Tag der Mathematik 2011
|
|
|
- Eva Brinkerhoff
- vor 9 Jahren
- Abrufe
Transkript
1 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Tschenrechner sind nicht zugelssen. Aufgben bitte nur uf den Aufgbenblättern berbeiten und bgeben! Zentrum für Mthemtik Werrstr Bensheim 065/58006
2 Aufgbe G (8 Punkte) Es sei F (x) := 9x 9 x +. ) Zeigen Sie F (x) + F ( x) =. b) Berechnen Sie ( ) F + F 0 ( ) F 0 ( ) F 0 ( ) ) F (x) + F ( x) = 9x 9 x x 9 x + = 9x 9 x x = 9x 9 x =. x b) Für n =,,..., 00 gilt ( n ) ( ) 0 n F + F = F 0 0 Prweise Zusmmenfssung ergibt ( ) ( ) 005 F F 0 0 = } + + {{... + } = Einsen + F ( n ) ( + F n ) =. 0 0 ( ) F 0 ( ) 00 0 Zentrum für Mthemtik Werrstr Bensheim 065/58006
3 Aufgbe G (8 Punkte) Eine Lösung der Gleichung x + y = ist x = 8 und y =. Mn knn diese Lösung uf zwei prllelen Achsen eintrgen und durch eine sogennnte Lösungsstrecke miteinnder verbinden: x y Bestimmen Sie weitere Lösungen der Gleichung x + y =, trgen diese uf den prllelen x- und y- Achsen ein und verbinden diese Lösungspunkte mit einer Strecke. Welche Eigenschft hben diese Lösungsstrecken? Begründen Sie diese Eigenschft x S y Die eingezeichneten Lösungsstrecken gehen lle durch einen Punkt S. Jede weitere Strecke durch S scheint eine Lösungsstrecke zu sein. (i) Zur Begründung, dss S jede der eingezeichneten Lösungsstrecken im Verhältnis : teilt, wähle mn zwei beliebige Lösungsstrecken (x, y ) und (x, y ) durch S. Dnn gilt x + y = und x + y =. Zentrum für Mthemtik Werrstr Bensheim 065/58006
4 x x x Hierus folgt (Strhlenstz) x x y y = = b. b S y y y (ii) Zum Nchweis, dss jede Strecke durch S eine Lösungsstrecke ist, wähle mn eine beliebige Strecke (x 0, y 0 ) durch S. Dnn gilt x x 0 Hierus folgt x 0 + y 0 = x + x =. = y 0 y. (iii) Zur Begründung, dss jede Lösungsstrecke durch S gehen muss, werde ngenommen, dss (x, y ) eine Lösungsstrecke sei, die nicht durch S geht. Zeichne von x us eine Strecke durch S; diese treffe die y-achse in y. Nch (ii) ist x + y =, lso knn x + y nicht sein; dies widerlegt die Annhme, dss (x, y ) eine Lösungsstrecke sei. Zentrum für Mthemtik Werrstr Bensheim 065/58006
5 Aufgbe G (8 Punkte) Einer Kugel mit Rdius ist der Kegel mit dem größten Volumen V einzubeschreiben. h Berechnen Sie die Höhe h und den Grundkreisrdius r des Kegels in Abhängigkeit von. r Mit r = (h ) (Pythgors) oder r + h = h (Kthetenstz) oder r = h ( h) (Höhenstz) folgt für ds Volumen V = πr h = π ( h h ). h r. Möglichkeit V = π ( h h ) = π ( ( ) ( h ) ( h + ) ). V ist mximl für h =.. Möglichkeit Aus V (h) = π ( ) h h = 0 folgt h =. Wegen V (h) = π ( 6h) < 0 für h = ist V mximl. Für den Rdius gilt r =. Zentrum für Mthemtik Werrstr Bensheim 065/58006
6 Aufgbe G (8 Punkte) In ein gleichseitiges Dreieck (Seitenlänge = 8 cm) wird ein Rechteck so einbeschrieben, dss eine Seite des Rechtecks uf einer Dreiecksseite liegt und die weiteren Eckpunkte des Rechtecks die Seitenmitten der nderen Dreiecksseiten sind (vgl. Abbildung). Eine der Restflächen im Dreieck ist wieder ein gleichseitiges Dreieck, in ds in gleicher Weise ein Rechteck einbeschrieben wird. Dieser Vorgng wird mehrmls wiederholt. ) Bestimmen Sie die Fläche des ersten Rechtecks. b) Welche Fläche ht ds dritte Rechteck? Welche Fläche ht ds n-te Rechteck? c) Ds wie vielte Rechteck ht erstmls eine Fläche, die kleiner ls 0 mm ist? ). Rechteck b). Rechteck n-tes Rechteck Grundseite Höhe Fläche [cm ] = 8 8 = = n n+ n+ n 5 c) Mit = 8 cm = 80 mm folgt für n die Ungleichung 6 00 n+ < 0, lso 000 < n 5 < n 5, d >. Wegen 0 > 000, muss n 5 > 0 sein, lso n = 8. Für n = 7 ist die Fläche 5 8 0, [mm ]. Zentrum für Mthemtik Werrstr Bensheim 065/58006
7 Aufgbe E (8 Punkte) y Die Punkte A und B liegen uf der Prbel y = x + 7x. Der Koordintenursprung O ist Mittelpunkt der Strecke AB. Berechnen Sie die Länge von AB. A x B Für A (p q) und B ( p q) gilt q = p + 7p und q = p 7p. Hierus folgt p = und q = 7 und somit AB = (p) + (q) = 50 = 5. Zentrum für Mthemtik Werrstr Bensheim 065/58006
8 Aufgbe E (8 Punkte) Beim Bu eines unterirdischen Stollens sind folgende Bedingungen einzuhlten: c (i) Der Querschnitt muss ein gleichschenkliges Trpez mit Flächeninhlt 6 m sein. b h b (ii) Der Neigungswinkel der Seitenwände gegenüber der Bodenfläche muss 60 Grd betrgen. Wie hoch wird der Stollen (Trpezhöhe h), wenn ds Querschnittstrpez minimlen Umfng U hben soll? 60 Es gilt c (i) 6 = + c (ii) h = c Somit ist der Umfng h, lso +c = h, lso c = h b 60 }{{} c U = + c + b = + c + ( c) = h. Möglichkeit U = ( h + 9 ) = ( ) ) h (6 + h h h + h = ( h + 9 ) h wird miniml für h h = 0, b.. Möglichkeit Aus U (h) = ( 9 h ) = 0 folgt h =. lso h =. Wegen U (h) = h > 0 für h = liegt ein Minimum vor. Zentrum für Mthemtik Werrstr Bensheim 065/58006
9 Aufgbe E (8 Punkte) Die fünfstellige Zhl 679b ist durch 7 teilbr. Bestimmen Sie die Ziffern und b. Wegen 7 = 8 9 muss die Zhl durch 8 und 9 teilbr sein. Eine Zhl ist durch 8 teilbr, wenn die Zhl us den letzten drei Ziffern durch 8 teilbr ist. Aus 8 79b folgt b =. Die Quersumme muss durch 9 teilbr sein. Aus = + folgt =. Es gilt 679 = 7 5. Zentrum für Mthemtik Werrstr Bensheim 065/58006
10 Aufgbe H ( Punkte) Für welches x gilt ( ) ( ) = 0 x? Mit := 009 gilt (0 + 5) (0 5) = = 00 0 = 0 + und somit x = + = 0. Zentrum für Mthemtik Werrstr Bensheim 065/58006
11 Aufgbe H ( Punkte) In einem Rechteck ABCD mit AB > BC werden E uf AB und F uf CD so gewählt, dss Viereck AECF eine Rute ist (Mittelpunkt M). D F C Berechnen Sie EF, wenn M (i) AB = 8 und BC = 6, (ii) AB = und BC = b. A E B Die Dreiecke ABC und CMF sind ähnlich. Also gilt und somit EF = b EF AC = BC AB = b + b = = 5 Zentrum für Mthemtik Werrstr Bensheim 065/58006
12 Aufgbe H ( Punkte) Gegeben ist ein Dreieck mit den Seitenlängen, und. Berechnen Sie ) cos α, b) die Fläche des Dreiecks. α. Möglichkeit ( ) ( ) ( ) + ) Nch dem Kosinusstz gilt cos α = b) sin α = cos α = =. Möglichkeit Aus x + h = und ( x) + h = folgt x = und h = 6. h ) cos α = x = b) h = α x x Zentrum für Mthemtik Werrstr Bensheim 065/58006
13 Aufgbe H ( Punkte) D C Im Rechteck ABCD mit AD = wird der Winkel bei D durch DE und die Digonle BD gedrittelt. Berechnen Sie den Umfng des Dreieck BDE. A E B Aus der Zeichnung folgt BD =, BE = =, DE =. Umfng: A E B D C Zentrum für Mthemtik Werrstr Bensheim 065/58006
14 Aufgbe H5 ( Punkte) Es sei > 0, b > 0, b = b und b = 9. Berechnen Sie. Aus = b b = (9) 9 folgt 9 = 9. Also 8 = 9 und somit =. Zentrum für Mthemtik Werrstr Bensheim 065/58006
15 Aufgbe H6 ( Punkte) Auf einem Würfel mit Kntenlänge sitzt ein Würfel mit Kntenlänge. Auf diesem wiederum steht ein Würfel mit Kntenlänge, usw., d.h. jeder Würfel trägt einen Würfel mit hlber Kntenlänge. Wenn dieses Aufeinndertürmen der Würfel nch vier Würfeln beendet wird, welche Oberfläche ht dnn dieser vierstöckige Würfelturm? Betrchtet mn den Würfelturm von unten und oben, so sieht mn jeweils ein Einheitsqudrt. Die senkrechten Qudrtseiten hben zusmmen die Fläche ( ( ) ( ) ( ) ) Die gesmte Oberfläche ist dher + ( ) = Zentrum für Mthemtik Werrstr Bensheim 065/58006
16 Aufgbe H7 ( Punkte) Gegeben sind die Funktionen h(x) = x, g(x) = h(x) und f(x) = g(x). Zeichnen Sie die drei Funktionen in verschiedene Koordintensysteme. Berechnen Sie die Fläche, die von f und der x-achse eingeschlossen wird. h(x) g(x) x x f(x) x Fläche 6 ( ) = 7. Zentrum für Mthemtik Werrstr Bensheim 065/58006
17 Aufgbe H8 ( Punkte) Zwischen reellen Zhlen und b werden zwei Rechenrten definiert: b := b, dbei ist " " die normle Multipliktion, # b := b, dbei ist "-" die normle Subtrktion. ) Welche der Zhlen ( 6) # 8 oder (6 # 8) ist größer? b) Bestimmen Sie lle, für die = # gilt. ) ( 6) # 8 = ( 6) # 8 = 6 # 8 = 6 8 = 0 (6 # 8) = ( 6 8) = = = 056 b) Aus = # folgt = und somit ( ) = 0. Also = 0 oder =. Zentrum für Mthemtik Werrstr Bensheim 065/58006
Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:
Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch
Tag der Mathematik 2016
Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt
Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1
www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)
Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.
Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.
Besondere Leistungsfeststellung Mathematik
Sächsisches Sttsministerium Geltungsbereich: für Kultus Schüler der Klssenstufe 10 Schuljhr 01/13 n llgemeinbildenden Gymnsien Besondere Leistungsfeststellung Mthemtik N A C H T E R M I N Mteril für Schüler
Arbeitsblatt Geometrie / Trigonometrie
Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016
Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin -
Abschrift des Originlmterils vom Sächsischen Sttsministerium für Kultus Sächsisches Sttsministerium für Kultus Schuljhr 00/03 Geltungsbereich: - Allgemein bildendes Gymnsium - Abendgymnsium und Kolleg
Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.
1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde
Zu Aufgabe 1: Widerlegen Sie die folgenden falschen Behauptungen durch Angabe eines möglichst einfachen Gegenbeispiels:
Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Übungen zur Vorlesung Elementre Geometrie Sommersemester 1 Musterlösung zu Bltt 1 vom 5. Juli
Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)
Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:
2 Trigonometrische Formeln
Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen
Grundwissen l Klasse 5
Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der
Lösung Arbeitsblatt Geometrie / Trigonometrie
Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen
9 Üben X Prismen und Zylinder 1401
9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten
Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.
6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,
26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen
26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und
Berufsmaturitätsprüfung 2012 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmturitätsschule Berufsmturitätsprüfung 2012 Mthemtik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tbellensmmlung ohne gelöste Beispiele,
8 Längenberechnungen Winkelberechnungen - Skalarprodukt
8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!
2. Flächenberechnungen
Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.
Lösungen von Hyperplot
ufgbensmmlung Weitere Lösungen zu Geometrieufgben der Mthemtik-Olympide Zentrles Komitee für die Olympiden Junger Mthemtiker Lösungen von Hyperplot zusmmengestellt von Steffen Polster https://mthemtiklph.de
Mathematik K1, 2017 Lösungen Vorbereitung KA 1
Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 2006 Aufgbenstellungen A1 und A2 (Whl für Prüflinge) Mthemtik für Prüflinge Aufgbenstellungen A3 (siehe Extrbltt) (wird durch
Abitur 2012 Mathematik Geometrie VI
Seite 1 http://www.biturloesung.de/ Seite Abitur 1 Mthemtik Geometrie VI In einem krtesischen Koordintensystem sind die Punkte A(1 ), B(1 8 ), C(1 ), R( ), S( 8 ) und T ( ) gegeben. Der Körper A B C R
Ähnlichkeit Welche der drei Behauptungen stimmen?
1 7 401 Welche der drei Behuptungen stimmen? A Ein 5-Rppen-Stück verdeckt bei usgestrecktem Arm den Vollmond. B Ein 20-Rppen-Stück verdeckt bei usgestrecktem Arm den Vollmond. C Ein 2-Frnken-Stück verdeckt
2.8. Aufgaben zum Satz des Pythagoras
Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe
Mathematik-Aufgabenpool > Normalparabeln, spezielle allgemeine Parabeln I
Michel Buhlmnn Mthemtik-Aufgbenool > Normlrbeln, sezielle llgemeine Prbeln I Einleitung: Normlrbeln sind qudrtische Funktionen von der Form: y = + + q (Normlform), y = ( d) + c (Scheitelform), y = (- )(-
Lösung: a) 1093 1100 b) 1093 1090
OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der
2.6. Prüfungsaufgaben zu Kongruenzabbildungen
2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30
Zwei Kreise im gleichseitigen Dreieck
-. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.
4.6 Integralrechnung III. Inhaltsverzeichnis
4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche
Tag der Mathematik 2006
Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner
2.2. Aufgaben zu Figuren
2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und
Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.
Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten
7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen
7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen
Abitur 2018 Mathematik Geometrie VI
Seite http://www.biturloesung.de/ Seite Abitur 8 Mthemtik Geometrie VI Die Punkte A( ), B( ) und C( ) liegen in der Ebene E. Teilufgbe Teil A (4 BE) Die Abbildung zeigt modellhft wesentliche Elemente einer
Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3
ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und
2 Trigonometrische Formeln
Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der
Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren
Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der
Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen
Die Dreiecke ADM A und BCM C sind kongruent aufgrund
Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010
BINOMISCHE FORMELN FRANZ LEMMERMEYER
BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c
Tag der Mathematik 2017
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen.
Einige Formeln zum Goldenen Schnitt
Einige Formeln zum Goldenen Schnitt Eine Strecke wird im Verhältnis geteilt, wenn ds Verhältnis der Gesmtstrecke m+m zur längeren Teilstrecke M gleich dem Verhältnis der längeren Teilstrecke M zur kürzeren
Proseminar über Multimediale Lineare Algebra und Analytische Geometrie
Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:
π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x
Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei
Aufgabe 1. BMS Mathematik - G Abschlussprüfung_11 Seite: 1/14. a) Vereinfachen Sie die Terme so weit wie möglich: (I) = (II)
Aufgbe 1 BMS Mthemtik - G Abschlussprüfung_11 Seite: 1/14 ) Vereinfchen Sie die Terme so weit wie möglich: 9 h + h + h (I) 7 8 h + h 8 7 (II) n n 4 n n+ 4 b) Bestimmen Sie die Lösungsmenge für : ln 1 3
Stereometrie: Übersicht
Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich
Vorbereitung auf die Mathematik Schularbeit
Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken
Dreiecke als Bausteine
e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten
Aufgabensammlung der höheren Mathematik
Aufgbensmmlung der höheren Mthemtik von Vsili P. Minorski 5., ktulisierte Auflge Hnser München 2008 Verlg C.H. Beck im Internet: www.beck.de ISBN 978 3 446 466 Zu Inhltsverzeichnis schnell und portofrei
Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 005 Aufgbenstellungen A und A (Whl für Schülerinnen und Schüler) Mthemtik Aufgbenstellungen A3 (siehe Extrbltt) (wird durch
Mathematische Probleme, SS 2018 Donnerstag 7.6. $Id: dreieck.tex,v /06/07 14:52:59 hk Exp $
$Id: dreieck.tex,v 1.45 2018/06/07 14:52:59 hk Exp $ 2 Dreiecke 2.2 Ähnliche Dreiecke Wir htten zwei Dreiecke kongruent gennnt wenn sie sich durch eine ewegung der Ebene ineinnder überführen lssen und
Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin: Hessisches Kultusministerium. Name der Schule
Abschlussrbeit Mthemtik Hupttermin: 30.05.005 Nme der Schule, Nme der Schülerin / des Schülers Klsse GESAMT NOTE 53 Punkte Ort, Dtum Korrigierende Lehrkrft Berbeitungshinweise Schreibe deinen Nmen uf lle
Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck
Mathematik C. VEKTOREN UND PUNKTE IM KOORDINATENSYSTEM C1. KOORDINATENSYSTEM
C. VEKTOREN UND PUNKTE IM KOORDINATENSYSTEM C. KOORDINATENSYSTEM Definition. Ein orthonormiertes Rechtssystem, yz - Ebene kurz Koordintensystem, besteht us einem festen Punkt O, dem Ursprung, und drei
2 Trigonometrische Formeln
$Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.
Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest
Studienkolleg ei den Universitäten des Freisttes Bern Üungsufgen zur Vorereitung uf den Mthemtiktest . Polnomdivision:. Dividieren Sie! ) ( 6 + 8 ):( + ) = Lös.: = ) ( 9 7 0 + 8 + 9):(6 + +) = Lös.: =
56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen
56. Mthemtik-Olympide. Stufe (Regionlrunde) Olympideklsse 8 Lösungen c 016 Aufgbenusschuss des Mthemtik-Olympiden e.v. www.mthemtik-olympiden.de. Alle Rechte vorbehlten. 56081 Lösung 10 Punkte Nehmen wir
Mathematik 1 (ohne Taschenrechner)
Knton St.Gllen Bildungsdeprtement St.Gllische Kntonsschulen Gymnsium Aufnhmeprüfung 2016 Mthemtik 1 (ohne Tschenrechner) Duer: 90 Minuten Kndidtennummer: Geburtsdtum: Korrigiert von: Punktzhl/Note: Aufgbe
Raumgeometrie - gerade Pyramide
1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne
Die Formelsammlung: Meine Mathematische Werkzeugkiste Formel, Skizze Formel, Skizze Beispiel(e)
1. Rechenvorteile, Rechengesetze Summnd 12 plus Summnd 4 ist gleich dem Wert der Summe: 46. Minuend 10 minus Subtrhend 7 ist gleich dem Wert der Differenz: Dividend 10 geteilt durch Divisor 4 ist gleich
Tag der Mathematik 2010
Zentrum für Mathematik Tag der Mathematik 2010 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt
Grundwissen 9. Klasse G8
Leibniz-Gymnsium Altdorf Grundwissen 9. Klsse G8 Wissen / Können Aufgben und Beispiele Lösungen I) Reelle Zhlen Für eine nichtnegtive Zhl heißt diejenige nichtnegtive Zhl, deren Qudrt ergibt, Qudrtwurzel
Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2
Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen
Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:
Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:
Übungsteil: 1. Algebra
lgebr Übungsteil: lgebr Gleichungssysteme: estimmen Sie die Lösungsmenge folgender Gleichungssysteme: ) y + 7 = 5x x + y = 7 c) y = x 9 6x 0 = y b) y = 5x y = x d) x + 5y = 05 0,5y = x,5 e) 0(x + y) =
Mathematik. Name, Vorname:
Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig
Differenzial- und Integralrechnung III
Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in
Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik
Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere
3 Trigonometrische Formeln
Mthemtische Proleme, SS 018 Donnerstg 1.6 $Id: trig.tex,v 1. 018/06/1 14:08:44 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlierungsformeln Als Verdoppelungsformeln ezeichnet mn die Formeln
Kantonale Prüfungen Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Kntonle Prüfungen 0 für die Zulssung zum gymnsilen Unterricht im 9. Schuljhr Mthemtik I Serie H8 Gymnsien des Kntons Bern Mthemtik I Prüfung für den Übertritt us der 8. Klsse Bitte bechten: - Berbeitungsduer:
Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1. - Lösungen -
Mittelschule / Relschule / Gymnsium ufgben zum Pythgors, Kthetenstz, Höhenstz Hinweis: - Lösungen - Die jeweilige Längeneinheit (z.b. mm) wird beim Rechnen nicht ngegeben und erst dem Ergebnis hinzugefügt.
Volumen von Rotationskörpern
Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht
MB1 LU 5 und 12 Geometrische Grundbegriffe
M1 LU 5 und 12 Geometrische Grundbegriffe Ds Wort Geometrie ist ltgriechischen Ursprungs und setzt sich us den Wörtern geo = Erde und metron = messen zusmmen. Die Geometrie wr die Wissenschft, die sich
5 Ellipsen, Parabeln und Hyperbeln
5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer
1 / Berechnen Sie den Tag, an dem die meisten Personen erkrankt sind. Berechnen Sie weiter, wie viele Personen an diesem Tag erkrankt sind.
vorschlg A /4 Ds Robert-Koch-Institut in Berlin ht den Verluf der Drmerkrnkung EHEC (siehe Bild) untersucht. Die Zhl der Erkrnkten A knn näherungsweise durch folgende Funktionsgleichung drgestellt werden:
Multiplikative Inverse
Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll
Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1
Mthemtik 9/E1 oder 10/E1 Test zu den Übungsufgben Übergng in die Einführungsphse E1 Freitg, 0. September 016 Zeit : 90 Minuten Nme :!!! Dokumentieren Sie lle Ansätze und Zwischenrechnungen!!! Teil A (ohne
Pyramidenvolumen. 6 a2. 9 = a
Prmidenvolumen 1 Die Ecken einer dreiseitigen Prmide hben die Koordinten (0 0 0), ( 0 0), (0 0) und (0 0 ) mit > 0, H ist der Mittelpunkt der trecke [] lle Ergebnisse ls möglichst einfche Terme mit der
Ortskurven besonderer Punkte
Ortskurven besonderer Punkte 1. Wir betrchten die Funktionenschr f mit f (x = x+ e x, D f =R und R\{0}. ( Bestimme in Anhängigkeit des Schrprmeters die Nullstellen von f und ds Verhlten von f für x ±.
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen
Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Figuren, Körper, Flächeninhlt, Volumen - Sttionenlernen Ds komplette Mteril finden Sie hier: School-Scout.de SCHOOL-SCOUT Lernzirkel -
Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel
Qudrtische Gleichungen Aufge : Lösen von Gleichungen ohne Lösungsformel ) 0,8 ) 7 c) - 867 0 d) e) 9 f) - 0 g) 0 h) i) 6 0 j) Aufge : Lösen von Gleichungen durch Zerlegung in Fktoren ) 4 0 ) 4 0 c) - 4
3. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen
3. Mthemtik Olympide 4. Stufe (DDR-Olympide Klsse Sison 963/964 Aufgben und Lösungen OJM 3. Mthemtik-Olympide 4. Stufe (DDR-Olympide Klsse Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen
Abschlussprüfungen an den Bezirksschulen 2004 Mathematik 1.S. 2x 12 2
Abschlussprüfungen n den Bezirksschulen 00 Mthemtik 1.S 1)Kürze vollständig: b) Löse folgende Gleichung nch uf: )Bestimme die vier grössten gnzen Zhlen, welche die Ungleichung erfüllen: 5 1 < 5 6 b) Bestimme
1.2 Der goldene Schnitt
Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert
