Rotationsvolumen Ausstellungshalle
|
|
|
- Lennart Krüger
- vor 9 Jahren
- Abrufe
Transkript
1 Rottionsvolumen Ausstellungshlle In einem Entwurf für eine Ausstellungshlle soll ds Profil der Querschnittsfläche (siehe Zeichnung) im Intervll [, 1] durch die Funktion f() = 7 beschrieben werden. Im Bereich [0, ] soll die Begrenzung gerdlinig sein, sodss n der Stelle = kein Knick uftritt. Die Hlle wird rottionssmmetrisch zur -Achse geplnt. ) Zeigen Sie, dss die Höhe der Ausstellungshlle m beträgt. b) Ermitteln Sie eine Funktion, die ds Profil uf dem Intervll [ 1, ] beschreibt. Berechnen Sie c) die Länge der gestrichelten Mntellinie, d) ds Hllen-Volumen, e) die Größe der Hllenwndfläche. Bogenlänge: s = 1+(f ()) d Für zur -Achse drehsmmetrische Körper gilt: Volumen: V = π (f()) d Oberfläche: A = π f() 1+(f ()) d
2 Ausstellungshlle Ergebnisse In einem Entwurf für eine Ausstellungshlle soll ds Profil der Querschnittsfläche (siehe Zeichnung) imintervll [, 1]durch diefunktionf() = 7 beschrieben werden. Im Bereich [0, ] soll die Begrenzung gerdlinig sein, sodss n der Stelle = kein Knick uftritt. Die Hlle wird rottionssmmetrisch zur -Achse geplnt. ) Zeigen Sie, dss die Höhe der Ausstellungshlle m beträgt. = 1 + b) Ermitteln Sie eine Funktion, die ds Profil uf dem Intervll [ 1, ] beschreibt. f () = 7+ Berechnen Sie c) die Länge der gestrichelten Mntellinie, 7, ,180 = 18,7 (m) bechte: f (1) eistiert nicht. d) ds Hllen-Volumen, 87, ,704 = 331,137 (m 3 ) e) die Größe der Hllenwndfläche. 601, ,41 = 9,933 (m ) Bogenlänge: s = 1+(f ()) d Für zur -Achse drehsmmetrische Körper gilt: (bechte uch die Formeln für den Kegel) Volumen: V = π (f()) d Oberfläche: A = π f() 1+(f ()) d 1 f 1 () =
3 Rottionskörper Aufgben 1. In der nebenstehenden Abbildung ist der Querschnitt einer bzgl. der -Achse rottionssmmetrischen Vse drgestellt. Der im 1. Qudrnten liegende rechte Rnd wird durch die Funktion f() = +b beschrieben. ) Ermitteln Sie und b so, dss mn den drgestellten Grphen erhält. b) Begründen Sie, dss mit Hilfe dieser Wurzelfunktion der Übergng zum zlindrischen Teil der Vse ohne Knick, wie es in der Abbildung drgestellt ist, beschrieben wird. 4 c) Berechnen Sie ds Volumen der Vse für = und b = Durch Rottion der Gerden g() = k+1 (k > 0) um die -Achse uf dem Intervll [0; 3] entsteht ein Körper, der je nch Whl von k us einem oder zwei zusmmenhängenden Teilen besteht. ) Welche Rottionskörper können in Abhängigkeit von k entstehen? b) Welcher der Rottionskörper ht ds kleinste Volumen? 3. Für jedes k (k > 0) ist die Funktion f k () = (k ) gegeben. ) Bestimmen Sie den größtmöglichen Definitionsbereich der Funktion f k und wählen Sie ds k so, dss n der Stelle = 1 ein Punkt mit wgerechter Tngente vorliegt. Durch Rottion der Kurve f 3 um die -Achse entsteht ein tropfenförmiger Körper. Ab hier sei k = 3. b) Berechnen Sie die größte ebene Schnittfläche senkrecht zur Drehchse. c) Berechnen Sie die Fläche eines ebenen Schnitts längs der Drehchse (die Drehchse liegt in der Schnittfläche). d) Eine zur Drehchse senkrechte Schnittfläche durch = hlbiert ds Volumen des Körpers. Geben Sie eine Gleichung (ohne Integrlzeichen) für n. 3
4 Rottionskörper Aufgben Ergebnisse 1. In der nebenstehenden Abbildung ist der Querschnitt einer bzgl. der -Achse rottionssmmetrischen Vse drgestellt. Der im 1. Qudrnten liegende rechte Rnd wird durch die Funktion f() = +b beschrieben. ) Ermitteln Sie und b so, dss mn den drgestellten Grphen erhält. siehe c) b) Begründen Sie, dss mit Hilfe dieser Wurzelfunktion der Übergng zum zlindrischen Teil der Vse ohne Knick, wie es in der Abbildung drgestellt ist, beschrieben wird. lim f () = + 4 c) Berechnen Sie ds Volumen der Vse für = und b =. 131,3 VE Durch Rottion der Gerden g() = k+1 (k > 0) um die -Achse uf dem Intervll [0; 3] entsteht ein Körper, der je nch Whl von k us einem oder zwei zusmmenhängenden Teilen besteht. ) Welche Rottionskörper können in Abhängigkeit von k entstehen? k < 1 3 b) Welcher der Rottionskörper ht ds kleinste Volumen? V() = π k = 1 3 Kegelstumpf Kegel k > 1 3 Doppelkegel 3 ( k+1) d k min = Für jedes k (k > 0) ist die Funktion f k () = (k ) gegeben. ) Bestimmen Sie den größtmöglichen Definitionsbereich der Funktion f k und wählen Sie ds k so, dss n der Stelle = 1 ein Punkt mit wgerechter Tngente vorliegt. k = 3 Durch Rottion der Kurve f 3 um die -Achse entsteht ein tropfenförmiger Körper. Ab hier sei k = 3. b) Berechnen Sie die größte ebene Schnittfläche senkrecht zur Drehchse. 4π FE c) Berechnen Sie die Fläche eines ebenen Schnitts längs der Drehchse (die Drehchse liegt 4 in der Schnittfläche). 3 FE d) Eine zur Drehchse senkrechte Schnittfläche durch = hlbiert ds Volumen des Körpers. Geben Sie eine Gleichung (ohne Integrlzeichen) für n π = π( ) 4
5 Ausstellungshlle. Aufgbe In einem Entwurf für eine Ausstellungshlle soll ds Profil der Querschnittsfläche im Intervll [, 1] durch die Funktion f() = 7 beschrieben werden, im Bereich [0, ] durch g() = +b, so dss n der Stelle = kein Knick uftritt. Die Hlle wird rottionssmmetrisch zur -Achse geplnt ) Bestimmen Sie umd b. b) Berechnen Sie ds Volumen.
6 Ausstellungshlle. Aufgbe In einem Entwurf für eine Ausstellungshlle soll ds Profil der Querschnittsfläche im Intervll [, 1] durch die Funktion f() = 7 beschrieben werden, im Bereich [0, ] durch g() = +b, so dss n der Stelle = kein Knick uftritt. Die Hlle wird rottionssmmetrisch zur -Achse geplnt ) Bestimmen Sie umd b. b) Berechnen Sie ds Volumen. Ergebnisse: ) f() = b) V = π V = π 0 0 (1 ) d + π ( , (300 40)d = 30,13VE 1 )d + π 7 d = 30,13VE oder Schlenmethode 6
Volumen von Rotationskörpern
Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht
Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2
Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen
4.6 Integralrechnung III. Inhaltsverzeichnis
4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche
Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 2006 Aufgbenstellungen A1 und A2 (Whl für Prüflinge) Mthemtik für Prüflinge Aufgbenstellungen A3 (siehe Extrbltt) (wird durch
2. Flächenberechnungen
Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.
Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999
Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden
Integralrechnung. www.mathe-total.de. Aufgabe 1
Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große
Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1
www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)
Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1
Mthemtik 9/E1 oder 10/E1 Test zu den Übungsufgben Übergng in die Einführungsphse E1 Freitg, 0. September 016 Zeit : 90 Minuten Nme :!!! Dokumentieren Sie lle Ansätze und Zwischenrechnungen!!! Teil A (ohne
ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN
Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten
Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin -
Abschrift des Originlmterils vom Sächsischen Sttsministerium für Kultus Sächsisches Sttsministerium für Kultus Schuljhr 00/03 Geltungsbereich: - Allgemein bildendes Gymnsium - Abendgymnsium und Kolleg
Lernkarten. Analysis. 11 Seiten
Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-
1 / Berechnen Sie den Tag, an dem die meisten Personen erkrankt sind. Berechnen Sie weiter, wie viele Personen an diesem Tag erkrankt sind.
vorschlg A /4 Ds Robert-Koch-Institut in Berlin ht den Verluf der Drmerkrnkung EHEC (siehe Bild) untersucht. Die Zhl der Erkrnkten A knn näherungsweise durch folgende Funktionsgleichung drgestellt werden:
Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 005 Aufgbenstellungen A und A (Whl für Schülerinnen und Schüler) Mthemtik Aufgbenstellungen A3 (siehe Extrbltt) (wird durch
Arkus-Funktionen. Aufgabensammlung 1
ANALYSIS Arkus-Funktionen Aufgbensmmlung 1 Dtei Nummer 4730 Stnd: 15. November 017 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 4730 Aufgbensmmlung Arkusfunktionen Aufgbe 1 (Lösung Seite
1 Kurvendiskussion /40
009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.
π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x
Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei
f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i
Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2
Abiturprüfung Mathematik 13 Technik A I - Lösung mit CAS
GS 0.06.207 - m7_3t-_lsg_cas_gs.pdf Abiturprüfung 207 - Mthemtik 3 Technik A I - Lösung mit CAS Teilufgbe Gegeben sind die Funktionen f mit f ( ) Definitionsmenge D f IR. mit IR \ {0} und der e Teilufgbe.
Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.
Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine
+ 2 2 = 0 = 1 ± Die drei Nullstellen. x x x 2,3
Hilfsmittelfreier Teil. Beispielufgbe 1 zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x 3 + x x. Die zeigt den Grphen der Funktion f. (1) Berechnen Sie lle Nullstellen der Funktion
Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen
Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 008 Mthemtik Aufgbenstellung A1 und A (Whl für Prüflinge) Aufgbenstellung A3 (siehe Extrbltt) (wird durch die Lehrkrft usgewählt)
Wurzelfunktionen Aufgaben
Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0
Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1.
Anlysis Klusur zu e-funktionen (Produkt-/Kettenregel, momentne Änderungsrte) (Berbeitungszeit: 90 Minuten) Gymnsium J Alender Schwrz www.mthe-ufgben.com Jnur 05 Pflichtteil - ohne Hilfsmittel Aufgbe :
9.6 Parameterabhängige Integrale
Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes
Eine Parabel dritten Ordnung die symmetrisch zum Ursprung ist, hat in dem Punkt P( 2 6) eine Tangente, die parallel zur Geraden y = x + 1 ist.
Aufge Eine Prel dritten Ordnung die symmetrisch zum Ursprung ist, ht in dem Punkt P 6 eine Tngente, die prllel zur Gerden y ist Bestimmen Sie die Gleichung dieser Prel Die Funktion f ist durch die Prel
mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung
mthphys-online Abschlussprüfung Berufliche Oberschule Mthemtik Nichttechnik - A II - Lösung Teilufgbe. Der Grph G f einer gnzrtionlen Funktion f dritten Grdes besitzt den Extrempunkt E( / ), 7 schneidet
Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 2005 Aufgbenstellungen A1 und A2 (Whl für Schülerinnen und Schüler) Mthemtik Aufgbenstellungen A3 (siehe Extrbltt) (wird durch
Aufgabe 3.1. Aufgabe 3.2 Man berechne den Schwerpunkt der nebenstehenden Platte aus homogenem Material mit Hilfe der Ergebnisse aus Aufgabe
Institut für ngewndte und Eperimentelle Mechnik Technische Mechnik I ZÜ 3.1 ufgbe 3.1 Bestimmen Sie mit Hilfe der entsprechenden Guldin schen Regel die Höhe der Schwerpunkte von homogenen Blechstücken,
Besondere Leistungsfeststellung Mathematik
Sächsisches Sttsministerium Geltungsbereich: für Kultus Schüler der Klssenstufe 10 Schuljhr 01/13 n llgemeinbildenden Gymnsien Besondere Leistungsfeststellung Mthemtik N A C H T E R M I N Mteril für Schüler
Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS
Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist
Wurzelfunktionen Typisches
Wurzelfunktionen Tpisches Ein negativer Radikand (Term unter der Wurzel) ist nicht zugelassen, da sonst mit den Rechenregeln für Potenzen Seltsames entstehen kann: = 8 = ( 8) = ( 8) 6 = 6 ( 8) = 6 6 =.
2 Berechnung von Flächeninhalten unter Kurvenstücken
Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,
Rotationskörper mit Integralrechnung
Rottionskörper mit Integrlrechnung W. Kippels 24. Februr 27 Inhltsverzeichnis Grundlgen 2. Herleitung der Berechnungsformel...................... 2.2 Beispiele.................................... 3.2.
10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.
28.5 Vektorfelder Wir hben gesehen, dss der Grdient einer Funktion z = f(x,y : D R jedem Punkt (x,y D einen Vektor, nämlich f(x,y R 2, zuordnet. Eine solche Zuordnung nennt mn Vektorfeld. Ds Vektorfeld
Merkhilfe Integralrechnung
Merkhilfe Integrlrechnung. Integrlfunktion A () =? Huptstz A () =? b f() d =? 2. von der Änderungsrte zum Bestnd Bestndsfunktion F() =? 3. mittlerer Funktionswert m =? 4. Volumen eines Rottionskörpers
Mathematikaufgaben > Analysis > Funktionenscharen
Michel Buhlmnn Mthemtikugen > Anlysis > Funktionenschren Auge: Gegeen ist die Funktionenschr t t t mit reellen Prmeter t >. Die zugehörigen Schuilder heißen K t. Skizziere die Schuilder K,5, K und K jeweils
9 Üben X Prismen und Zylinder 1401
9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten
Mathematik 1 für Bauwesen 14. Übungsblatt
Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,
Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning
Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius
Mathematik-Aufgabenpool > Normalparabeln, spezielle allgemeine Parabeln I
Michel Buhlmnn Mthemtik-Aufgbenool > Normlrbeln, sezielle llgemeine Prbeln I Einleitung: Normlrbeln sind qudrtische Funktionen von der Form: y = + + q (Normlform), y = ( d) + c (Scheitelform), y = (- )(-
2010 A I Lösung. a IR. 1.1 Ermitteln Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheiten der Nullstellen von f P 4. so, dass der Punkt.
00 A I Lösung.0 Gegeben sind die reellen Funktionen f : x x x x mit ID f IR.. Ermitteln Sie in Abhängigkeit von die Anzhl, Lge und Vielfchheiten der Nullstellen von f. IR und ( BE) f x x x x 0 x 0; x ;
Mathematik K1, 2017 Lösungen Vorbereitung KA 1
Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet
Kantonsschule Alpenquai Luzern Schriftliche Maturitätsprüfungen Grundlagenfach Mathematik. 6La, 6Lb, 6Rb, 7Sa. 180 Minuten
Bildungs- und Kulturdeprtement Kntonsschule Alpenqui Luzern Schriftliche Mturitätsprüfungen 2012 Fch Grundlgenfch Mthemtik Prüfende Lehrer Essodinm Alitiloh Pierre-Dominique Hool Stefn Müller Frnz Steiger
Lösungen Matur
Wirtschftliches Mturitätsprofil Seite 1 von 7 Mturitätsprüfung 007 Lösungen Mtur 006-007 1. (5 P.) Lut Wikipedi betrug die Weltbevölkerung m 1.1.1987 fünf Millirden Menschen, m 1.1.000 wren es 6 Millirden.
Ortskurven besonderer Punkte
Ortskurven besonderer Punkte 1. Wir betrchten die Funktionenschr f mit f (x = x+ e x, D f =R und R\{0}. ( Bestimme in Anhängigkeit des Schrprmeters die Nullstellen von f und ds Verhlten von f für x ±.
( ) Gegeben sind die in IR definierten Funktionen f, g und h durch
Hilfsmittelfreie Aufgben us dem Mthemtik-Pool zum Abitur 015 T. Wrncke m301 Abi015_M_Pool1_A1 Anlysis Gegeben sind die in IR definierten Funktionen f, g und h durch ( ) f = + 1, ( ) 3 g = + 1 und ( ) 4
8 Integralrechnung. 8.1 Das Riemann-Integral
8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei
4.5 Integralrechnung II. Inhaltsverzeichnis
4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der
Quadratische Funktionen
Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung
Es berechnet die Fläche zwischen Kurve und x-achse.
1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines
Besondere Leistungsfeststellung Mathematik
Sächsisches Sttsministerium Geltungsbereich: für Kultus Schüler der Klssenstufe 0 Schuljhr 03/4 n llgemeinbildenden Gymnsien Besondere Leistungsfeststellung Mthemtik E R S T T E R M I N Mteril für Schüler
Das Bogenintegral einer gestauchten Normalparabel
Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit
Tag der Mathematik 2011
Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.
Abitur 2012 Mathematik Geometrie VI
Seite 1 http://www.biturloesung.de/ Seite Abitur 1 Mthemtik Geometrie VI In einem krtesischen Koordintensystem sind die Punkte A(1 ), B(1 8 ), C(1 ), R( ), S( 8 ) und T ( ) gegeben. Der Körper A B C R
R. Brinkmann Seite Aufgabe Die Gerade g verläuft durch die Punkte P 4 3,5 und P 2,5 1.
R. Brinkmnn http://brinkmnn-du.de Seite 9.09.0 Lösung linere Funktionen Teil IX en: A A A A Die Gerde g verläuft durch die Punkte P,5 und P,5. 5 Die Gerde h verläuft durch die Punkte P( 5,5 ) und P. Wie
Die Hyperbeläste kommen den Koordinaten-achsen beliebig nahe. Sie sind Asymptoten der Hyperbel.
.8. Die indirekte (umgekehrte) Proportionlität Die Funktion f : y \ heisst umgekehrte (indirekte) Proportionlität. Spezilfll : f: Bilde den Kehrwert der gegebenen Zhl. An der Stelle ist die Funktion nicht
Differenzial- und Integralrechnung III
Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in
Höhere Mathematik für Ingenieure , Uhr
Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber
Abschlussprüfung Mathematik
Abschlussprüfung 0 Mthemtik 5. Mi 0, Klssen F08 und F08b Nme: Klsse: Hinweise: Zur Lösung der Aufgben stehen drei volle Stunden zur Verfügung. Als Hilfsmittel sind ein nicht lgebrfähiger und nicht grphikfähiger
a. Lösen Sie das LGS mit Hilfe eines Verfahrens Ihrer Wahl und machen Sie danach die Probe. Die Taschenrechnerlösung reicht nicht aus.
Mthemti 9/E1 oder 10/E1 Test zu den Übungsufgben Übergng in die Einführungsphse E1 Freitg, 6. August 011 Zeit : 90 Minuten Nme :!!! Doumentieren Sie lle Ansätze und Zwischenrechnungen!!! 1. Linere Funtionen
von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung
Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()
5.5. Integralrechnung
.. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds
Repetitionsaufgaben Exponential-und Logarithmusfunktion
Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen
Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert
Aufgbe mit Lösung 4 ( 8 ) ( 4 8 ) f x = x x x + x= f x Achsensymmetrie + =. 4 lim x x + : Fll = c+ d 0! < 0 + x ±... Extrempunkte = = =. NB: f ( x) ( 4x 6 x) x( x ) x( x ) x MESt ( f ) { ;0;}. HB: 0 =
Integralrechnung 29. f(x) dx = F (x) + C
Integrlrechnung 9 5 Integrlrechnung 5. Ds unbestimmte Integrl Wird eine Funktion f bgeleitet, so erhält mn die Ableitungsfunktion f. Nun knn mn sich frgen, ob es einen Weg zurück gibt, d.h. ob mn us der
8 Längenberechnungen Winkelberechnungen - Skalarprodukt
8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!
Abitur 2018 Mathematik Geometrie VI
Seite http://www.biturloesung.de/ Seite Abitur 8 Mthemtik Geometrie VI Die Punkte A( ), B( ) und C( ) liegen in der Ebene E. Teilufgbe Teil A (4 BE) Die Abbildung zeigt modellhft wesentliche Elemente einer
Tag der Mathematik 2016
Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt
2 Blatt - Festkörperphysik 2-2D Gitter
Heiko Dumlich April 9, Bltt - Festkörperphysik - D Gitter. (Oberflächen kubisch rumzentrierter Kristlle) ) In Abbildung () befinden sich die drei Drufsichten der (), () und () Ebenen des kubisch-rumzentrierten
Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012
Sentsverwltung für Bildung, Wissenschft und Forschung Fch Nme, Vornme Klsse Abschlussprüfung n der Fchoberschule im Schuljhr / Mthemtik (A) Prüfungstg.. Prüfungszeit Zugelssene Hilfsmittel Allgemeine Arbeitshinweise
lokales Maximum lokales u. globales Minimum
6 Extrempunte Deinition: Eine Funtion : x (x) ht n der Stelle x ID ein loles (reltives) Mximum/Minimum, wenn die Funtionswerte in einer beliebig leinen Umgebung von x leiner/größer ls n dieser Stelle sind
3. Ganzrationale Funktionen
3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)
10.3 Statische Momente, Schwerpunkte und Trägheitsmomente
1.3 Sttische Momente, Schwerpunkte und Trägheitsmomente Sttisches Moment M g eines Mssenpunktes P (der Msse m) bezüglich einer Gerden g: M g := ml Msse Hebelrm l Abstnd von P zu g g 9 P l Bei n Mssenpunkten
Kapitel 13. Taylorentwicklung Motivation
Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von
3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner
3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten
Grundwissen Klasse 10
Grundwissen Klsse 0 I. Funktionen. Potenzfunktionen und gnzrtionle Funktionen (Mthehelfer : S.56-57) - Grphen von Potenzfunktionen mit gnzzhligen Eponenten zeichnen - Grphen von gnzrtionlen Funktionen
UNIVERSITÄT BREMEN FACHBEREICH PRODUKTIONSTECHNIK TECHNISCHE MECHANIK - STRUKTURMECHANIK PROF. DR.-ING. R. KIENZLER
UNIVERSITÄT BREMEN FACHBEREICH PRODUKTIONSTECHNIK TECHNISCHE MECHANIK - STRUKTURMECHANIK PROF. DR.-ING. R. KIENZLER Klusur Mechnik I/II vom 14.08.2012 Prüfer: Prof. Dr.-Ing. R. Kienler Teilbereich Mechnik
Bögen und Kreise II wo liegen denn die Mittelpunkte? - wie groß ist der Radius?
1. Die folgenden, kreisförmigen Fenster findet mn in der Zisterzienserbtei Huterive in Fribourg (Schweiz). Anlysiere die Konstruktion und fertige eigene Fenster uf der Grundlge des Konstruktionsprinzips
