Schulcurriculum Mathematik
|
|
|
- Frida Lange
- vor 9 Jahren
- Abrufe
Transkript
1 Schulcurriculum Mathematik Die folgenden Standards im Fach Mathematik benennen sowohl allgemeine als auch inhaltsbezogene mathematische Kompetenzen, die Schülerinnen und Schüler in aktiver Auseinandersetzung mit vielfältigen mathematischen Inhalten und Aufgabenstellungen im Unterricht erwerben sollen. Bei den allgemeinen mathematischen Kompetenzen handelt es sich um mathematisch argumentieren (K1) Probleme mathematisch lösen (K2) mathematisch modellieren (K3) mathematische Darstellungen verwenden (K4) mit Mathematik symbolisch/formal/technisch umgehen (K5) kommunizieren über Mathematik und mithilfe der Mathematik (K6) Durch die Gestaltung des Unterrichts erwerben die Schülerinnen und Schüler parallel zu den allgemeinen und den inhaltlichen mathematischen Kompetenzen auch methodisch-strategische, sozial-kommunikative und personale Kompetenzen. 1. Für alle Schulen verbindliche Vereinbarungen/Absprachen: Das schwarz gedruckte Regionalcurriculum stellt den Rahmenplan und ist für alle Fachlehrer verbindlich. Die zeitlichen Angaben im Curriculum geben eine Gewichtung/Richtlinie der einzelnen Inhaltsbereiche an. Die Reihenfolge der angegebenen Inhalte stellt einen Vorschlag dar, ist aber nicht verbindlich. Verbindlich ist jedoch die Anordnung der Inhalte vor und nach dem schriftlichen Regionalabitur. Mathematische Verfahren sollen Schülerinnen und Schüler in ihrem Prinzip verstanden und an einfachen Beispielen auch ohne Hilfsmittel durchführen können. Der Einsatz des GTR als elektronisches Hilfsmittel für das Regionalabitur ab 2014 wurde von den Schulleitern verbindlich festgelegt. Die Deutsche Schule Lissabon arbeitet mit dem CASIO fx-9860gii (Stand: Oktober 2012). In der Spalte Methodencurriculum finden sich lediglich Anregungen für mögliche Methoden an diesen Stellen. Die Formulierung der Arbeitsaufträge im Unterricht und in den Prüfungen erfolgt gemäß der genehmigten Operatorenliste der KMK, die als Anlage dem Curriculum beigefügt ist. Der Bewertung der Prüfungsleistungen liegen die einheitlichen Prüfungsanforderungen (EPA) zugrunde (siehe Anlage). 2. Der schulinterne Teil der Deutschen Schule Lissabon ist in rot und kursiv dargestellt.
2 Ganzrationale Funktionen und ihre Eigenschaften 11/1 eine Ableitungsregel exemplarisch herleiten (K5) Ableitungsfunktionen mit Hilfe der Ableitungsregeln bestimmen (K1; K4; K5) Ableitungen Ableitungen mit Hilfe der Produktregel und Kettenregel Quotientenregel höhere Ableitungen: Extrem- und Wendepunkte 8 h Arbeitsplan/ Gruppenpuzzle Selbsterarbeitung Ableitungsregeln ohne GTR Funktionen untersuchen und ihr Vorgehen begründen Nullstellen mit Hilfe eines Näherungsverfahren bestimmen und ihr Vorgehen beschreiben (K1) Grenzwerte ermitteln und den Verlauf des Graphen skizzieren (K4) auch anwendungsbezogene Sachverhalte analysieren, die Ergebnisse interpretieren und ihr Vorgehen darstellen (K1; K3; K6) Besondere Eigenschaften ganzrationalen Funktionen: Monotonie; Symmetrie Nullstellen, auch näherungsweise Bestimmung Grenzverhalten Verhalten von ganzrationalen Funktionen an den Rändern des Definitionsbereichs einfache gebrochenrationale Funktionen mit senkrechten und waagerechten Asymptoten Grenzwert von Funktionen 8 h 4 h Schülerpräsentation Stationen NEWTON-Verfahren An eine systematische Untersuchung von gebrochenrationalen Funktionen wird dabei nicht gedacht 2
3 Untersuchung realitätsnaher Probleme mit Hilfe von Funktionen: Extremwertaufgaben Funktionsanpassung an vorgegebene Bedingungen (Steckbriefaufgaben) 12 h Projektorientiertes Arbeiten; Schülerpräsentationen; Gruppenpuzzle Vorschlag Klausur Ende Okt./Anfang Nov.11/1 Modellierungen mit regionalen Spezifika; realitätsbezogene Aufgaben. 4 h Projekt Brücke(n) (siehe rechts) Beispiel: Ponte 25 de Abril Integrationsrechnung bei ganzrationalen Funktionen das Integral bzw. die Integralfunktion aus verschiedenen Perspektiven (z.b. rekursiver Bestand, Fläche,..) beschreiben (K1-K5) Integrale und die Ergebnisse interpretieren (K2-K5) Stammfunktionen bestimmen den Hauptsatz der Differentialund Integralrechnung anschaulich begründen (K1; K2; K5) Integral als Rekonstruktion eines Bestandes aus mittleren und momentanen Änderungsraten Integralfunktion Stammfunktionen Hauptsatz der Differential- und Integralrechnung Integrationsverfahren: Summe, konstanter Faktor Flächeninhalte bei krummlinig begrenzten Flächen (zwischen Funktionsgraph und x- Achse, zwischen zwei Funktionsgraphen) 12h 8h Selbsterarbeitung/ Arbeitsplan Mittelwert von Funktionen Weihnachten 11/1 3
4 Volumina von Rotationskörpern in einfachen Anwendungskontexten und ihr Vorgehen erläutern Berechnung der Volumina von krummlinig begrenzten Flächen um die x-achse 4h Referate Präsentationen Fassregel von KEPPLER LGS lösen, die Umformungsschritte begründen und die Ergebnisse interpretieren LGS auf Lösbarkeit untersuchen (K 5) die Länge eines Vektors das Skalarprodukt geometrisch interpretieren Vektoren auf lineare Abhängigkeit untersuchen und ihr Vorgehen begründen (K1; K2; K4) Darstellungsformen von Geraden und Ebenen erläutern (K1; K4; K5) das Vektorprodukt und geometrisch interpretieren (K1; K4) Lineare Gleichungssysteme Gaussverfahren(GTR) Anwendungen auch außerhalb der Geometrie LGS (max. 3x3) ohne GTR Vektoren im zwei- und dreidimensionalen Raum Betrag eines Vektors Ortsvektor eines Punktes Skalarprodukt, Winkel zwischen Vektoren Lineare Abhängigkeit/ Unabhängigkeit Geraden und Ebenen Geradengleichungen Lagebeziehungen zweier Geraden Winkel zwischen zwei Geraden verschiedene Formen der Ebenengleichung Vektorprodukt 8 h 11/2 10 h 6 h Geometriesoftware Verschiedene Visualisierungen (Smartboard) Lösung von LGS ohne GTR erscheint als Abituraufgabe nicht sinnvoll 4
5 Geraden und Ebenen, Anwendung Geraden und Ebenen mit Hilfe von Spurpunkten zeichnerisch darstellen (K4; K6) Darstellung von Ebenen im Koordinatensystem Geometriesoftware (Smartboard) Lagebeziehungen geometrischer Objekte im Raum untersuchen und ihr Vorgehen begründen (K6) Lagebeziehung zwischen zwei Ebenen / einer Geraden und einer Ebene 12 h Winkel zwischen geometrischen Objekten im Raum und ihr Vorgehen begründen (K1,2,4,6) Abstandsprobleme im Raum lösen und ihr Vorgehen begründen (K1; K2; K4; K6) Winkel zwischen Gerade und Ebene und zwischen zwei Ebenen Abstand zwischen zwei Punkten, zwischen zwei Geraden (parallel oder windschief), zwischen einem Punkt und einer Gerade / Ebene 12 h Vernetzung zu Inhalten der elementaren Geometrie sinnvoll Flächen- und Rauminhalte (K2; K3) Flächen- und Rauminhalte von einfachen Grundkörpern Darstellung von Körpern im Koordinatensystem 6 h Projektarbeit Realitäts- oder anwendungsorientierte Aufgabenstellung 4 h 5
6 Exponentialfunktion 12/1 die Eulersche Zahl e anhand ihrer Eigenschaften bestimmen (K2) die e- Funktion und ihre Umkehrung anhand ihrer charakteristischen Eigenschaften kennen (K3-5) Eulersche Zahl e als Grenzwert natürliche Exponentialfunktion und ihre Umkehrung weitere Integrationsregel: lineare Substitution Stationenarbeit; Gruppenpuzzle Kann auch als Grenzwert über Ableitungen oder Wachstumsprozesse betrachtet werden, nicht zwingend über Folgen zusammengesetzte Funktionen aus e Funktionen und ganzrationalen Funktionen untersuchen (K2, K4, K5) bestimmte und unbestimmte Integrale von e Funktionen in anwendungsbezogenen Kontexten und interpretieren (K1; K3; K6) zusammengesetzte Funktionen in einfachen Fällen und deren Anwendung Inhalte von Flächen, die ins Unendliche reichen Differenzialgleichungen für natürliches und beschränktes Wachstum 20h 4h Präsentationen DGL kein Inhalt der schriftlichen Abiturprüfungen Differentialgleichungen für natürliches und beschränktes Wachstum nachvollziehen Partielle Integration 4h Abschluss ca. Ende Oktober/Anfang November 12/1 6
7 Wahrscheinlichkeit Laplace- Wahrscheinlichkeiten Baumdiagramme für mehrstufige Zufallsversuche erstellen und die zugehörigen Wahrscheinlichkeiten Abzählverfahren anhand von einfachen Beispielen mit Hilfe des Urnenmodells erklären Bernoulliformel anschaulich begründen und damit die Wahrscheinlichkeiten in Sachzusammenhängen die Wahrscheinlichkeiten bei einfachen und kumulierten Binomialverteilungen und interpretieren (K1; K2; K3; K4; K5; K6) Abzählverfahren (Urnenmodell) Bernoullikette und Formel von Bernoulli Wahrscheinlichkeitsverteilung, Binomialverteilung (kumuliert) Anwendungsbezogene Aufgaben zur Vorbereitung der schriftlichen Abiturprüfung 8h 8h 8h 12h Stationen-/ Planarbeit Projektarbeit Simulationen Grundbegriffe der Wahrscheinlichkeitsrechnung aus der Sek. I werden aufgegriffen und vertieft (unter anderem. Vierfeldertafel und bedingte Wahrscheinlichkeit) An eine vertiefende Behandlung von kombinatorischen Fragestellungen ist erst nach dem schriftlichen Abitur gedacht. Schwerpunkt vor dem schriftlichen Abitur liegt in der Hinführung zur Bernoulliformel. Weihnachten 12/1 Prüfung / Diagnose / Förderung : Schriftliche Abiturprüfung 7
8 Wahrscheinlichkeit 12/2 Zufallsexperimente mit Hilfe von Kenngrößen beschreiben (K3, K5) Erwartungswert, Varianz, Standardabweichung 4h Hypothesen in binominalen Modellen aufstellen und untersuchen (K1, K2, K3, K4, K5) Fehler 1. und 2. Art erkennen, und interpretieren (K1, K2, K3, K4, K5, K6) Konfidenzintervalle, Irrtumswahrscheinlichkeiten Alternativtest, Signifikanztest Kombinatorische Abzählverfahren 16h 12h Anwendungssituationen den kombinatorischen Grundformen zuordnen und die Anzahl von Möglichkeiten (K1,K2,K3,K4,K5) Möglichkeiten individueller Schwerpunktsetzung 12h Projektorientiertes Arbeiten Prüfung / Diagnose / Förderung : Mündliche Abiturprüfung 8
Schulcurriculum Mathematik DS Lissabon
Schulcurriculum Mathematik DS Lissabon Die folgenden Standards im Fach Mathematik benennen sowohl allgemeine als auch inhaltsbezogene mathematische Kompetenzen, die Schülerinnen und Schüler in aktiver
Regionalcurriculum Mathematik
Regionalcurriculum Mathematik Die folgenden Standards im Fach Mathematik benennen sowohl allgemeine als auch inhaltsbezogene mathematische Kompetenzen, die Schülerinnen und Schüler in aktiver Auseinandersetzung
Schulcurriculum für die Qualifikationsphase im Fach Mathematik
Schulcurriculum für die Qualifikationsphase im Fach Mathematik Fach: Mathematik Klassenstufe: 11/12 Anzahl der zu unterrichtenden Wochenstunden: 4 Die folgenden Standards im Fach Mathematik benennen sowohl
Mathematik Curriculum Kursstufe
Mathematik Curriculum Kursstufe Kompetenzen und Inhalte des Bildungsplans Leitidee Funktionaler können besondere Eigenschaften von Funktionen rechnerisch und mithilfe des GTR bestimmen. Unterrichtsinhalte
Schulcurriculum Mathematik Kursstufe November 2011
Schulcurriculum Mathematik Kursstufe November 2011 Inhalte Leitidee / Kompetenzen Bemerkungen Die Schülerinnen und Schüler können Analysis Bestimmung von Extrem- und Wendepunkten: Höhere Ableitungen Bedeutung
Kern- und Schulcurriculum Mathematik Klasse 11/12. Stand Schuljahr 2012/13
Kern- und Schulcurriculum Mathematik Klasse 11/12 Stand Schuljahr 2012/13 UE 1 Wiederholung Funktionen Änderungsrate Ableitung Ableitung berechnen Ableitungsfunktion Ableitungsregeln für Potenz, Summe
Fassung Herzog-Christoph-Gymnasium Beilstein. Funktionaler Zusammenhang. Modellieren. Algorithmus -zusammengesetzte Funktionen ableiten.
Inhalte Leitideen Kompetenzen Analysis Die Schülerinnen und Schüler können Bestimmung von Extrem- und Wendepunkten Höhere Ableitungen Die Bedeutung der zweiten Ableitung Kriterien für Extremstellen Kriterien
2 Fortführung der Differenzialrechnung... 48
Inhaltsverzeichnis Inhaltsverzeichnis 1 Folgen und Grenzwerte................................................................................... 10 1.1 Rekursive und explizite Vorgabe einer Folge...........................................................
Probleme lösen mit Hilfe von Ableitungen, Extrem- und Wendepunkten
Kompetenzen und Inhalte des Bildungsplans Unterrichtsinhalte Die Schülerinnen und Schüler können - besondere Eigenschaften von Funktionen rechnerisch und mithilfe des GTR bestimmen; Bestimmung von Extrem-
EdM Kursstufe Baden-Württemberg
EdM Kursstufe Baden-Württemberg Gegenüberstellung des Bildungsplans für die Kursstufe und der Inhalte des Schülerbandes EdM Kursstufe Die neben den mathematischen Kompetenzen eingeforderte Entwicklung
Curriculum für das Fach: Mathematik
Curriculum für das Fach: Mathematik Prinzipien der Unterrichtsgestaltung und Bewertung. Prinzipien der Unterrichtsgestaltung. Ziel des Mathematikunterrichts ist, die Kollegiatinnen und Kollegiaten auf
Unterrichtsinhalte. Der Aufbau zusammengesetzter Funktionen aus elementaren Funktionen (ca. 3 5 Std.) Produkt, Quotient und Verkettung von Funktionen
Kompetenzen und Inhalte des Bildungsplans Unterrichtsinhalte Hinweise/Vorschläge zur Erweiterung und Vertiefung des Kompetenzerwerbs - besondere Eigenschaften von Funktionen rechnerisch und mithilfe des
Fachcurriculum Mathematik Kursstufe Kepler-Gymnasium Pforzheim
Kompetenzen und Inhalte des Bildungsplans - besondere Eigenschaften von Funktionen rechnerisch und mithilfe des CAS bestimmen; Unterrichtsinhalte Analysis Bestimmung von Extrem- und Wendepunkten (ca. 8-11
Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg
Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg Grundlagen: 1.) Rahmenstoffplan Mathematik für die gymnasiale Oberstufe, herausgegeben von der Senatsverwaltung für Bildung, Jugend
ISBN
1 Zeitraum Ziele / Inhalte (Sach- und Methodenkompetenz) Klassenarbeit Analysis Grenzwerte 1. Die explizite und rekursive Beschreibung von Zahlenfolgen verstehen und Eigenschaften von Zahlenfolgen kennen
ABI-CHECKLISTE. FiNALE Prüfungstraining MATHEMATIK. trifft zu. FiNALE- Seiten. erledigt. nicht zu. A Differenzialrechnung
ABI-CHECKLISTE A Differenzialrechnung A1 Potenz-, Sinus- und Kosinusfunktion, Exponential- und Logarithmusfunktionen ableiten. A2 einfache Funktionen mit der Summenund Faktorregel und sammengesetzte Funktionen
Inhaltsverzeichnis. A Analysis... 9
Inhaltsverzeichnis A Analysis... 9 1 Funktionale Zusammenhänge Wiederholung und Erweiterungen... 11 Rückblick... 11 1.1 Ganzrationale Funktionen... 14 1.2 Grenzwert einer Funktion f an einer Stelle x 0...
Inhaltsverzeichnis. A Analysis... 9
A Analysis... 9 1 Funktionale Zusammenhänge Wiederholung und Erweiterungen... 11 Rückblick... 11 1.1 Ganzrationale Funktionen... 15 1.2 Grenzwert einer Funktion f an einer Stelle x 0... 31 Gemischte Aufgaben...
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name:
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name:
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell
Stoffverteilungsplan Mathematik für die Qualifikationsphase der gymnasialen Oberstufe für Mecklenburg-Vorpommern
Stoffverteilungsplan Mathematik für die Qualifikationsphase der gymnasialen Oberstufe für Mecklenburg-Vorpommern Grundlagen: 1.) Rahmenplan Mathematik. Kerncurriculum für die Qualifikationsphase der gymnasialen
Vorlage für das Schulcurriculum Qualifikationsphase
Vorlage für das Schulcurriculum Qualifikationsphase Grundkurs/grundlegendes Anforderungsniveau Kompetenzen/ Fähigkeiten L1 Leitidee: Algorithmus und Zahl - lösen lineare Gleichungssysteme mithilfe digitaler
Exkurs: Kreisgleichung mit Tangenten; LGS zur Bestimmung von Parabeln Exkurs: Umkehrfunktion
Grundkurs Jahrgangstufe Eph Eingeführtes Lehrbuch: Lambacher Schweizer Einführungsphase (Klett) Eph/1 1) Funktionen und ihre Eigenschaften - Modellieren von Sachverhalten Funktionsbegriff, Definitions-
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name:
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell
Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen
Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- durch die Schülerbücher Lambacher-Schweizer - Analysis Grundkurs Ausgabe Nordrhein- (ISBN 978-3-12-732220-0)
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell und Typ sind mit
Curriculum Mathematik Oberstufe der Gesamtschule Eiserfeld
Curriculum Mathematik Oberstufe der Gesamtschule Eiserfeld 11.1 11.2 Unterrichtsvorhaben: Funktionen Unterrichtsvorhaben: Differenzialrechnung 1) Lineare und exponentielle Wachstumsprozesse a) Modellieren
Jahrgangsstufe Koordinatengeometrie 2. Analysis 3. Beschreibende Statistik ( in Projektwochen)
Jahrgangsstufe 11 1. Koordinatengeometrie Geraden und Geradengleichungen ( Steigungswinkel, Parallelität, Orthogonale, Schnittpunkt zweier Geraden) Parabeln und quadratische Funktionen Lagebeziehungen
Vektor. Betrag eines Vektors. Vektoren. 3-dim Koordinatensystem. Punkte im Raum. Winkel zwischen Vektoren. Länge einer Strecke
Lineares Gleichungssystem Satz des Pythagoras Flächen und Körper Vektoren Koordinatenachsen Koordinatenebenen Vektor 3-dim Koordinatensystem Punkte im Raum Vektoraddition/ - subtraktion Skalarmultiplikation
Fachcurriculum Mathematik Klasse 9/10
Stromberg-Gymnasium Vaihingen an der Enz Fachcurriculum Mathematik Klasse 9/10 Klasse 9 Vernetzung In allen Lerneinheiten sollten die folgenden Kompetenzen an geeigneten Beispielen weiterentwickelt werden:
Neue gymnasiale Oberstufe neue Chancen für CAS-Einsatz?
Neue gymnasiale Oberstufe neue Chancen für CAS-Einsatz? Beschluss der KMK vom 07.05.2009: Aufwertung der MINT-Bildung, u.a. CAS in allen MINT-Fächern verbindlich nutzen Die veränderte Unterrichtsstruktur
Schulinternes Curriculum. Mathematik Sekundarstufe II, Einführungsphase
Schulinternes Curriculum Mathematik, Lehrbuch: Gymnasiale Oberstufe, Cornelsen Verlag, Ausgabe Nordrhein-Westfalen GTR: TI-82 Stats (bis einschließlich Abiturjahrgang 2020) TI-Nspire CX (ab Abiturjahrgang
Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation)
1. Halbjahr EF 2. Halbjahr EF Einführungsphase (EF) Vektoren, ein Schlüsselkonzept (Punkte, Vektoren, Rechnen mit Vektoren, Betrag) Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen,
Kompetenzraster für den Mathematikunterricht in der Sekundarstufe II. Analysis
Kompetenzraster für den Mathematikunterricht in der Sekundarstufe II Analysis Ich kann... lineare und quadratische Gleichungen sowie Gleichungen höherer Ordnung lösen.... Bruchgleichungen lösen.... Lösungsmengen
Jahrgangscurriculum 11.Jahrgang
Jahrgangscurriculum 11.Jahrgang Koordinatengeometrie Geraden (Lage von Geraden; Schnittwinkel) Abstände im KOSY Kreise Kreise und Geraden Parabeln und quadratische Funktionen (Parabel durch 3 Punkte, Anwendungsaufgaben)
RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover
RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung
Stoffverteilungsplan Sek II
Klasse 11 (3-stündig) Stoffverteilungsplan Sek II Analysis - Differenzialrechnung Inhalte Hinweise Schulbuch Funktionen - Begriff der Funktion 12-15 - Symmetrien 22-24 - Verhalten im Unendlichen 20-21
Inhalte Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Fächerübergriff. Hinweise
Inhalte Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Fächerübergriff 11.1-1 Analysis I - Kurvenanpassung (10 Wochen) Ableitung und - Qualitatives und quantitatives Funktion Differenzieren zur
Kapitel V Alte und neue Funktionen und ihre Ableitung
Zeitraum Inhaltsbezogene Kompetenzen Einführungsphase Einführungsphase 1. Allgemeine Sinusfunktion 6 UE 1 Trigonometrische Funktionen - Bogenmaß (ohne allgemeine Sinusfunktion; Modellieren mit Sinusfunktionen
marienschule euskirchen
Schulinternes Curriculum Mathematik Sekundarstufe II Einführungsphase (ab Schuljahr 2014/2015) Lehrbuch: Bigalke/Köhler Mathematik Sekundarstufe II, Cornelsen Verlag GTR: TI-82 Stats 1/8 ca. 8 UE sbezogene
Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II
Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II Auf Zeitangeben wurde bewusst verzichtet, da im kommenden Schuljahr 2010/2011 zum ersten Mal der Übergang von Klasse 10 ins Kurssystem
Mathematik Übersichtsraster Unterrichtsvorhaben EF bis Q2
Mathematik Übersichtsraster Unterrichtsvorhaben EF bis Q2 Die Reihenfolge der Unterrichtsvorhaben hängt von den Vorgaben der Zentralklausuren ab und wird zu Beginn des Schuljahres von den in dieser Stufe
Stoffverteilungsplan im Rahmen des schulinternen Lehrplans für die Jahrgangsstufe EF bezogen auf das Lehrwerk Fokus Mathematik
Stoffverteilungsplan im Rahmen des schulinternen Lehrplans für die Jahrgangsstufe EF bezogen auf das Lehrwerk Zeitraum 6 UE Kapitel 1 Wiederholung zu linearen und quadratischen Funktionen 1.1 Fit im Umgang
Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik
Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 2.1.1 ÜBERSICHTSRASTER UNTERRICHTSVORHABEN EINFÜHRUNGSPHASE Unterrichtsvorhaben I: Unterrichtsvorhaben II: Beschreibung
EdM Hessen Qualifikationsphase Bleib fit in Exponentialfunktionen und Logarithmen
EdM Hessen Qualifikationsphase 978-3-507-87911-9 Bleib fit in Differenzialrechnung 1 Integralrechnung Lernfeld: Wie groß ist? 1.1 Der Begriff des Integrals 1.1.1 Aus Änderungsraten rekonstruierter Bestand
Schulinternes Curriculum Mathematik SII
Schulinternes Curriculum Mathematik SII Koordinatengeometrie Gerade, Parabel, Kreis Lösen von LGS mithilfe des Gaußverfahrens zur Bestimmung von Geraden und Parabeln 11 Differentialrechnung ganzrationaler
Abgleich für das Unterrichtsfach Mathematik mit dem Kerncurriculum für das Gymnasium gymnasiale Oberstufe (2018) in Niedersachsen
Abgleich für das Unterrichtsfach Mathematik mit dem Kerncurriculum für das Gymnasium gymnasiale Oberstufe (2018) in Niedersachsen Leistungskurs/erhöhtes Anforderungsniveau - G9 ISBN: 978-3-12-735531-5
Schlüsselkonzept: Ableitung. II Schlüsselkonzept: Integral
Lernen mit dem Lambacher Schweizer 8 Mathematikunterricht in der Qualifikationsphase mit dem Lambacher Schweizer 10 I Schlüsselkonzept: Ableitung Erkundungen 14 1 Die natürliche Exponentialfunktion und
Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Einführungsphase auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen
Die Umsetzung der Lehrplaninhalte in auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Schülerbuch 978-3-06-041672-1 Lehrerfassung des Schülerbuchs 978-3-06-041673-8
Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik
Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik Unterrichtsinhalte Funktionale Zusammenhänge Ausbildungsabschnitt I, 50Stunden Lineare Funktionen
Schulinterne Vereinbarungen für den Unterricht in Sekundarstufe II
Schulinterne ereinbarungen für den Unterricht in Sekundarstufe (Beschluss der Fachkonferenz Mathematik vom 16.11.2011) Einführungsphase Funktionen (LS und ) (LS ) Kurvendiskussion ganzrationaler Funktionen
Kurzfassung des schulinternen Lehrplans Mathematik (Erstellt im Sommersemester 2019)
Kurzfassung des schulinternen Lehrplans Mathematik (Erstellt im Sommersemester 2019) Vorkurs Termumformungen - Anwendung der Rechengesetze, insbesondere des Distributivgesetzes - binomische Formeln Lineare
Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Grundkurs
Stand 04.11.2016 Grundlage Kernlehrplan G8 für die Sekundarstufe II (2014) Seite 1 von 6 Die angegebenen Zeiträume sind nur Anhaltswerte. Bei einem Rahmen von 30 Wochen ergeben sich mögliche Freiräume.
2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks
2.1.2 Konkretisierte Unterrichtsv auf der Basis des Lehrwerks Einführungsphase 1 Buch: Bigalke, Dr. A., Köhler, Dr. N.: Mathematik Gymnasiale Oberstufe Nordrhein-Westfalen Einführungsphase, Berlin 2014,
Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl:
Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: 401546 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen
ABI-CHECKLISTE. FiNALE Prüfungstraining MATHEMATIK. trifft zu. FiNALE- Seiten. erledigt. nicht zu. A Differenzialrechnung
ABI-CHECKLISTE A Differenzialrechnung A1 Potenz- und Exponentialfunktionen ableiten; LK sätzlich: Logarithmusfunktionen ableiten. A2 einfache Funktionen mit der Summenund Faktorregel und sammengesetzte
Schulcurriculum Mathematik, Klasse 09-10 Realschule
Schulcurriculum Mathematik, Klasse 09-10 Realschule Themen/Inhalte: Kompetenzen Hinweise Zeit Die Nummerierung schreibt keine verbindliche Abfolge vor. Fakultative/schulinterne Inhalte sind grau hinterlegt.
Schulinternes Curriculum Mathematik Sekundarstufe II/Lk. Stand: November 2011
Schulinternes Curriculum Mathematik Sekundarstufe II/Lk Stand: November 2011 Bemerkungen: - Die angegebenen Seitenzahlen beziehen sich auf das eingeführt Lehrwerk Lambacher-Schweizer Leistungskurs aus
Fachcurriculum Mathematik (G8) JKG Weil der Stadt Standards 10. Mathematik. Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004
Mathematik Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004 Fachcurriculum Standards 10 Johannes-Kepler-Gymnasium Weil der Stadt Stand vom 19.8.2008 1 Stand 19.08.2008 Stundenzahl in
Qualifikationsphasen Q1.1 bis Q2.2 / Leistungskurs
Qualifikationsphasen Q1.1 bis Q2.2 / Leistungskurs Inhalte/Lehrbuchkapitel Lambacher Schweizer, Qualifikationsphase LK NW I. Fortsetzung der Differenzialrechnung / Q1.1 Die natürliche Exponentialfunktion
33(MK) Oktober Die Vertiefungen durch die thematischen Schwerpunkte sind weiterhin für das jeweilige Abitur zu beachten.
33(MK) Oktober 2004 An alle Gymnasien mit gymnasialer Oberstufe, Kooperativen Gesamtschulen mit gymnasialer Oberstufe, Integrativen Gesamtschulen mit gymnasialer Oberstufe, Abendgymnasien, Kollegs, Fachgymnasien,
- Zusammenhang lineare, quadratische Funktion betonen
Curriculum Mathematik JS 11/ Eph Kernlehrplan Methodische Vorgaben/ Koordinatengeometrie - Gerade, Parabel, Kreis - Lineare Gleichungssysteme zur Bestimmung von Geraden und Parabeln - Zusammenhang lineare,
Fachinformationen Mathematik (gültig ab Schuljahr 2014/2015)
Fachinformationen Mathematik (gültig ab Schuljahr 2014/2015) SEKUNDARSTUFE II STUFE EF, Q1, Q2 1. Schulcurriculum Sekundarstufe II (Mathematik) 1.1 Schulcurriculum Sekundarstufe II (Grundkurs Stufe EF)
Stoffverteilungsplan für das Fach Mathematik Qualifikationsphase
Stoffverteilungsplan für das Fach Mathematik Qualifikationsphase Schuljahrgang 11 Analysis Ableitungen und Funktionsuntersuchungen Ableitungsregeln, insbesondere Produkt-, Quotienten- und Kettenregel graphisches
Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Leistungskurs
Stand: 19.08.2016 Grundlage Kernlehrplan G8 für die Sekundarstufe II (2014) Seite 1 von 7 Die angegebenen Zeiträume sind nur Anhaltswerte. Bei einem Rahmen von 30 Wochen ergeben sich mögliche Freiräume.
EdM Nordrhein-Westfalen Qualifikationsphase Bleib fit in Funktionsuntersuchungen. 1 Kurvenanpassung Lineare Gleichungssysteme
EdM Nordrhein-Westfalen Qualifikationsphase 978-3-507-87900-3 Bleib fit in Differenzialrechnung Bleib fit in Funktionsuntersuchungen 1 Kurvenanpassung Lineare Gleichungssysteme Lernfeld: Krumm, aber doch
ÜBERBLICK ÜBER DAS KURS-ANGEBOT
ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer
Der 10 Tage - Plan. für deine Mathe-Abi- Vorbereitung
Der 10 Tage - Plan für deine Mathe-Abi- Vorbereitung Herzlich willkommen, zum 10 Tage-Plan für deine Mathe-Abi- vorbereitung! Auf den folgenden Seiten findest du jeweils die einzelnen Tage, mit den Themen,
Georg-Büchner-Gymnasium Fachgruppe Mathematik. Schuleigenes Curriculum Mathematik
Georg-Büchner-Gymnasium Fachgruppe Mathematik Schuleigenes Curriculum Mathematik Gymnasiale Oberstufe Grundlegendes Anforderungsniveau Verbindliche Themenreihenfolge verabschiedet Dezember 2011 [1] Analytische
Einführungsphase. Kapitel I: Funktionen. Arithmetik/ Algebra
Einführungsphase prozessbezogene Kompetenzen Die SuS sollen... inhaltliche Kompetenzen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I: - Realsituationen in ein mathematisches Modell
Folgen und Grenzwerte. II Ableitung. III Extrem- und Wendepunkte. Mathematikunterricht in der Oberstufe mit dem Lambacher Schweizer 7
Mathematikunterricht in der Oberstufe mit dem Lambacher Schweizer 7 I Folgen und Grenzwerte 1 Folgen 12 2 Eigenschaften von Folgen 15 3 Grenzwert einer Folge 17 H I Grenzwertsätze 21 Wiederholen - Vertiefen
Georg-Büchner-Gymnasium Fachgruppe Mathematik. Schuleigenes Curriculum Mathematik
Georg-Büchner-Gymnasium Fachgruppe Mathematik Schuleigenes Curriculum Mathematik Gymnasiale Oberstufe Erhöhtes Anforderungsniveau Verbindliche Themenreihenfolge verabschiedet Dezember 2011 [1] Analytische
Fachschaft Mathematik. Schuleigenes Curriculum für die Klassen 11 und 12
Fachschaft Schuleigenes Curriculum für die 15. April 2010 Bildungsplan für die Klassen 11 u. 12 Stufenspezifische Hinweise (Klasse 11 und 12) Kurzform: Die formal bestimmte und die anwendungs- und problemlöseorientierte
2.1.1 Übersichtsraster Unterrichtsvorhaben
2.1.1 Übersichtsraster Unterrichtsvorhaben Einführungsphase Methodenschwerpunkt: Einführung in die kooperativen Lernformen Medienschwerpunkt: Einführung und Umgang mit dem GTR Unterrichtsvorhaben I: Unterrichtsvorhaben
