Mathematik 1 (ohne Taschenrechner)
|
|
|
- Johannes Günther
- vor 8 Jahren
- Abrufe
Transkript
1 Knton St.Gllen Bildungsdeprtement St.Gllische Kntonsschulen Gymnsium Aufnhmeprüfung 2016 Mthemtik 1 (ohne Tschenrechner) Duer: 90 Minuten Kndidtennummer: Geburtsdtum: Korrigiert von: Punktzhl/Note: Aufgbe Totl Mögliche Punkte Erreichte Punkte Erreichte Punktzhl: Schlussnote: Löse die Aufgben uf diesen Blättern. Der Lösungsweg muss us der Drstellung klr ersichtlich sein.
2 Aufgbe 1 Notiere die Lösung ins Feld rechts. Aufgbe Notiere in wissenschftlicher Schreibweise Vereinfche so weit wie möglich. b b + 13b + b 3 2 Lösung Verwndle in ein Produkt. 3x 2 9xy + 12xy 2 Notiere ls Summe. 1 2 r s 1 2 r Vereinfche. x 5 2x 3 : x = x x = Vereinfche so weit wie möglich. r(4t 6s) + 3s(2r + 3t) Berechne und kürze so weit wie möglich Berechne und kürze so weit wie möglich Berechne und kürze so weit wie möglich von Berechne und kürze so weit wie möglich. 24 : cm 3 = x dl x = 12 Punkte
3 Aufgbe 2 ) Zeichne im Koordintensystem folgende Punkte ein: A(7/0), B(9/2), C(5/6), D(-3/6), E(-3/-5) b) Spiegle den Punkt E n der y-achse. Wie luten die Koordinten des neuen Punktes E? E (./.) c) Zeichne die Mittelsenkrechte der Strecke BC ein. Notiere die Koordinten der Schnittpunkte mit der x-achse und mit der y-achse. Schnittpunkt mit x-achse: (.../...) Schnittpunkt mit y-achse: (.../...) d) Ein Punkt ht die Koordinten (-53/67). Dieser wird nun mehrfch verschoben: 5 Einheiten nch rechts 7 Einheiten nch unten 12 Einheiten nch links 5 Einheiten nch oben Wie luten die Koordinten des neuen Punktes? ( / ) 5 Punkte
4 Aufgbe 3 Gegeben ist ds Netz eines Quders. 6 cm ) Berechne die Oberfläche des Quders. 4 cm b) Der Quder wird nun rot ngemlt und nschliessend in Würfelchen mit 2 cm Kntenlänge geschnitten. Wie viele Würfelchen gibt es? 6 cm c) Wie viele Würfelchen hben genu 2 rote Flächen? Aufgbe 4 Wo liegen lle Punkte im Viereck ABCD, welche folgende Bedingungen erfüllen: Die Punkte sind näher bei d ls bei c und die Punkte sind von B weiter entfernt ls von D und die Punkte sind höchstens 6.5 cm von C entfernt. Schrffiere die Lösungsfläche. D d c C A b B
5 Aufgbe 5 Löse folgende Gleichungen. ) (x + 2)(x + 9) = (x + 6)(x + 4) b) 3 4 2x = 2x Punkte Aufgbe 6 Einige Seiten der Fläche sind mit Vriblen ngegeben. Alle Winkel in der Figur sind 90. b ) Stelle den Flächeninhlt ls möglichst einfchen Term dr. c b) Stelle den Umfng ls möglichst einfchen Term dr. c) Wie gross ist c, wenn der Flächeninhlt 78 cm 2, = 3 cm und b = 4 cm sind?
6 Aufgbe 7 Konstruiere ds Dreieck ABC. U ist der Umkreismittelpunkt, M ist die Mitte der Seite. M A U 2 Punkte Aufgbe 8 Fmilie Brsser (Vter, Mutter, Zwillingskinder) ist zusmmen 100 Jhre lt. Der Vter ist cht Jhre älter ls die Mutter, welche die Zwillinge im Alter von 26 Jhren uf die Welt brchte. Berechne ds Alter des Vters heute. 2 Punkte Aufgbe 9 Eine Mus M ist 18 m von ihrem Loch L entfernt, ls sie bemerkt, dss eine Ktze K uf sie zuläuft. Die Ktze ist 17 m von der Mus entfernt (siehe Skizze). Die Mus schfft es, in einer Sekunde zwei Meter zu lufen, während die Ktze in der gleichen Zeit 3.5 Meter schfft. Knn sich die Mus ins Loch retten? Begründe durch Rechnung. L M K 2 Punkte
7 Aufgbe 10 Zwei Txiunternehmen A und B bieten ihre Fhrten wie folgt n. Grundgebühr Preis pro Minute Txi A 8 Fr. 2 Fr. Txi B 4 Fr Fr. ) Stelle die Kosten bis 15 Minuten Fhrzeit grfisch dr. Preis in Fr. Zeit in min b) Nch welcher Fhrzeit kosten beide Vrinten gleich viel? Lies us der Grfik b. c) Wie lnge ist ein Fhrgst mit dem Txiunternehmen A unterwegs, wenn er gegenüber Txiunternehmen B 18 Fr. weniger bezhlen muss?
8 Aufgbe 11 Ein Muster us Kreisen wird gebildet: Figur 1 Figur 2 Figur 3 Figur 4 1 Kreis 3 Kreise ) Wie knn mn die Anzhl Kreise für die n-te Figur richtig berechnen? Kreuze n, ob die folgenden Terme zur Berechnung pssen. n 2 2 n(n + 1) 2 2n 2 + 2n 4 2n n n j nein b) Aus wie vielen Kreisen besteht die zwnzigste Figur? Aufgbe 12 Eine frisch geerntete Gurke wiegt 400 g und besteht zu 95% us Wsser. Nchdem sie längere Zeit n der Sonne herumliegt, beträgt ihr Wssernteil nur noch 90%. Wie viel wiegt die Gurke dnch? 2 Punkte
Mathematik 1. Kanton St.Gallen Bildungsdepartement. St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung (ohne Taschenrechner)
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note:
Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik
Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene
Mathematik. Name, Vorname:
Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig
Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)
Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:
2.6. Prüfungsaufgaben zu Kongruenzabbildungen
2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30
Stereometrie: Übersicht
Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich
Lösung: a) 1093 1100 b) 1093 1090
OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der
BINOMISCHE FORMELN FRANZ LEMMERMEYER
BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c
Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2
Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen
Tag der Mathematik 2011
Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.
Quadratische Funktionen
Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung
Abschlussprüfung Mathematik
Abschlussprüfung 0 Mthemtik 5. Mi 0, Klssen F08 und F08b Nme: Klsse: Hinweise: Zur Lösung der Aufgben stehen drei volle Stunden zur Verfügung. Als Hilfsmittel sind ein nicht lgebrfähiger und nicht grphikfähiger
Tag der Mathematik 2016
Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt
Vorbereitung auf die Mathematik Schularbeit
Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken
Unterrichtsentwurf Mathe
Unterrichtsentwurf Mthe Them: Binomische Formeln Den Einstieg in die binomischen Formeln bildet folgende Problemstellung: Im Jugendclub gibt es eine qudrtische Tnzfläche, die für einen Discobend so vergrößert
Berufsmaturitätsprüfung 2012 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmturitätsschule Berufsmturitätsprüfung 2012 Mthemtik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tbellensmmlung ohne gelöste Beispiele,
Grundwissen Mathematik Klasse 9 Übungsaufgaben
Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche
Lösung Arbeitsblatt Potenzen / Wurzeln / Logarithmen
Fchhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Nturwissenschft Lösung Arbeitsbltt Potenzen / Wurzeln / Logrithmen Dozent: - Klsse: Brückenkurs 0 Büro: - Semester:
Mathematik. . Du hast 60 Minuten Zeit.. Löse die Aufgaben direkt auf das Aufgabenblatt. Reicht derplatz bei einer Aufgabe nicht,
Zentrle Aufrrhmeprüfung 20T3 fur die Lnggymnsien des Kntons Zürich Mthemtik Nme Pnifungsnummer Vornme Schule Allgemeine Hinweise. Du hst 60 Minuten Zeit.. Löse die Aufgben direkt uf ds Aufgbenbltt. Reicht
Dreiecke als Bausteine
e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten
Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.
Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten
Zwei Kreise im gleichseitigen Dreieck
-. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.
Vergleichsarbeiten Jahrgangsstufe (VERA-8) Mathematik Durchführungserläuterungen
Vergleichsrbeiten 2010 8. Jhrgngsstufe (VERA-8) Mthemtik Durchführungserläuterungen Testdurchführung Für den Test werden insgesmt c. 90 Minuten benötigt. Die reine Testzeit beträgt 80 Minuten. Für die
Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA
. Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder
Grundwissen l Klasse 5
Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der
Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1
www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)
BMT Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Punkte: / 21
BMT8 010 A Byerischer Mthemtik-Test für die Jhrgngsstufe 8 der Gymnsien Nme: Note: Klsse: Punkte: 1 Aufgbe 1 Berechne und gib ds Ergebnis in der Einheit t n. 5,4t 360kg b Berechne und gib ds Ergebnis in
Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:
Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist
Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik
Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur
2.2. Aufgaben zu Figuren
2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und
2. Flächenberechnungen
Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.
1 Kurvendiskussion /40
009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.
Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III
Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen
2 P a) Temperaturabnahme um 9 C b) Temperaturabnahme um 12 C (+6) (+9) = 3 (+6) (+12) = 6
Gnze Zhlen 1 35 Ausgngstempertur +6 C... ) Temperturbnhme um 9 C b) Temperturbnhme um 12 C (+6) (+9) = 3 (+6) (+12) = 6 36 Ausgngstempertur 4 C... ) Temperturzunhme um 10 C b) Temperturzunhme um 21 C (
Mathematik schriftlich
WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe
8 Längenberechnungen Winkelberechnungen - Skalarprodukt
8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!
St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 3 4 5 6 7 8 9 10 11 1 13 Punkte Löse
26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen
26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und
Download. Hausaufgaben Gleichungen und Formeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:
Downlod Otto Myr Husufgben Gleichungen und Formeln Üben in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgben Gleichungen und Formeln Üben in drei Differenzierungsstufen Dieser Downlod
{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen
Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;
Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS
Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist
Erweiterung der Euklidischen Flächensätze auf das allgemeine Dreieck nebst Anwendung zur Volumenbestimmung des allgemeinen Tetraeders.
Arno Fehringer, Gymnsillehrer für Mthemtik und Physik 1 Erweiterung der Euklidischen Flächensätze uf ds llgemeine Dreieck nest Anwendung zur Volumenestimmung des llgemeinen Tetreders. Arno Fehringer Juni
Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende
Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen
Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Figuren, Körper, Flächeninhlt, Volumen - Sttionenlernen Ds komplette Mteril finden Sie hier: School-Scout.de SCHOOL-SCOUT Lernzirkel -
Pyramidenvolumen. 6 a2. 9 = a
Prmidenvolumen 1 Die Ecken einer dreiseitigen Prmide hben die Koordinten (0 0 0), ( 0 0), (0 0) und (0 0 ) mit > 0, H ist der Mittelpunkt der trecke [] lle Ergebnisse ls möglichst einfche Terme mit der
Übungsblatt 1 zum Propädeutikum
Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen
Lösungen Matur
Wirtschftliches Mturitätsprofil Seite 1 von 7 Mturitätsprüfung 007 Lösungen Mtur 006-007 1. (5 P.) Lut Wikipedi betrug die Weltbevölkerung m 1.1.1987 fünf Millirden Menschen, m 1.1.000 wren es 6 Millirden.
Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2
R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise
BMS Mathematik T2 Abschlussprüfung_11 Seite: 1/8
BMS Mthemtik T Abschlussprüfung_ Seite: / Nme: Abschlussprüfung Mthemtik technische BMS Teil Prüfungsduer Minuten Erlubte Hilfsmittel: Formelsmmlung ohne selbst gelöste Beispiele. Grfikfähiger Tschenrechner
7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen
7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen
Fachschaft Mathematik am Gymnasium Donauwörth
Algebr 7: Zusmmenfssen gleichrtiger Terne: ) 5x 7x 3 3x + 5x +8 b) 3u 9v [(3u 8w) (u + 9v)] c) Distributivgesetz: ) -0,4c (,5 3 c 0, c 3 ) b) 7u 5 3u (u 3) 5 (u 4u + ) Ausmultiplizieren von Klmmern: )
BMS 1 Aufnahmeprüfung Mathematik
BMS 1 Aufnhmeprüfung 01 Mthemtik Kufmännische Berufsmturitätsschulen Bern-Biel-Lngenthl-Thun Nme, Vornme. Note Experten Alle Aufgen sind direkt uf die Prüfungslätter zu lösen. Die Lösungswege müssen lückenlos
Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium
Algebr-Trining Theorie & Aufgben Serie Bruchrechnen Theorie: Kthrin Lpdul Aufgben: Bernhrd Mrugg VSGYM / Volksschule Gymnsium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung mcht den Meister» gilt
MB1 LU 5 und 12 Geometrische Grundbegriffe
M1 LU 5 und 12 Geometrische Grundbegriffe Ds Wort Geometrie ist ltgriechischen Ursprungs und setzt sich us den Wörtern geo = Erde und metron = messen zusmmen. Die Geometrie wr die Wissenschft, die sich
MATHEMATIK-WETTBEWERB 2004/2005 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 004/005 DES LANDES HESSEN AUFGABENGRUPPE A PFLICHTAUFGABEN P. Es gilt =. Berechne jeweils den Wert des Terms: ) 0,3 b) () c) : ( + ) P. Von 800 Jugendlichen lesen lut einer Umfrge
Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999
Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden
3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner
3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten
Grundwissen 9. Klasse G8
Leibniz-Gymnsium Altdorf Grundwissen 9. Klsse G8 Wissen / Können Aufgben und Beispiele Lösungen I) Reelle Zhlen Für eine nichtnegtive Zhl heißt diejenige nichtnegtive Zhl, deren Qudrt ergibt, Qudrtwurzel
Proseminar über Multimediale Lineare Algebra und Analytische Geometrie
Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:
Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin: Hessisches Kultusministerium. Name der Schule
Abschlussrbeit Mthemtik Hupttermin: 30.05.005 Nme der Schule, Nme der Schülerin / des Schülers Klsse GESAMT NOTE 53 Punkte Ort, Dtum Korrigierende Lehrkrft Berbeitungshinweise Schreibe deinen Nmen uf lle
Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.
1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde
Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012
Sentsverwltung für Bildung, Wissenschft und Forschung Fch Nme, Vornme Klsse Abschlussprüfung n der Fchoberschule im Schuljhr / Mthemtik (A) Prüfungstg.. Prüfungszeit Zugelssene Hilfsmittel Allgemeine Arbeitshinweise
Wiederholungsaufgaben zum Grundwissenkatalog Mathematik der 7. Jahrgangsstufe
Gymnsium Stein Wiederholungsufgen zum Grundwissenktlog Mthemtik der. Jhrgngsstufe ) ) Wie viele Symmetriechsen hen jeweils die folgenden Figuren? ) Welche der Figuren sind punktsymmetrisch? ❶ ❷ ❸ ❹ ❺ ❻
Übungsteil: 1. Algebra
lgebr Übungsteil: lgebr Gleichungssysteme: estimmen Sie die Lösungsmenge folgender Gleichungssysteme: ) y + 7 = 5x x + y = 7 c) y = x 9 6x 0 = y b) y = 5x y = x d) x + 5y = 05 0,5y = x,5 e) 0(x + y) =
Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest
Studienkolleg ei den Universitäten des Freisttes Bern Üungsufgen zur Vorereitung uf den Mthemtiktest . Polnomdivision:. Dividieren Sie! ) ( 6 + 8 ):( + ) = Lös.: = ) ( 9 7 0 + 8 + 9):(6 + +) = Lös.: =
Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:
Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch
von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung
Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()
Beispiel-Abiturprüfung
Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch
Arbeitsblatt Geometrie / Trigonometrie
Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016
2.8. Aufgaben zum Satz des Pythagoras
Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe
a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x
Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik
Das Rechnen mit Logarithmen
Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:
Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum.
gnz klr: Mthemtik - Ds Ferienheft mit Erfolgsnzeiger 8 Rettungsring Berechnungen m Dreieck & Viereck Begriffe: Umfng und Flächeninhlt 1 Muss der Umfng (u) oder der Flächeninhlt (A) erechnet werden? Kreuze
Repetitionsaufgaben Exponential-und Logarithmusfunktion
Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen
7.3. Prüfungsaufgaben zu Ebenen
7.. Prüfungsufgben zu Ebenen Aufgbe : Prmeterform () Gegeben sind die Gerden g und h mit g: x und h: x ) Zeigen Sie, dss g und h prllel, ber nicht identisch sind. b) Geben Sie eine Gleichung der Ebene
a. Lösen Sie das LGS mit Hilfe eines Verfahrens Ihrer Wahl und machen Sie danach die Probe. Die Taschenrechnerlösung reicht nicht aus.
Mthemti 9/E1 oder 10/E1 Test zu den Übungsufgben Übergng in die Einführungsphse E1 Freitg, 6. August 011 Zeit : 90 Minuten Nme :!!! Doumentieren Sie lle Ansätze und Zwischenrechnungen!!! 1. Linere Funtionen
Kreis und Kreisteile. - Aufgaben Teil 2 -
- Aufgben Teil - Am Ende der Aufgbensmmlung finden Sie eine Formelübersicht 61. Bestimme den Inhlt 6. Bestimme den Inhlt Abhängigkeit von r. Abhängigkeit von. 63. Berechne r in Abhängigkeit von 64. Berechne
Grundwissen Mathematik 7I
Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises
Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel
Qudrtische Gleichungen Aufge : Lösen von Gleichungen ohne Lösungsformel ) 0,8 ) 7 c) - 867 0 d) e) 9 f) - 0 g) 0 h) i) 6 0 j) Aufge : Lösen von Gleichungen durch Zerlegung in Fktoren ) 4 0 ) 4 0 c) - 4
Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.
6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,
Prof. Dipl.-Ing. Edgar Neuherz MATHEMATIK. Mathematik und angewandte Mathematik HAK
Prof. Dipl.-ng. Edgr Neuherz MATHEMATK 2 und ngewndte HAK lizensiert für: Dipl.-ng. Edgr Neuherz 2. Schulreit (2013-08-01 23:56) Schuljhr 2012/13 Verntwortlich für den nhlt Dipl.-ng. Edgr Neuherz Grz,
St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte
St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse
Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele
Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für
Grundwissen 7 Bereich 1: Terme
Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen
Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen
Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:
Satzgruppe des Pythagoras
Humboldt-Universität zu Berlin Institut für Mthemtik Dr. I. Lehmnn: Ausgewählte Kpitel der Didktik der Mthemtik WS 2008/09 Referentinnen: Undine Pierschel & Corneli Schulz 16.12.2008 Stzgruppe des Pythgors
Quadratische Gleichungen und Funktionen
Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter
Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM
Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser
mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung
mthphys-online Abschlussprüfung Berufliche Oberschule Mthemtik Nichttechnik - A II - Lösung Teilufgbe. Der Grph G f einer gnzrtionlen Funktion f dritten Grdes besitzt den Extrempunkt E( / ), 7 schneidet
St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium Mathematik 2 mit Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 Punkte Löse die
Mathematik I Prüfung für den Übertritt aus der 9. Klasse
Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme
Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3
