufsmatura 2011 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.
Kaufmännische Berufsmatura Kanton Zürich 007 Mathematik Serie Serie - en Prüfungsdauer: Max. Punktzahl: 50 Minuten 00 Allgemeine Bewertungshinweise:. Mehrfachlösungen sind nicht gestattet.. Als Resultate
LAP Berufsmatura BM2 Mathematik 2. Juni 2016
LAP Berufsmatura BM Mathematik. Juni 06 Abschlussprüfung 06 Mathematik BM Lösungen Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
Kaufmännische Berufsmatura 2016
Kaufmännische Berufsmatura 06 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Kaufmännische Berufsmatura 2013 Kanton Zürich Serie 2
Serie 2 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden
Abschlussprüfung 2016 BM2 Mathematik
Abschlussprüfung 2016 BM2 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 120
Kaufmännische Berufsmatura Kanton Zürich 2006 Mathematik Serie 1. Mathematik Serie 1
Kaufmännische Berufsmatura Kanton Zürich 006 Mathematik Serie 1 Mathematik Serie 1 Prüfungsdauer: Max. Punktzahl: 150 Minuten 100 Punkte Prüfungsbedingungen: 1. Kontrollieren Sie Ihr Prüfungsexemplar bei
Kaufmännische Berufsmatura 2017
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura 2008 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Kaufmännische Berufsmatura 2017
Kaufmännische Berufsmatura 07 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Abschlussprüfung 2017 BM2 Mathematik
Abschlussprüfung 2017 BM2 Mathematik Kandidatennummer: Name: Vorname: Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt 120
Berufsmaturität Wirtschaft 2018
Prüfungsdauer: Hilfsmittel: Beachten Sie: 120 Minuten Taschenrechner ohne CAS/Solver, nicht programmierbar Beigelegte Formelsammlung 1. Unbelegte Resultate (fehlender Lösungsweg) werden nicht berücksichtigt.
Kaufmännische Berufsmatura 2017
Prüfungsdauer: 120 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner ohne CAS, ohne Solver, nicht grafikfähig, nicht programmierbar Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg
Kaufmännische Berufsmatura 2012 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden
Kaufmännische Berufsmatura 2014
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Mathematik schriftlich
WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe
Kaufmännische Berufsmatura 2014
Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Lineare Funktionen und Gleichungssysteme, GSBM 2014
Lineare Funktionen und Gleichungssysteme, GSBM 2014 Prüfungsdauer Hilfsmittel Bedingungen 80 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg
Kaufmännische Berufsmatura 2014
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Kaufmännische Berufsmatura 2017
Kaufmännische Berufsmatura 07 Serie A - Lösungen Prüfungsdauer: Max. zahl: 0 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen,
LAP Berufsmaturität BM2 Mathematik 2. Juni 2017
LAP Berufsmaturität BM Mathematik. Juni 017 Abschlussprüfung 017 Mathematik BM en Material Hilfsmittel Zeit Arbeitsblätter, Häuschenblätter netzunabhängiger, nicht programmierbarer Taschenrechner, Formelblatt
Mathematik (RLP 2012)
Kaufmännische Berufsmatura 06 (RLP 0) Serie A - Lösungen Prüfungsdauer: Max. zahl: 0 Minuten 80 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK
Berufsfachschulen Graubünden 2. April 2014 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten
Berufsmaturität Wirtschaft 2018
Serie A - Lösungen Prüfungsdauer: Max. zahl: 0 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze. Die Diagramme
Mathematik Serie: 1 Ausrichtung: WD-D
Kanton Zürich Bildungsdirektion Berufsmaturitätsprüfung 2017 Mathematik Serie: 1 Ausrichtung: Dauer: Hilfsmittel: Hinweise: 120 Minuten - Formelsammlung (mitzubringen) - Taschenrechner ohne CAS / nicht
Lineare Optimierung, M2a
Prüfungsdauer Hilfsmittel Bedingungen 50 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Aufgabe 2 ohne Grafik, Aufgabe 4 mit Grafik! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg muss
Kaufmännische Berufsmatura 2014
Kaufmännische Berufsmatura 04 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie
Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1
Mathematik Serie 1. 2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.
Kaufmännische Berufsmatura Kanton Zürich 006 Mathematik Serie : Lösungen Mathematik Serie Serie Lösungen Prüfungsdauer: Ma. Punktzahl: 50 Minuten 00 Punkte Allgemeine Bewertungshinweise:. Mehrfachlösungen
Aufnahmeprüfung 2014 Mathematik
Aufnahmeprüfung Berufsmatura Mathematik 2. April 201 Berufsfachschulen Graubünden Aufnahmeprüfung 201 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen.
Lineare Funktionen und Gleichungssysteme, GSBM 2014
Lineare Funktionen und Gleichungssysteme, GSBM 04 Prüfungsdauer Hilfsmittel Bedingungen 80 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg
Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1
BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1 Mathematik KandidatIn (Name, Vorname): Klasse BMS A 6 Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede vollständig
Berufsmaturitätsprüfung 2016
Kanton Zürich Bildungsdirektion Berufsmaturitätsprüfung 2016 Mathematik Serie: 1 Ausrichtungen: WD-D Dauer: Hilfsmittel: Hinweise: 120 Minuten - Formelsammlung (mitzubringen) - Taschenrechner ohne CAS
Kaufmännische Berufsmatura 2015
Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt
Mathematik (RLP 2012)
(RLP 2012) Prüfungsdauer: 120 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner ohne CAS, ohne Solver, nicht grafikfähig, nicht programmierbar Beigelegte Formelsammlung Dokumentieren Sie
Kaufmännische Berufsmatura 2007 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E1 Basierend auf dem Lehrmittel Mathematik Hohl Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E2 Basierend auf dem Lehrmittel Mathematik Hohl Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer:
Kanton Zürich Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: E1 basierend auf dem Lehrmittel Mathematik Hohl Hilfsmittel: Vorschriften: Bewertung:
Kaufmännische Berufsmatura 2011
Kaufmännische Berufsmatura 0 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner Prüfungsbedingungen Der Taschenrechner darf nicht verwendet werden. Die Aufgaben sind direkt unterhalb der Aufgabe zu
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Funktionen, Gleichungen, geometrische Körper und Trigonometrie
Mathematik-Klassenarbeit Nr. 4 VERGL. Klassen 9 02.07.14 Funktionen, Gleichungen, geometrische Körper und Trigonometrie Hilfsmittel: Nicht programmierbarer Taschenrechner Hinweise: Bei allen Rechnungen
Kaufmännische Berufsmatura 2015
Kaufmännische Berufsmatura 05 Serie a: Lösungen Serie a - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig
12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen
. Berechnung und Darstellung betriebswirtschaftlicher Funktionen.. Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF.--. Die anteilmässigen
Kantonsschule Trogen / BBZ Herisau Aufnahmeprüfung BM (BBZ / BFS W) und FMS September Teil 2 Mit Taschenrechner
Kantonsschule Trogen / BBZ Herisau Aufnahmeprüfung BM (BBZ / BFS W) und FMS September 2012 Mathematik Teil 2 Mit Taschenrechner Prüfungsbedingungen: Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner),
Technische Oberschule Stuttgart. Aufgabensammlung zur Aufnahmeprüfung Mathematik 2015
Aufgabensammlung zur Aufnahmeprüfung Mathematik 05 Aufgabe Lösen Sie die folgenden Gleichungen möglichst geschickt. a) (x 3) (3 + x) = 0 b) x 36 = 0 5 c) x 5x 0 + = 4 d) ( x 6) (3x + 8) = 0 Aufgabe Bestimmen
Kaufmännische Berufsmatura 2013
Kaufmännische Berufsmatura 03 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Lösungen. Aufnahmeprüfung 2014 Mathematik Name: Berufsfachschulen Graubünden. Note: Vorname: Ergebnis (bitte leer lassen)
Berufsfachschulen Graubünden Aufnahmeprüfung 2014 Mathematik Name: Vorname: - Teil A und B dauern je 45 Minuten. - Teil A ist ohne Taschenrechner zu lösen. - Teil B darf mit Taschenrechner gelöst werden.
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
1. Selbsttest Heron-Verfahren Gleichungen
1. Selbsttest 1.1. Heron-Verfahren Mit dem Heron-Verfahren soll ein Näherungswert für 15 gefunden werden. Führe die ersten drei Schritte des Heron- Verfahrens durch. Gib dann unter Verwendung der Werte
Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25
Inhaltsverzeichnis I Grundlagen 1. Grundlagen 13 1.1 Von Mengen... 13 1.2 Mengenschreibweise... 13 1.3 Zahlenmengen... 14 1.4 Die Grundoperationen... 16 1.5 Rechenhierarchie (1. Teil)... 16 1.6 Reihenfolge
Die Prüfung umfasst 7 Aufgaben. Total Punktzahl: 28; 24 Punkte ergibt die Note 6. Gesamtnote: Unterschriften:
BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer:
Kanton Zürich Aufnahmeprüfung 2017 für die Mathematik Dauer: 90 Minuten Serie: E2 basierend auf dem Lehrmittel Mathematik Hohl Hilfsmittel: Vorschriften: Bewertung: - Zeichenutensilien, Taschenrechner,
Gewerbliche Richtung Berufsmaturitätsprüfung Juni 2012 / BMS 2 Mathematik
BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Juni 2012 / BMS 2 Mathematik KandidatIn (Name, Vorname): Klassen BMS W 2 A Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede
Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft
Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 15. September 2014 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.
BM Mathematik T1 Grundlagenprüfung_16 Seite: 1/7
BM Mathematik T Grundlagenprüfung_6 Seite: /7 Abschlussprüfung BM Mathematik Grundlagen TAL Teil Prüfungsdauer 75 Minuten, ohne Hilfsmittel Die Lösungen werden nur bewertet, wenn der Lösungsweg klar ersichtlich
Es seien A, B, C Aussagen. Prüfen Sie mit Hilfe von Wahrheitstafeln die Gültigkeit der folgenden Regeln.
Bergische Universiät Wuppertal Fakultät für Mathematik und Naturwissenschaften Prof. Dr. Margareta Heilmann, Britta Schulze, M. Sc. Vorkurs Mathematik für Wirtschaftswissenschaftler Aufgabensammlung Wintersemester
Anwendungen lineare Funktionen 2015, M2a
Prüfungsdauer Hilfsmittel Bedingungen 60 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg muss klar ersichtlich sein. Es ist anzugeben was
12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen
1. Berechnung und Darstellung betriebswirtschaftlicher Funktionen 1..1 Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF 1.--. Die anteilmässigen
AUFNAHMEPRÜFUNG BERUFSMATURA 2013 MATHEMATIK
Berufsfachschulen Graubünden 3. April 2013 AUFNAHMEPRÜFUNG BERUFSMATURA 2013 MATHEMATIK Name:. Vorname:.. Zeitrahmen 90 Minuten Hinweise: Löse die Aufgaben auf den beigelegten leeren Blättern. Alle Lösungsblätter
Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4
Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 017/018 Übung Aufgabe 1 : Äquivalenzumformungen Bestimmen Sie ohne Taschenrechner die Lösungsmengen für folgende Gleichungen/Ungleichungen
Lineare und quadratische Funktionen, GSBM
Prüfungsdauer Hilfsmittel Bedingungen 70 Minuten Taschenrechner ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg muss klar ersichtlich sein. Das Resultat ist soweit als möglich zu vereinfachen.
Mathematik Grundlagen
BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de
Kaufmännische Berufsmatura im Kanton Zürich. Mathematik Serie 1. Vorname... Adresse...
Aufnahmeprüfung 2010 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! -
Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 4. (iii) = 33. (iv)
Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 01/016 Übung Aufgabe 1 : Lineare Gleichungen (a) Für welche x R gilt (i) 31 6(x + 1) = 9 (ii) 11(x ) = ( + 1x) (iii) + = 33
Klausur: Mathematik/BWL WS 2017/18
Eignungsprüfung für den Hochschulzugang Klausur: Mathematik/BWL WS 2017/18 Bewerber Name, Vorname... Geburtsdatum:.. Hilfsmittel: Bearbeitungszeit: einfacher Taschenrechner 120 Minuten maximale Punktzahl:
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf dem Lehrmittel: «Mathematik Sekundarstufe I» Serie: B2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Eingescannt aus «Mathematik für die Fachschule Technik» von Heinz Rapp.
13 Eingescannt aus «Mathematik für die Fachschule Technik» von Heinz Rapp. 13.1 Einführung 13. Äquivalenzumformungen bei 1 3 13.3 Einfache lineare 13.4 Bruchungleichungen 4 5 6 Andere Schreibweise der
