2. Flächenberechnungen
|
|
|
- Werner Förstner
- vor 8 Jahren
- Abrufe
Transkript
1 Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst. Die Flächenfunktion gehört ins obere Koordintensystem. ) b) Wir stellen fest:... ) Geschwindigkeit und Wegstrecke Ds Digrmm zeigt die gefhrene Geschwindigkeit. Bestimme die zurückgelegte Wegstrecke.
2 Anlysis Integrlrechnung ) Historisches Nun wollen wir die Fläche unter einer Kurve konkret berechnen. Es sei lso eine Funktion y = f() gegeben. Um Sonderfälle uszuschliessen soll sie weder Sprung- noch Knickstellen ufweisen und im Intervll [,b] oberhlb der -Achse verlufen. Wir denken uns die Fläche nun in viele schmle Streifen der Breite zerschnitten. Die gesuchte Fläche können wir nun eingrenzen, indem wir Rechtecke zeichnen. Die Untersumme nähert sich lso dem gesuchten Wert der Fläche, wenn wir sehr klein mchen. Der Berechnungsfehler wird dnn beliebig klein. Anlog nähert sich die Obersumme dem gesuchten Wert, wenn wir sehr klein mchen. Die gezeichneten Rechtecke hben den Flächeninhlt f(). b Somit beträgt die gesuchte Fläche: = lim 0 = f() b Dfür schreiben wir f() d... 4) Beweis Nun beweisen wir, dss die Ableitung der Flächenfunktion genu die Funktionskurve ergibt. Gegeben sei lso eine Funktion y = f(). Die Flächenfunktion F() beschreibt die Fläche unter der Kurve. Somit gilt F'() = f(), d.h. die Flächenfunktion ist eine Stmmfunktion von f().
3 Anlysis Integrlrechnung 5) Konkrete Berechnung der Fläche unterhlb einer Kurve Wir hben gezeigt, dss die Flächenfunktion F() eine Stmmfunktion von f() ist. Wenn wir nun die rechte Grenze der Fläche ls Vrible benützen wollen, dnn müssen wir vorübergehend unter dem Integrl eine ndere Vrible, beispielsweise t, verwenden. Sonst hätte ds zwei Bedeutungen, nämlich Integrtionsvrible und obere Grenze. Die Fläche bis zur oberen Grenze wird lso beschrieben durch f(t) dt. Weil wir wissen, dss die Flächenfunktion eine Stmmfunktion von f ist, muss f(t) dt= F() + c sein. Dbei ist die Integrtionskonstnte c vorerst unbestimmt. Die Integrtionskonstnte können wir ber nun leicht bestimmen, indem wir = setzen. In diesem Fll muss nämlich die Fläche gleich Null sein, weil wir von bis integrieren. Somit folgt 0 = F() + c, lso c = F(). Also gilt f(t) dt= F() F(). Zuletzt können wir die obere Grenze bei b festlegen, die Vrible unter dem Integrl wieder umbenennen und erhlten f () d= F(b) F() b b b Wir schreiben: f () d= F() = F(b) F()... 6) Freiwillige Übung Zeichne die Flächenfunktion zu dieser Funktion y = f().
4 Anlysis Integrlrechnung.. Flächenberechnungen und bestimmte Integrle ) Nottion Berechnen der Fläche unterhlb der Kurve y =, begrenzt durch die -Achse und die Gerde =. Wir notieren d = = 0 = ) Musterbeispiele Berechne die drgestellten Flächen unterhlb der Prbel y =. ) b) c) ) Technik des Integrierens Berechne die drgestellten Flächen. (Löse ohne Tschenrechner.) ) y = + b) y = e c) y = 4 4) Bestimmte Integrle Löse ohne Tschenrechner: ) 4 d = e 5 b) d = c) d= d) e d= e) sin( ) d= f) t d = 0 π 0 5) Grundufgbe Berechne die im I. Qudrnten unterhlb der Kurve y= f() liegende Fläche. ) y = f() = 6 b) y = f() = + + 6) Negtive Werte Berechne die zwischen der Prbel y = 40 und der -Achse eingeschlossene endliche Fläche. Welche Schlussfolgerung zieht mn us dem Resultt? t
5 Anlysis Integrlrechnung 7) Flächen zwischen zwei Kurven Berechne die zwischen den Kurven y = und y = + 6 eingeschlossene Fläche. 8) Mehr ls zwei Schnittpunkte Berechne die (endliche) Fläche, welche von den Kurven y = und y = + eingeschlossen wird. 9) Angewndte Flächenberechnung In welchem Verhältnis teilt die Funktion y = die im I. Qudrnten unter der Gerden y = 6 liegende Fläche? 0) Obere Grenze gesucht Betrchte ds im I. Qudrnten liegende Kurvenstück von y = f() =. Die im I. Qudrnten unterhlb der Kurve liegende Fläche wird links begrenzt durch die Gerde =. An welcher Stelle = t muss mn rechts bschneiden, wenn die Fläche Inhlt 0 hben soll? ) Prmeter Wie gross muss sein, dmit die zwischen der Kurve y = und der -Achse liegende Fläche Inhlt 0 ht? ) Fläche zwischen der Kurve und der Kurventngente Die Kurve y = und deren Kurventngente im Punkt ( ) schliessen eine Fläche ein. Berechne den Inhlt dieser Fläche. ) Fläche hlbieren Die Gerde y = m soll die im. Qudrnten unterhlb der Kurve y = liegende Fläche hlbieren. Wie gross ist m? 4) Freiwillige Übung ) Löse ohne Tschenrechner: ( + 4) d= 4 5 b) Ebenso: d= 5) Freiwillige Übung Gegeben ist die Funktion y = f() = Betrchte die im I. Qudrnten unterhlb der Funktionskurve y = f() liegende Fläche F. ) Die Fläche F wird durch die Gerde y = + in zwei Teilflächen F und F zerschnitten. In welchem Verhältnis stehen die beiden Teilflächen? Bestimme F : F (von links oben nch rechts unten gerechnet). b) Der Punkt B(...) liegt uf der Kurve y = f(). Die Gerde durch die Punkte A(0 v) und B(...) soll die Fläche F genu hlbieren. Berechne v. 5
6 Anlysis Integrlrechnung.. Angewndte Aufgben ) Funktionsgleichung bestimmen Gesucht ist eine Prbel (Polynomfunktion. Grdes) mit folgenden Eigenschften: Die Kurve geht durch den Ursprung und ht dort Steigung 6. Die Kurve schliesst mit der -Achse eine Fläche vom Inhlt ein. ) Festzelt Der Boden des drgestellten Festzelts (siehe die Skizze) ist ein Qudrt von 0 Metern Seitenlänge. Ds Zelt ist 6 Meter hoch. Weiter weiss mn, dss die Kurve zwischen der Frontwnd und dem gekrümmten Dch eine Prbel ist. Welches Volumen ht ds Zelt? ) Liegestuhl Welches Volumen ht der skizzierte Liegestuhl (siehe die Skizze oben rechts)? Die Streckenlängen betrgen AB = 50 cm, BC = CD = CP = 0 cm, DE = 90 cm. Die Kurve ist eine Polynomfunktion. Grdes und ht in P ihr lokles Minimum. 4) Etremlwertufgbe Für welchen Wert von > 0 wird die Fläche zwischen den Prbeln y = y = etreml? Hndelt es sich um ein Mimum oder ein Minimum? 5) Durchschnittswert Die skizzierte Funktion zeigt einen Temperturverluf während 4 Stunden. Berechne die durchschnittliche Tempertur. 4 f() = und 6) Freiwillige Übung Die Skizze gibt die Schdstoffkonzentrtion in der Luft wieder, welche über eine Zeit von 5 Stunden gemessen wurde. Wir nehmen n, die Funktionskurve hbe die Gleichung f() = Berechne die durchschnittliche Konzentrtion pro Stunde. 6
7 Anlysis Integrlrechnung.4. Weitere Anwendungen der Integrlrechnung ) Uneigentliche Integrle,. Art ) Berechne die im I. Qudrnten unterhlb der Kurve y = e - liegende Fläche. b) Die im I. Qudrnten unterhlb der Kurve y= liegende Fläche wird links begrenzt durch =. Wie gross wird diese Fläche? ) Uneigentliche Integrle,. Art Gegeben ist die Funktion y = f() = Berechne die in der Skizze rechts drgestellte Fläche, welche nch oben unbegrenzt ist. ) Volumen von Rottionskörpern Eine Fläche soll um die -Achse rotieren. Berechne ds Volumen des so entstehenden Körpers. Wir hlten fest:... 4) Volumenformeln Beweise mit Hilfe gut gewählter Funktionen die Volumenformeln für Kegel und Kugel. 5) Musterbeispiel Ds in der Skizze links drgestellte, mrkierte Viereck rotiert um die -Achse. Beschreibe den entstehenden Körper und berechne sein Volumen. 6) Rottionsprboloid Die rechts drgestellte "Glocke" ht ls Bodenfläche einen Kreis mit 6 cm Durchmesser, ist 5 cm hoch und entsteht, indem ein Prbelbogen um eine Achse rotiert. Berechne ds Volumen der Glocke. 7
8 Anlysis Integrlrechnung 7) Länge eines Kurvenbogens Gegeben sei eine Funktion y = f() Wir hlten fest:... 8) Übung ) f() = 4. Wie lng ist der im. Qudrnten liegende Kurvenbogen? b) y= f() =. Bestimme die Länge des Kurvenbogens zwischen = 0 und = 4. 9) Freiwillige Übung Gegeben ist y= f() = 4. ) Die im I. Qudrnten unterhlb der Kurve liegende Fläche rotiert um die -Achse. Berechne ds Volumen des so entstehenden Körpers. b) Wie lng ist der im I. Qudrnten liegende Kurvenbogen von y = f()? 8
4.6 Integralrechnung III. Inhaltsverzeichnis
4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche
3.2. Flächenberechnungen
Anlysis Inegrlrechnung.. Flächenerechnungen... Die Flächenfunkion ) Flächenfunkionen ufzeichnen Skizziere zur gegeenen Funkion diejenige Funkion, welche die Fläche unerhl der Funkionskurve miss. Die Flächenfunkion
4.5 Integralrechnung II. Inhaltsverzeichnis
4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der
1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7
Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient
Kapitel 7. Integralrechnung für Funktionen einer Variablen
Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre
Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1
www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)
Integralrechnung 29. f(x) dx = F (x) + C
Integrlrechnung 9 5 Integrlrechnung 5. Ds unbestimmte Integrl Wird eine Funktion f bgeleitet, so erhält mn die Ableitungsfunktion f. Nun knn mn sich frgen, ob es einen Weg zurück gibt, d.h. ob mn us der
11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG
91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
Integralrechnung. www.mathe-total.de. Aufgabe 1
Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große
2 Berechnung von Flächeninhalten unter Kurvenstücken
Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,
D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9
D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2
Ortskurven besonderer Punkte
Ortskurven besonderer Punkte 1. Wir betrchten die Funktionenschr f mit f (x = x+ e x, D f =R und R\{0}. ( Bestimme in Anhängigkeit des Schrprmeters die Nullstellen von f und ds Verhlten von f für x ±.
Grundlagen der Integralrechnung
Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe
KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion
KOMPETENZHEFT ZUM INTEGRIEREN, II. Aufgbenstellungen Aufgbe.. Wir untersuchen den Flächeninhlt unter der lineren Funktion f(t) = t + im Intervll [; x]. Kurz: F (x) = x f(t) dt Erkläre elementr, insbesondere
Mathematik Rechenfertigkeiten
2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis
Vorkurs Mathematik DIFFERENTIATION
Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt
Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin -
Abschrift des Originlmterils vom Sächsischen Sttsministerium für Kultus Sächsisches Sttsministerium für Kultus Schuljhr 00/03 Geltungsbereich: - Allgemein bildendes Gymnsium - Abendgymnsium und Kolleg
Differenzial- und Integralrechnung III
Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in
π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x
Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei
Mathematik K1, 2017 Lösungen Vorbereitung KA 1
Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet
Grundlagen der Integralrechnung
Grundlgen der Integrlrechnung Wolfgng Kippels 8. April 018 Inhltsverzeichnis 1 Vorwort Ds unbestimmte Integrl Ds bestimmte Integrl 5 4 Beispielufgben 8 4.1 Beispielufgbe 1...............................
Lösungen Matur
Wirtschftliches Mturitätsprofil Seite 1 von 7 Mturitätsprüfung 007 Lösungen Mtur 006-007 1. (5 P.) Lut Wikipedi betrug die Weltbevölkerung m 1.1.1987 fünf Millirden Menschen, m 1.1.000 wren es 6 Millirden.
Volumen von Rotationskörpern
Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht
Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen
Integralrechnung. Fakultät Grundlagen
Integrlrechnung Fkultät Grundlgen März 2016 Fkultät Grundlgen Integrlrechnung Bestimmtes Integrl I n Teilintervlle: x 0 = < x 1 < x 2
Crashkurs - Integration
Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).
Repetitionsaufgaben Exponential-und Logarithmusfunktion
Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen
Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.
Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine
Tag der Mathematik 2011
Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.
Übung Analysis in einer Variable für LAK, SS 2010
Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr
+ 2 2 = 0 = 1 ± Die drei Nullstellen. x x x 2,3
Hilfsmittelfreier Teil. Beispielufgbe 1 zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x 3 + x x. Die zeigt den Grphen der Funktion f. (1) Berechnen Sie lle Nullstellen der Funktion
Quadratische Funktionen
Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung
Die Hyperbeläste kommen den Koordinaten-achsen beliebig nahe. Sie sind Asymptoten der Hyperbel.
.8. Die indirekte (umgekehrte) Proportionlität Die Funktion f : y \ heisst umgekehrte (indirekte) Proportionlität. Spezilfll : f: Bilde den Kehrwert der gegebenen Zhl. An der Stelle ist die Funktion nicht
Übung 7: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner. Aufgabe T 19 (Ober- und Untersummen)
Technische Universität München SS Zentrum Mthemtik 7.6. Prof. Dr. K. Buchner Dr. W. Aschbcher Anlysis II Aufgbe T 9 Ober- und Untersummen Übung 7: Lösungen : Nch Vorussetzung ist f R-integrierbr, d.h.
9.6 Parameterabhängige Integrale
Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes
Lernkarten. Analysis. 11 Seiten
Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-
Mathematik 1 für Bauwesen 14. Übungsblatt
Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,
2010 A I Lösung. a IR. 1.1 Ermitteln Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheiten der Nullstellen von f P 4. so, dass der Punkt.
00 A I Lösung.0 Gegeben sind die reellen Funktionen f : x x x x mit ID f IR.. Ermitteln Sie in Abhängigkeit von die Anzhl, Lge und Vielfchheiten der Nullstellen von f. IR und ( BE) f x x x x 0 x 0; x ;
Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning
Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius
Höhere Mathematik für Ingenieure , Uhr
Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber
(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!
0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt
9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.
9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte
Stereometrie: Übersicht
Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich
6. Integration 6.1 Das Riemann-Integral
6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine
Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:
Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch
Merkhilfe Integralrechnung
Merkhilfe Integrlrechnung. Integrlfunktion A () =? Huptstz A () =? b f() d =? 2. von der Änderungsrte zum Bestnd Bestndsfunktion F() =? 3. mittlerer Funktionswert m =? 4. Volumen eines Rottionskörpers
Lösungsvorschläge zum 9. Übungsblatt.
Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x
Mathematikaufgaben > Analysis > Funktionenscharen
Michel Buhlmnn Mthemtikugen > Anlysis > Funktionenschren Auge: Gegeen ist die Funktionenschr t t t mit reellen Prmeter t >. Die zugehörigen Schuilder heißen K t. Skizziere die Schuilder K,5, K und K jeweils
Mathematik I ITB. Integralrechnung. Prof. Dr. Karin Melzer
Integrlrechnung 20.05.09 Ds unbestimmte Integrl/Stmmfunktion Ds bestimmte Integrl/Flächenberechnung Integrl ls Umkehrung der Ableitung Idee: kehre den Prozess des Dierenzierens um. f sei eine reelle Funktion
Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.
64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen
ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN
Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten
8 Integralrechnung. 8.1 Das Riemann-Integral
8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei
1 Kurvendiskussion /40
009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.
Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 2006 Aufgbenstellungen A1 und A2 (Whl für Prüflinge) Mthemtik für Prüflinge Aufgbenstellungen A3 (siehe Extrbltt) (wird durch
Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2
Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes
Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.
Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn
4 Die Integralfunktion*
Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer
Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS
Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit
Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.
Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten
Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2
Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen
Satz des Pythagoras. c 2. a 2. b 2
Stz des Pythgors 01 c b Hypotenusenqudrt = Summe der beiden Kthetenqudrte ² = c² b² = c² b² ² + b² = c² b² = c² ² b= c² ² c² = ² + b² c= ² + b² 0 Der Stz des Pythgors und seine rechnerische Anwendung Beispiel:
Analysis. Ganzrationale Funktionen: komplettes Stoffgebiet. Allg. Gymnasien: ab J1 / Q1 Berufliche Gymnasien: ab Klasse 12.
Anlysis Allg. Gymnsien: b J / Q Berufliche Gymnsien: b Klsse Alexnder Schwrz August 0 Aufgbe : 4 Gegeben ist die Funktion f mit f(x) x 4x mit xr. Ihr Schubild sei K. ) Untersuche K uf Schnittpunkte mit
Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM
Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser
f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i
Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2
BINOMISCHE FORMELN FRANZ LEMMERMEYER
BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c
Größe einer Wiese. Themenbereich Einstieg in die Integralrechnung
Inhlte Riemnn sche Summen Definition des bestimmten Integrls Bemerkungen: Größe einer Wiese Themenbereich Einstieg in die Integrlrechnung Ziele Approximtion einer Fläche mit Hilfe von Rechtecken Selbsttätiges
( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )
4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion
Mathematik Name: Vorbereitung KA2 K1 Punkte:
Pflichtteil (etw 40 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet werden dürfen.) Aufgbe : [4P] Leiten Sie
Einführung in die Integralrechnung
Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind
Musterlösung zu Blatt 9, Aufgabe 2
Musterlösung zu Bltt 9, Aufgbe Anlysis II MIIA SoSe 7 Mrtin Schottenloher Musterlösung zu Bltt 9, Aufgbe I Aufgbenstellung Es sei J [, ] und f : J R deniert durch fx x 3. Finden Sie eine Folge f n n N
Resultat: Hauptsatz der Differential- und Integralrechnung
17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:
