Mathematischer Vorkurs
|
|
|
- Ella Schumacher
- vor 9 Jahren
- Abrufe
Transkript
1 Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170
2 Kapitel 11 Aussageformen Mathematischer Vorkurs TU Dortmund Seite 103 / 170
3 11.1 Denition: Aussageformen Eine Aussageform A über einer Grundmenge G ist ein Satz in Form einer Aussage, der eine Variable enthält, die ihre Werte in G annimmt. Wird die Variable durch einen konkreten Wert x G ersetzt, so liegt eine Aussage A(x) vor Denition: Erfüllungsmenge 1. Ist A eine Aussageform über der Grundmenge G, so nennt man die Menge L(A) := {x G A(x) ist wahr} die Erfüllungsmenge von A. 2. Gilt für die Erfüllungsmenge einer Aussageform L(A) = G, so nennt man A allgemeingültig. 3. Ist die Aussage A(x) für alle x G falsch, dh. L(A) =, so nennt man A nicht erfüllbar. 4. Ist für eine Aussageform L(A), so heiÿt A erfüllbar. Mathematischer Vorkurs TU Dortmund Seite 104 / 170
4 11.3 Denition: Verknüpfen von Aussageformen Sind A und B Aussageformen auf der gleichen Grundmenge G so sind die Aussageformen A, A B und A B punktweise deniert. Dh. ( A)(x) := (A(x)), (A B)(x) := A(x) B(x) und (A B)(x) := A(x) B(x) Bemerkung Wir bezeichnen mit W bzw. F die Aussageformen, die für beliebiges x G stets wahr bzw. falsch ist. Die Rechenregeln für Aussagen übertragen sich analog. Mathematischer Vorkurs TU Dortmund Seite 105 / 170
5 11.5 Beispiel: Mengenoperationen Es seien M, N G Mengen und A M die Aussageform, für die die Aussage A M (x) durch x M deniert ist (analog für A N ). Dann ist L(A M ) = M und L(A N ) = N. Über genau diese Aussageformen haben wir die Mengenoperationen deniert (vgl. Kapitel 1) Mathematischer Vorkurs TU Dortmund Seite 106 / 170
6 11.6 Satz Es seien A und B Aussageformen auf der gleichen Grundmenge G. Dann gilt 1. L( A) = ( L(A) )c, 2. L(A B) = L(A) L(B), 3. L(A B) = L(A) L(B) Mathematischer Vorkurs TU Dortmund Seite 107 / 170
7 11.7 Wiederholung: Allquantor, Existenzquantor Es sei A eine Aussageform über der Grundmenge G. 1. x G : A(x) bedeutet, dass die Aussageform A allgemeingültig ist Für jedes x G ist A(x) wahr. 2. x G : A(x) bedeutet, dass die Aussageform A erfüllbar ist Es gibt ein x G, so dass A(x) wahr ist Bemerkung Es sei A eine Aussageform über G. Dann gilt 1. A ist erfüllbar x G : A(x). 2. A ist nicht erfüllbar x G : A(x). 3. A ist allgemeingültig x G : A(x). 4 A ist nicht allgemeingültig x G : A(x). Mathematischer Vorkurs TU Dortmund Seite 108 / 170
8 In der letzten Bemerkung haben wir schon von folgendem Sachverhalt Gebrauch gemacht: 11.9 Satz: Negation von Quantoren Es gilt: 1. ( x G : A(x) ) x G : A(x) 2. ( x G : A(x) ) x G : A(x) Mathematischer Vorkurs TU Dortmund Seite 109 / 170
9 11.10 Satz Es sei A eine Aussageform auf der Menge G 1 G 2. Dann gilt: 1. Nebeneinanderstehende gleiche Quantoren darf man vertauschen, dh. x G 1 y G 2 : A(x, y) y G 2 x G 1 : A(x, y) und x G 1 y G 2 : A(x, y) y G 2 x G 1 : A(x, y). 2. Bei unterschiedlichen Quantoren darf man das (in der Regel) nicht. Mathematischer Vorkurs TU Dortmund Seite 110 / 170
10 Beweisführung Kapitel 12 Beweisführung Mathematischer Vorkurs TU Dortmund Seite 111 / 170
11 Beweisführung 12.1 Deniton: Folgerung Sind A und B Aussageformen über der Grundmenge G, so ist die Folgerung wie folgt deniert: A B genau dann, wenn x G : A(x) B(x) Das heiÿt: A B, wenn die Subjunktion A B allgemeingültig ist Deniton: Äquivalenzumformung Zwei Aussageformen A und B über der Grundmenge G heiÿen äquivalent, A B, wenn A B und B A Satz A B genau dann, wenn L(A) L(B). A B genau dann, wenn L(A) = L(B). Mathematischer Vorkurs TU Dortmund Seite 112 / 170
12 Beweisführung 12.4 Regel: Aussagen mit einem Existenzquantor Eine Existenzaussage x G : A(x) kann man beweisen, indem man ein konkretes x G angibt, so dass A(x) wahr ist. Der Beweis beginnt dann üblicherweise so: Wähle x = Regel: Aussagen mit einem Allquantor Eine Allaussage x G : A(x) kann man beweisen, indem für einen Wert x, von dem man nichts weiter annimmt, als dass er aus G stammt, nachweist, dass A(x) wahr ist. Der Beweis beginnt dann üblicherweise so: Sei x G beliebig... Mathematischer Vorkurs TU Dortmund Seite 113 / 170
13 Beweisführung 12.6 Regel: Folgerungen und Äquivalenzen 1. Ist eine Aussage A B zu zeigen, so kann der Beweis wie folgt verlaufen: Sei x L(A) beliebig. Weise nun die Gültigkeit von B(x) nach. 2. Die Aussage A B kann man beweisen, indem man das obige in beide Richtung durchführt. Mathematischer Vorkurs TU Dortmund Seite 114 / 170
14 Beweisführung 12.7 Regel: Allaussagen mit zwei Quantoren Den Beweis von x G 1 y G 2 : A(x, y) kann man wie folgt aufbauen: Es sei x G 1 beliebig. Finde dann ein y G 2 (das von x abhängen darf), so dass A(x, y) wahr ist Regel: Existenzaussagen mit zwei Quantoren Den Beweis von x G 1 y G 2 : A(x, y) kann man wie folgt aufbauen: Gib ein konkretes x G 1 an, so dass A(x, y) für alle y G 2 wahr ist. Mathematischer Vorkurs TU Dortmund Seite 115 / 170
15 Beweisführung 12.9 Regel: Indirekter Beweis Will man A B beweisen, so kann man stattdessen B A zeigen. Diese beiden Aussagen sind äquivalent Regel: Widerlegen von Aussagen Soll eine Aussage A widerlegt werden, so kann man diese zunächst negieren, und dann zeigen, dass A allgemeingültig ist. Das ist insbesondere bei Aussagen, die Quantoren beinhalten anwendbar Regel: Widerspruchsbeweis 1. Will man zeigen, dass eine Aussage A wahr ist, so kann man stattdessen zeigen, dass A F wahr ist. Diese Aussagen sind äquivalent. Angewendet wird 1. oft in folgender Form: 2. Statt der Aussage A B beweist man die Aussage A B F. Mathematischer Vorkurs TU Dortmund Seite 116 / 170
Mathematischer Vorkurs
Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige
Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:
Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht
Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7
Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum
Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004
Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 In der letzten Vorlesung haben wir gesehen, wie man die einzelnen Zahlenbereiche aufbaut. Uns fehlen nur noch die reellen Zahlen (siehe
Normalformen boolescher Funktionen
Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion
Elementare Mengenlehre
Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,
Im folgenden sollen a, b, c,... Aussagen bedeuten, denen man die Eigenschaft wahr (Wahrheitswert 1) oder falsch (Wahrheitswert 0) zuordnen kann.
ÜBER ALGEBRAISCHE STRUKTUREN (Arbeitsblatt) A Aussagenlogik 1. Definitionen und Beispiele Im folgenden sollen a, b, c,... Aussagen bedeuten, denen man die Eigenschaft wahr (Wahrheitswert 1) oder falsch
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #2 Phillip Keldenich, Arne Schmidt 10.11.2016 Organisatorisches Fragen? Checkliste: Anmeldung kleine Übungen Anmeldung Mailingliste Dies ersetzt nicht die Prüfungsanmeldung!
Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10
Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige
ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise
ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches
Logik. III Logik. Propädeutikum Holger Wuschke. 19. September 2018
III Propädeutikum 2018 19. September 2018 III λoγóς="das Wort" (math.) befasst sich mit Denition Aussage Eine Aussage p ist ein sinnvolles sprachliche Gebilde mit der Eigenschaft, entweder wahr oder falsch
Logik (Teschl/Teschl 1.1 und 1.3)
Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau 2. Vorlesung Roland Gunesch Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 1 / 21 Themen heute 1
1 Mengen und Aussagen
Mathematik für Physiker I, WS 010/011 Montag 01.11 $Id: mengen.tex,v 1.4 010/11/01 14:19:48 hk Exp $ $Id: beweise.tex,v 1.3 010/11/05 06:40:11 hk Exp $ 1 Mengen und Aussagen Wir haben jetzt Allaussagen
definieren eine Aussage A als einen Satz, der entweder wahr (w) oder falsch (f) (also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1.
22 Kapitel 1 Aussagen und Mengen 1.1 Aussagen Wir definieren eine Aussage A als einen Satz, der entweder wahr w) oder falsch f) also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1. 2 ist eine
Kapitel 1: Grundbegriffe
Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil
Mathematik für Informatiker/Informatikerinnen 2
Mathematik für Informatiker/Informatikerinnen 2 Koordinaten: Peter Buchholz Informatik IV Praktische Informatik Modellierung und Simulation Tel: 755 4746 Email: [email protected] OH 16, R 216 Sprechstunde
Grundbegriffe Mengenlehre und Logik
Grundbegriffe Mengenlehre und Logik Analysis für Informatiker und Lehramt Mathematik MS/GS/FS WS 2016/2017 Agnes Radl Mengen Georg Cantor (1895) Unter einer Menge verstehen wir jede Zusammenfassung M von
Einführung in die Mathematik (Vorkurs 1 )
Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise
Tutorium Logik und Beweisführung. Prof. Dr. Mark Groves WS 2018/19
Tutorium Logik und Beweisführung Prof. Dr. Mark Groves WS 2018/19 16. Oktober 2018 Aussagen Eine Aussage ist ein sprachliches Gebilde, das entweder wahr (T) oder falsch (F) ist. Beispiele Saarbrücken ist
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume
Mathematischer Vorkurs. Mathematischer Vorkurs TU Dortmund Seite 1 / 157
Mathematischer Vorkurs Mathematischer Vorkurs TU Dortmund Seite 1 / 157 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 2 / 157 Mengen 1.1 Denition: Mengen Unter einer Menge verstehen
Vorkurs Mathematik für Informatiker 6 Logik, Teil 2
6 Logik, Teil 2 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 6: Logik, Teil 2 1 Aussagenformen Aussage mit Parameter (zum Beispiel x) Aussage wahr oder falsch abhängig vom Parameter
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 018/19 Steven Köhler [email protected] mathe.stevenkoehler.de c 018 Steven Köhler Wintersemester 018/19 Inhaltsverzeichnis Teil 1 Teil Teil
Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel
Motivation Formale Grundlagen der Informatik 1 Kapitel 19 & Die ist eine Erweiterung der Aussagenlogik. Sie hat eine größere Ausdrucksstärke und erlaub eine feinere Differenzierung. Ferner sind Beziehungen/Relationen
Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1
Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische
Mathematischer Vorkurs
Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite / 50 Kapitel 5 Mathematischer Vorkurs TU Dortmund Seite 54 / 50 Scheitel S Schenkel α Winkelbereich Winkel werden in Grad
1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen
1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist
HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016
HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre
1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen
. Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!
Indexmengen. Definition. n n n. i=1 A i := A 1... A n
Indexmengen Definition Es sei n N. Für Zahlen a 1,..., a n, Mengen M 1,..., M n und Aussagen A 1,..., A n definieren wir: n i=1 a i := a 1 +... + a n n i=1 a i := a 1... a n n i=1 M i := M 1... M n n i=1
Vorkurs Beweisführung
Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7
Vorkurs Mathematik - SoSe 2017
3 Vorkurs Mathematik - SoSe 2017 Regula Krapf Lösungen Übungsblatt 2 Aufgabe 1. Zeigen Sie, dass die beiden Aussagen ( x : P(x)) ( x : Q(x)) und x : (P(x) Q(x)). nicht dasselbe ausdrücken. Wie sieht es
Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.
Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen
Analysis I für Studierende der Ingenieurwissenschaften
Analysis I für Studierende der Ingenieurwissenschaften Jens Struckmeier Fachbereich Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2010/11 Jens Struckmeier (Mathematik,
Analysis I für Studierende der Ingenieurwissenschaften
Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen
Vorkurs Mathematik Logik und Beweismethoden 1
Vorkurs Mathematik Logik und Beweismethoden 1 Saskia Klaus 05. Oktober 2016 Dieser Vortrag wird schon seit vielen Jahren im Vorkurs gehalten und basiert auf der Arbeit vieler verschiedener Menschen, deren
LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow
LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben
Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren
Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an [email protected]
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation
Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2
Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html
Kapitel 15 Lineare Gleichungssysteme
Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem
Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1
Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,
Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25
Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.
Einführung in die Mathematik (Vorkurs 1 )
Einführung in die Mathematik (Vorkurs 1 ) Sommersemester 2015 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagenlogik 4 2 Beweistechniken
Summen- und Produktzeichen
Summen- und Produktzeichen Ein großer Vorteil der sehr formalen mathematischen Sprache ist es, komplizierte Zusammenhänge einfach und klar ausdrücken zu können. Gerade auch diese Eigenschaft der Mathematik
Vorkurs Beweisen
Vorkurs -- 4. Beweisen.0.05 Aussageformen Aussagen können auch Parameter enthalten (z.b. x) Wahr oder falsch hängt dann vom Parameter x ab. Können natürlich auch mehrere Parameter sein. Beispiel einer
Tilman Bauer. 4. September 2007
Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 [email protected] Zimmer 504, Einsteinstr. 62 (Hochhaus)
Analysis I für Studierende der Ingenieurwissenschaften
Analysis I für Studierende der Ingenieurwissenschaften Prof. Dr. Armin Iske Department Mathematik, Universität Hamburg Technische Universität Hamburg-Harburg Wintersemester 2006/2007 Analysis I TUHH, Winter
Rudolf Brinkmann Seite
Rudolf Brinkmann Seite 1 30.04.2008 Aussagen und Mengentheoretische Begriffe Aussagen und Aussageformen In der Mathematik spricht man von Aussagen, wenn für einen Sachverhalt entschieden werden kann, ob
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis 1 Beweistechniken 1.1 Prädikatenlogik..................................... 1. Direkter Beweis.................................... 3 1.3 Indirekter Beweis....................................
Einführung in die Mathematik (Vorkurs 1 )
Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2011 Dr. J. Jordan und Dr. F. Möller Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagenlogik
Vorlesung. Logik und Beweise
Vorlesung Logik und Beweise Der folgende Abschnitt dient nur zur Wiederholung des Stoffes der ersten Vorlesung und sollte nur genannt bzw. teilweise schon vor der Vorlesung angeschrieben werden. Wiederholung
mathe plus Aussagenlogik Seite 1
mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet
Kapitel 11 Beweisführung. Mathematischer Vorkurs TU Dortmund Seite 125 / 254
Kapitel 11 Beweisführung Kapitel 11 Beweisführung Mathematischer Vorkurs TU Dortmund Seite 125 / 254 Kapitel 11 Beweisführung Grundsätzlich: ein mathematischer Satz ist eine Aussage der Form wenn... gilt,
Einführung in die Mathematik (Vorkurs 1 )
Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2015/16 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagenlogik 4 2
Vorlesung. Beweise und Logisches Schließen
Vorlesung Beweise und Logisches Schließen Der folgende Abschnitt dient nur zur Wiederholung des Stoffes der ersten Vorlesung und sollten nur genannt bzw. Teilweise schon vor der Vorlesung angeschrieben
1 Logik und Mengenlehre
1 LOGIK UND MENGENLEHRE 1 1 Logik und Mengenlehre Definition. (Cantor, 1895) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres
Mathematik und Logik für Wirtschaftsinformatik 2013W. V. Pillwein
Mathematik und Logik für Wirtschaftsinformatik 2013W V. Pillwein 24. Januar 2014 Inhaltsverzeichnis 1 Mengen 2 2 Logik 8 2.1 Aussagenlogik..................................... 8 2.2 Prädikatenlogik....................................
Mathematischer Vorkurs MATH
Mathematischer Vorkurs MATH (01.09.2014 19.09.2014) AOR Dr. Andreas Langer WS 2014-2015 Mathematischer Vorkurs TU Dortmund Seite 1 / 254 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund
Brückenkurs Mathematik. Dienstag Freitag
Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................
Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein
Mengen 1.2 9 1.2 Mengen 7 Der Begriff der Menge wurde am Ende des 19. Jahrhunderts von Georg Cantor wie folgt eingeführt. Definition (Cantor 1895) Eine Menge ist eine Zusammenfassung M von bestimmten,
Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Institut für Analysis Dr. A. Müller-Rettkowski Dr. T. Gauss WS 2010/11 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge
Beweistechniken. Vorkurs Informatik - SoSe April 2014
Vorkurs Informatik SoSe14 07. April 2014 Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Motivation Wozu Beweise in der Informatik? Quelle: http://www.nileguide.com Wozu Beweise in der
Diskrete Strukturen WS 2018/19. Gerhard Hiß RWTH Aachen
Diskrete Strukturen WS 2018/19 Gerhard Hiß RWTH Aachen Erster Teil: Grundlagen Kapitel 1, Mathematische Grundbegriffe 1.1 Aussagen Begriff (Aussage) Sprachlicher Ausdruck, welcher entweder wahr oder falsch
Elemente der Algebra. Dr. Theo Overhagen Fakultät IV Dep. Mathematik Universität Siegen
Elemente der Algebra Dr. Theo Overhagen Fakultät IV Dep. Mathematik Universität Siegen I Vorbemerkung In der folgenden Vorlesung werden zunächst die Mengenoperationen und die grundlegenden aussagenlogischen
Analyis I - Grundlagen
Elementare Aussagenlogik October 23, 2008 Elementare Aussagenlogik Definition Eine Aussage im Sinne der Aussagenlogik ist eine sprachliche Aussage, bei der klar entschieden werden kann, ob sie wahr oder
Logik, Mengen und Zahlen
Zahlenmengen Herbert Paukert. 1 Logik, Mengen und Zahlen Version 2.0 Herbert Paukert Logik und Mengenlehre [ 02 ] Mathematische Beweisverfahren [ 12 ] Natürliche und ganze Zahlen [ 15 ] Teilbarkeit der
Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung?
8 Grundsätzliches zu Beweisen Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? ˆ Mathematik besteht nicht (nur) aus dem Anwenden auswendig gelernter Schemata. Stattdessen
Mengenoperationen, Abbildungen
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Z6 Rechengesetze für Mengenoperationen Lineare Algebra 1 WS 2006/07 en Blatt 3 06.11.2006 Mengenoperationen,
ALGEBRA UND MENGENLEHRE
ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter
Alphabet der Prädikatenlogik
Relationen und Alphabet der Das Alphabet der besteht aus Individuenvariablen Dafür verwenden wir kleine Buchstaben vom Ende des deutschen Alphabets, auch indiziert, z. B. x, y, z, x 1, y 2,.... Individuenkonstanten
Beweistechniken. Vorkurs Informatik - SoSe April 2013
Vorkurs Informatik SoSe13 09. April 2013 Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe. 2 Das Programm führt zu keiner Endlosschleife. 3 Zur Lösung dieser
Christian Rieck, Arne Schmidt
Institute of Operating Systems and Computer Networks Algorithms Group Algorithmen und Datenstrukturen Wintersemester 207/208 Übung#2, 09..207 Christian Rieck, Arne Schmidt Organisatorisches Anmeldung Mailingliste
Mathematische Grundlagen I Logik und Algebra
Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte
Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt
Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Dirk Hundertmark Dipl.-Math. Matthias Uhl WS 2011/12 Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik
Wissenschaftliches Arbeiten Quantitative Methoden
Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung
Der mathematische Beweis
Der mathematische Beweis Im Studium wird man wesentlich häufiger als in der Schule Beweise führen müssen. Deshalb empfiehlt es sich, verschiedene Beweisverfahren intensiv zu trainieren. Beweisstruktur
Grundlegendes der Mathematik
Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig
