Merkhilfe Integralrechnung
|
|
|
- Marcus Albrecht
- vor 6 Jahren
- Abrufe
Transkript
1 Merkhilfe Integrlrechnung. Integrlfunktion A () =? Huptstz A () =? b f() d =? 2. von der Änderungsrte zum Bestnd Bestndsfunktion F() =? 3. mittlerer Funktionswert m =? 4. Volumen eines Rottionskörpers V =? 5. Stmmfunktion von k f() r (r ) sin cos e ( > 0) f( + b) 6. Wchstumsfunktionen, k > 0 Differenzilgleichung Funktion liner f () =? f() =? eponentiell f () =? f() =? beschränkt f () =? f() =? logistisch f () =? f() =? 7. durchschnittliche (mittlere) Änderungsrte von f uf dem Intervll [, b] m =? momentne (lokle) Änderungsrte von f n der Stelle?
2 8. Inhlt der Fläche zwischen zwei Grphen, obere Funktion f, untere g, Grenzen, b A =? mehrere Schnittstellen A =? 9. uneigentliches Integrl f() d =? 0. Volumen eines Hohlkörpers obere Funktion f, untere g, Grenzen, b V =?. Volumen bei Rottion um die y-achse 2. unbestimmtes Integrl f () f() d =? 2
3 Ende der Merkhilfe Integrlrechnung zum Anfng zur Merkhilfe Grundwissen Differenzilrechnung Vektorrechnung Stochstik Homepge 3
4 4
5 Integrlfunktion A () = f(u) du Huptstz A () =? b f() d =? y A () = f(t) dt = f(t) = t2 t 5
6 Integrlfunktion A () = f(u) du Huptstz A () = f() b f() d =? 6
7 Integrlfunktion A () =? Huptstz A () =? b f() d = [ F() ] b = F(b) F() A = 2 [ ] ( 2 + ) d = = ( 3 ) =... = 6 5 y f() =
8 von der Änderungsrte zum Bestnd Bestndsfunktion F() =? Bei einem Gewitter beschreibt die Funktion f(t) = 60 t e 0,5t, 0 t 5, modellhft die Menge des uftretenden Regens in ml pro m 2 und Minute, Zeit t nch Beginn des Gewitters in Minuten. ) Ermittle die Regenmenge in ml pro m 2, die ) in den ersten 5 Minuten nch Beginn des Gewitters, 2) zwischen der 5. und 0. Minute gefllen ist. b) Nch welcher Zeit von Beginn des Gewitters sind 200 ml pro m 2 gefllen? 50 y f t ) ) 2) f(t) dt = 7,0 [ml/m 2 ] f(t) dt = 59,2 [ml/m 2 ] b) t0 0 f(t) dt = 200 = t 0 = 6,5 [Minuten] 8
9 von der Änderungsrte zum Bestnd Bestndsfunktion F() = F() + f(u) du y 2 Höhenwchstum F Wchstumsgeschwindigkeit f Zeit (in Monten) Gegeben ist die Wchstumsgeschwindigkeit (in m/mont) von Sonnenblumen. Zeichne den Verluf des Höhenwchstums in Abhängigkeit von der Zeit, zur Zeit = 0 beträgt die Höhe 0,20 m. F(0) = 0,20 Anfngsbestnd F(), Anfng (meistens = 0) 9
10 mittlerer Funktionswert m = b b f() d y 3 2 m f
11 Volumen eines Rottionskörpers b V = π [f()] 2 d y f() = b b V = π 0 [ ] 2 d = π [ ] 2 b 2 0 = π b2 2
12 Stmmfunktion von k f() r (r ) sin cos e ( > 0) f( + b) k F() 2
13 Stmmfunktion von k f() r (r ) sin cos e ( > 0) f( + b) r + r+ 3
14 Stmmfunktion von k f() r (r ) sin cos e ( > 0) f( + b) cos 4
15 Stmmfunktion von k f() r (r ) sin cos e ( > 0) f( + b) sin 5
16 Stmmfunktion von k f() r (r ) sin cos e ( > 0) f( + b) e 6
17 Stmmfunktion von k f() r (r ) sin cos e ( > 0) ln f( + b) Bechte: Über Unendlichkeitsstellen (Polstellen) drf mn nicht einfch hinweg integrieren. 7
18 Stmmfunktion von k f() r (r ) sin cos e ( > 0) f( + b) F( + b) 8
19 Wchstumsfunktionen, k > 0 Differenzilgleichung Funktion liner f () = k f() =? eponentiell f () =? f() =? beschränkt f () =? f() =? logistisch f () =? f() =? 9
20 Wchstumsfunktionen, k > 0 Differenzilgleichung Funktion liner f () = k f() = k + c eponentiell f () =? f() =? beschränkt f () =? f() =? logistisch f () =? f() =? 20
21 Wchstumsfunktionen, k > 0 Differenzilgleichung Funktion liner f () =? f() =? eponentiell f () = kf() f() =? beschränkt f () =? f() =? logistisch f () =? f() =? 2
22 Wchstumsfunktionen, k > 0 Differenzilgleichung Funktion liner f () =? f() =? eponentiell f () = kf() f() = e k beschränkt f () =? f() =? logistisch f () =? f() =? y 22
23 Wchstumsfunktionen, k > 0 Differenzilgleichung Funktion liner f () =? f() =? eponentiell f () =? f() =? beschränkt f () =? f() =? logistisch f () = k(s f())f() f() = S + (S )e ks y lterntiv f(t) = S S, f(0) = + e kt + f (t) = k S f(t) (S f(t)) 23
24 Wchstumsfunktionen, k > 0 Differenzilgleichung Funktion liner f () =? f() =? eponentiell f () =? f() =? beschränkt f () = k(s f()) f() =? logistisch f () =? f() =? 24
25 Wchstumsfunktionen, k > 0 Differenzilgleichung Funktion liner f () =? f() =? eponentiell f () =? f() =? beschränkt f () = k(s f()) f() = S e k logistisch f () =? f() =? y 25
26 Wchstumsfunktionen, k > 0 Differenzilgleichung Funktion liner f () =? f() =? eponentiell f () =? f() =? beschränkt f () =? f() =? logistisch f () = k(s f())f() f() =? 26
27 durchschnittliche (mittlere) Änderungsrte von f uf dem Intervll [, b] momentne (lokle) Änderungsrte von f n der Stelle? m = f(b) f() b 7 y f f
28 durchschnittliche (mittlere) Änderungsrte von f uf dem Intervll [, b] m =? momentne (lokle) Änderungsrte von f n der Stelle f () 28
29 Inhlt der Fläche zwischen zwei Grphen, obere Funktion f, untere g, Grenzen, b A() = mehrere Schnittstellen A() = b (f() g()) d 3 y 2 f g
30 Inhlt der Fläche zwischen zwei Grphen, obere Funktion f, untere g, Grenzen, b A =? mehrere Schnittstellen A = 5 y b f() g() d GTR, bs( ) oder bschnittsweise Berechnung 4 3 g f
31 uneigentliches Integrl f() d = lim u u f() d y f 3 g Gegeben sind die Funktionen: f() = ( + ) 2 e g() = 2( + ) e Deuten Sie t lim (f() g())d = 0 t geometrisch. Zeigen Sie, dss f () = g() f() gilt und berechnen Sie den Inhlt der Fläche A, die im Bereich von den Grphen von f und g eingeschlossen wird. [ zur Kontrolle: A = 4 e ] 3
32 Volumen eines Hohlkörpers obere Funktion f, untere g, Grenzen, b b V = π [f()] 2 b d π [g()] 2 d b π (f() g()) 2 d 32
33 y V y f() = 2 y f () = V y = π 0 [f (y)] 2 dy = π 0 [f ()] 2 d 4 V y = π 0 [f ()] 2 d = 8π Ds Volumen bei Rottion um die y-achse ist gleich dem Volumen bei Rottion der Umkehrfunktion um die -Achse. Die Grenzen sind nzupssen. 33
34 unbestimmtes Integrl f () f() d = ln(f()) + C g() = ln(f()) g () = f () f() Kettenregel, bechte (ln()) = llgemein f () f() d = ln f() + C 34
1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7
Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient
Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s
6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------
( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )
4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion
Abiturprüfung Mathematik 13 Technik A I - Lösung mit CAS
GS 0.06.207 - m7_3t-_lsg_cas_gs.pdf Abiturprüfung 207 - Mthemtik 3 Technik A I - Lösung mit CAS Teilufgbe Gegeben sind die Funktionen f mit f ( ) Definitionsmenge D f IR. mit IR \ {0} und der e Teilufgbe.
2. Flächenberechnungen
Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.
SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.
SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert
4.6 Integralrechnung III. Inhaltsverzeichnis
4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche
8.4 Integrationsmethoden
8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung
Lernkarten. Analysis. 11 Seiten
Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-
Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1.
Anlysis Klusur zu e-funktionen (Produkt-/Kettenregel, momentne Änderungsrte) (Berbeitungszeit: 90 Minuten) Gymnsium J Alender Schwrz www.mthe-ufgben.com Jnur 05 Pflichtteil - ohne Hilfsmittel Aufgbe :
Kapitel 7. Integralrechnung für Funktionen einer Variablen
Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre
KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion
KOMPETENZHEFT ZUM INTEGRIEREN, II. Aufgbenstellungen Aufgbe.. Wir untersuchen den Flächeninhlt unter der lineren Funktion f(t) = t + im Intervll [; x]. Kurz: F (x) = x f(t) dt Erkläre elementr, insbesondere
5.5. Integralrechnung
.. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds
Crashkurs - Integration
Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).
11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG
91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9
D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2
π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x
Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei
Mathematik Rechenfertigkeiten
2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis
Formelsammlung für die Klausur: Mathematik für Chemiker I
Universität-Duisburg-Essen / Cmpus Essen 15. 1. 2004 FB 6 - Mthemtik Prof. Dr. D. Lutz / Dr. G. Wolf Formelsmmlung für die Klusur: Mthemtik für Chemiker I Binomilkoezienten, binomische Formel: n! = 1 2
Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG
Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung
kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k
Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1
12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL
98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
Übung Analysis in einer Variable für LAK, SS 2010
Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr
9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.
9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte
4.5 Integralrechnung II. Inhaltsverzeichnis
4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der
Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35
Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion
Integralrechnung. www.mathe-total.de. Aufgabe 1
Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große
Mathematik I ITB. Integralrechnung. Prof. Dr. Karin Melzer
Integrlrechnung 20.05.09 Ds unbestimmte Integrl/Stmmfunktion Ds bestimmte Integrl/Flächenberechnung Integrl ls Umkehrung der Ableitung Idee: kehre den Prozess des Dierenzierens um. f sei eine reelle Funktion
Mathematik II. Partielle Integration. f (t)g(t)dt =
Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.
Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning
Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius
12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL
98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
Integralrechnung. Fakultät Grundlagen
Integrlrechnung Fkultät Grundlgen März 2016 Fkultät Grundlgen Integrlrechnung Bestimmtes Integrl I n Teilintervlle: x 0 = < x 1 < x 2
Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen
III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter
Integralrechnung 29. f(x) dx = F (x) + C
Integrlrechnung 9 5 Integrlrechnung 5. Ds unbestimmte Integrl Wird eine Funktion f bgeleitet, so erhält mn die Ableitungsfunktion f. Nun knn mn sich frgen, ob es einen Weg zurück gibt, d.h. ob mn us der
Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1
www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)
9.6 Parameterabhängige Integrale
Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes
Volumen von Rotationskörpern
Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht
Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg
Bden-Württemberg: Abitur 014 Whlteil A www.mthe-ufgben.com Huptprüfung Abiturprüfung 014 (ohne CAS) Bden-Württemberg Whlteil Anlysis Hilfsmittel: GTR und Formelsmmlung llgemeinbildende Gymnsien Alexnder
Wir wollen den Inhalt A der Fläche bestimmen, den der Graph von f mit der x-achse und den zu a und b gehörendenden Ordinaten einschließt.
I. Integrlrechnung 1 ================================================================= 1.1 Oer- und Untersumme -------------------------------------------------------------------------------------------------------------
6. Integration 6.1 Das Riemann-Integral
6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine
Resultat: Hauptsatz der Differential- und Integralrechnung
17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:
Flächenberechnung. Aufgabe 1:
Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die
Differenzial- und Integralrechnung III
Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in
MC-Serie 12 - Integrationstechniken
Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz
Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer
Vektorrechnung Differentilrechnung Integrlrechnung Mthemtik-Tutorium: Hndwerkszeug und Kochrezepte für Mschinenbuer Johnnes Wiedersich 7. Dezember 007 http://www.e13.physik.tu-muenchen.de/wiedersich/ Vektorrechnung
Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner
Aiturvorereitung Mthemtik Anlysis Copyright 2013 Rlph Werner 1 Aleitung einer Funktion Geometrische Entsprechung: Aleitung Die Aleitung einer Funktion f (2) = 4 y = 4 x - 4 n der Stelle x 0 f (x 0 ) git
8 Integralrechnung. 8.1 Das Riemann-Integral
8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei
1 Differentialrechnung
1 Differentilrechnung 1.1 Ableitungen und Ableitungsregeln Nützliche Ableitungen 1. ( ) 1 = 1 x x 2 = x 2 2. Trigonometrische Funktionen: ( x) = 1 2 x [sin(x)] = cos(x) [cos(x)] = sin(x) 3. f(x) = e x
VI. Das Riemann-Stieltjes Integral.
VI. Ds Riemnn-Stieltjes Integrl. Es stellt sich herus, dss der hier entwickelte Integrlbegriff strk von der Ordnungsstruktur von R bhängt. Definition. Sei [, b] ein Intervll in R. Unter einer Prtition
Kapitel 13. Taylorentwicklung Motivation
Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von
Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)
. Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom
Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben
Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können
Rotationsvolumen Ausstellungshalle
Rottionsvolumen Ausstellungshlle In einem Entwurf für eine Ausstellungshlle soll ds Profil der Querschnittsfläche (siehe Zeichnung) im Intervll [, 1] durch die Funktion f() = 7 beschrieben werden. Im Bereich
Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.
Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn
Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration
Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =
Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2
Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen
Grundwissen Klasse 10
Grundwissen Klsse 0 I. Funktionen. Potenzfunktionen und gnzrtionle Funktionen (Mthehelfer : S.56-57) - Grphen von Potenzfunktionen mit gnzzhligen Eponenten zeichnen - Grphen von gnzrtionlen Funktionen
3 Uneigentliche Integrale
Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnbrück WS 20/202 Mthemtik für Anwender I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f :[,b] R knn mn f(t)dt b ls die Durchschnittshöhe
Integrationsmethoden
Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()
