z y n ; C n n-m Cn = E

Größe: px
Ab Seite anzeigen:

Download "z y n ; C n n-m Cn = E"

Transkript

1 9. Molekülsymmetrie (Punktgruppen) 9. Symmetrieelemente und -operationen (SE und SO) Koordinatenzuweisung erfolgt nach der Finger-Regel der rechten Hand: y z D Zf Mf z y = z y Identität E = C Drehung um eine beliebige Achse mit dem Winkel 0 (60 ) unverändertes Molekül, identischer Zustand, Rolle des Neutralelements (wie 0 bei Addition) Drehachse Drehung um eine Achse mit dem Winkel φ = π/n führt zu äquivalenten Zuständen; n = Zähligkeit = Bruchteil einer kompletten Drehung n =,,, 5, 6, 7, 8... Eine erzeugt n Symmetrieelemente: Beispiel: C : C, C = C, C = C - ; C = E E, C, C Besonderheit: a) n = E b) Inverse Elemente: C m n und -m m n ; n-m Cn = E Beispiel: C = C + ; C = C ; C C = C = E Äquivalente Zustände über gegenläufige Drehrichtung um komplementäre Winkel, nicht identische SE, gehören zur gleichen Symmetrieklasse c) unterschiedliche C bei tetragonal planaren Molekülen: y = C (Hauptachse) C = C C C '' C ' C ' C '' C ' C (Eckpunkte; auf Liganden) C '' C (Kantenmitten; zwischen Liganden)

2 Übersicht der Drehachsen : π/n φ[ ] Zähligkeit C C C C C 5 * π/5 7 fünf C 6 π/ π/ π/ π/ ein zwei drei vier π/6 60 sechs * tritt bei Kristallen (Raumgruppen) nicht auf Beispiele: F F C B C B F B F äqui. F F ident. F F C F F F F C BF F B F C F B F C F B F äqui. äqui. ident. ( - -0 ) C = C (+0 ) Hauptachse: Drehachse mit höchster Zähligkeit Spiegelebene σ Spiegelung an einer Ebene, Vertauschung von Atompositionen im Molekül Inverses Element: σ σ = σ = E (σ invers zu σ) Unterscheidung: σ v : σ Cn; σ h : σ ; σ d : σ und zwischen C (σ d = C σ h )

3 Beispiel: y σ d σ v : σ z, σ yz ( C ) z σ v σ h : σ y ( C ) σ h σ v σ d (C '') σ d : zwischen σ v ( C ; in C '') Spezialfall C v (σ v ) z Beispiel H O: y σ v = σ z σ v ' = σ yz Inversion i Spiegelung an einem Punkt (Molekül- oder Inversionszentrum), bei Molekülen mit paarweiser Besetzung von Atomlagen: i Drehspiegelachse S n Kombination bzw. Kopplung von Drehachse und Spiegelebene σ h, d.h. einer Drehung gefolgt von einer Spiegelung an σ h ( ) S n = σ h = σ h ( σ h ) Beispiel (C und σ h eistieren; BF ): C σ h S

4 Beispiel (C und σ h eistieren real nicht; Allen C H ): "C " "σ h " S Eine S n erzeugt n Symmetrieelemente (n = gerade) n Symmetrieelemente (n = ungerade) Inverse Elemente: S n n i S n-m n (n = gerade) S m n i S n-m n (n = ungerade) Beispiel S n : S ; S = C ; S = σ h ; S = C ; S 5 ; S 6 = E S S S S S S 9. Gruppenaiome Identität E A E = E A = A (vgl. 0 + = ) Inversion A A - = A - A = E (vgl. + (-) = 0) Relation (Verknüpfung) Wenn A, B M dann A B = C M (vgl. + = 5)

5 Assoziation (A B) C = A (B + C) (vgl. ( + ) + 5 = + ( + 5) = 0) Kommutation (Vertauschung) A B = B A (vgl. + = + = 5) Die ersten Aiome legen eine Gruppe fest, die Elemente bzw. Operationen bilden eine Gruppe. Das Kommutativgesetz ist keine notwendige Bedingung für eine Gruppe (Spezialfall: Abelsche Gruppe) Ordnung der Gruppe h Anzahl der Symmetrieelemente der Gruppe; Beispiele C v : h = ; C v : h = 6 Untergruppe Teilmenge einer Gruppe ist selbst eine Gruppe; ihre Ordnung ist Teiler der Gruppenordnung h. Beispiele C v : C, C s ; C v : C, C s Symmetrieklasse Kompletter Satz von gleichen Symmetrieelementen, d.h. konjugierter Elemente: C v : E; C (C, C ); σ v (σ, σ, σ ) Anzahl der Elemente einer Klasse ist Teiler der Gruppenordnung h Konjugierte Elemente (z.b. X und Y) resultieren aus der Ähnlichkeitstransformation: Z - X Z = Y

6 9. Klassifikation von Punktgruppen PG-Typ SE-Lage Symbol Erz. El. Symmetrie-Operationen h nichtaial C C s = S C i = S E σ h i E E, σ E, i aial, zyklisch S n h v diedrisch D n D nh D nd linear kubisch tetraedrisch oktaedrisch ikosaedrisch Achse S n Achse σ h nσ v nc nc σ h nσ v nc nσ d S n ohne i mit i C, C C, C, i C, C C, C, C C, C, C, i C 5, C, C, i C C C C 5 C 6 S S 6 = C i C h C h = S C h C 5h = S 5 C 6h C v C v C v C 5v C 6v D D D D 5 D 6 D h D h D h D 5h D 6h D d D d D d D 5d C v D h T T h T d O O h I I h C C C C 5 C, C S i, C i, C C, σ h i, C C 5, σ h i, C, C C, σ v C, σ v C, σ v C 5, σ v C, C, σ v C, C C, C C, C C 5, C C, C, C i, C, C C, C, σ h i, C, C C 5, C, σ h i, C, C C, S i, C, C C, C, σ d C 5, C, i C φ, σ v C φ, C, i C *, C C *, C, i C *, C C, C * C, C *, i C 5, C C 5, C, i E, C E, C E, C, C E, C 5, C 5 E, C 6, C, C E, S, C E, C, i, S 6 E, C, i, σ h E, C, σ h, S E, C, C, i, S, σ h E, C 5, C 5, σ h, S 5, S 5 E, C 6, C, C, i, S, S 6, σ h E, C, σ v E, C, σ v E, C, C, σ v, σ d E, C 5, C 5, 5σ v, E, C 6, C, C, σ v, σ d E, C, C, C E, C, C E, C, C, C, C E, C 5, C 5, 5C E, C 6, C, C, C, C E, C, C, C, i, σ h, σ v, σ d E, C, C, σ h, S, σ v E, C, C, C, C, i, S, σ h, σ v, σ d E, C 5, C 5, 5C, σ h, S 5, S 5, 5σ v E, C 6, C, C, C, C, i, S, S 6, σ h, σ d, σ v E, C, C, σ d, S E, C, C, i, S 6, σ d E, S 8, C, S 8, C, C, σ d E, C 5, C 5, 5C, i, S 0, S 0 E, C φ,, σ v E, C φ,, σ v, i, S φ, C E, 8C, C E, 8C, C, i, 8S 6, σ h E, 8C, C, 6σ d, 6S E, 8C, C, 6C, 6C E, 8C, C, 6C, 6C i, 8S 6, σ h, 6σ d, 6S E, C 5, C 5, 0C, 5C E, C 5, C 5, 0C, 5C, i, S 0, S 0, 0S 6, 5σ

7 * C in Richtung der Raumdiagonale [] 9. Zuordnung von Punktgruppen Einordnungshilfe von Molekülen in ihre Punktgruppen: Frage: Spezielle Gruppe mit mehreren unterschiedlich liegenden mehrzähligen Drehachsen? (n =,,, 5) oder C? Polyeder-Gruppen lineare Gruppen T h, T d, O h, I h Frage: Suche nach Hauptachse? C v, D h : C, C s, C i + : nur aus S n S, S 6 + und nc? Entscheidung zwischen C- und D-Gruppen keine vorhanden (C) vorhanden (D) keine σ v o. σ h D n σ h h D nh nσ v v D nd Zuordnungsschema zur Verdeutlichung:

8 Schematische Illustration von Punktgruppen

9 9.5 Klassifikation von Molekülen in Punktgruppen Die folgende Einteilung von wichtigen anorganischen, organischen und metallorganischen Molekülen in ihre Punktgruppen (ohne Bilder) ist als Hilfe für die eigene Übung gedacht. Nichtaiale Gruppen C, C s, C i C : asymmetrische Moleküle wie HN(Cl)F, HCBr(Me)Et C s : HOCl, SOX, R SO, R NH, NSF (gewinkelt bzw. pyramidal) C i : all-trans-alkane H C Cl F Aiale Gruppen, S n C : H O, N H, cis [Co(en) Cl ] +, FS F C : PPh S = C i S : (NSF), Sb 8 R, Si(PR) S 6 : C 6 Et 6 AsBr Aiale Gruppen v, h C v : "zick-zack"-methode als Winkel mit symmetrischen Atomlagen KZ = : OCCl, BR X, CH O, C 6 H 5 Cl, SO, NO, ClO, SnCl, SnCp KZ = : H O, H S, R O, SX, SO X, R SO, CH Cl, BrF +, Fe(CO) (NO), cis[(co) PtCl ], cis[(nh ) PtCl ] KZ = 5: SF, IF, SOF, PF Cl, ClF, XeO F, (R P) Fe(CO) L KZ = 6: (CO) FeX, (CO) Mo(phen) Außerdem: C H, B H 0, Co (CO) 8 (s), Fe (CO), [(CO) FeS], cis[cpfe(co) ] C v : NX, PX, NSF, POCl, XeO, IO, SO -, CHCl, P S, (NSCl), (CH S), - (PO ), HCo(CO), Co (CO) 9 S, Fe (CO) C v : IF 5, ClSF 5, XeOF, (CO) 5 MnX (X = H, Halogen), B 5 H 9, (SNH) C 5v : CpNiNO, CpCuCO C h : trans-n H, trans-c H Cl, P Cl (s), C H 6 (Butadien) C h : B(OH), CDTNi C h :? (Hakenkreuz)

10 Diedrische Gruppen D n, D nh, D nd D : verdrillte Alkene, S 0 D : [Co(en) ] +, [Fe(bipy) ] +, Fe(acac) D h : C H, B Cl (s), B H 6, (AlX ), (AuCl ), Pd(acac), [Cu(en) ] +, trans- [(NH ) PtCl ], [(CO) MnX] (X = Halogen, SR, PR ), C 6 H O (Benzochinon), C 0 H 8 (Naphthalin), S N D h : BF, CO -, NO, SO, PF 5, Pb - 5, Pb - 9, Bi 5+ 9, Fe(CO) 5, Fe (CO) 9, Os (CO), ReH - 9, [Pt 6 (CO) ] - +, B N H 6, (Cl PN), C H 6 (Cyclopropan), C H D h : XeF, ICl, MCl - (M = Pd, Pt), Ni(CN) -, trans[co(nh ) Cl ], Re Cl - 8, C H -, S + +, S N D 5h : C 5 H 5 = Cp, MCp (M = Fe, Ru, Os), IF 7, MF - 7 (M = U, Zr, Hf) - D 6h : C 6 H 6, Cr(C 6 H 6 ), P 6 D 8h : U(COT) = U(C 8 H 8 ) ("Uranocen") D d : C H (Allen), B Cl (g), N S, As S, [M(CN) 8 ] - (M = Mo, W), ZrF - - 8, CuCl (JTE), C 8 H 8 (COT), M(NO ) (M = Sn,Ti) D d : C H 6 (trans), B H - 6, N H + 6, C 6 H, S 6, S, Co (CO) 8 (l), (XeF 6 ) 6 D d : B 0 H - 0, Mn (CO) 0, S 8, [UF 8 ] -, S F 0 D 5d :,-C B 0 H, (C 5 Me 5 ) Fe, MCp (M = Co, Ni) Polyeder-Gruppen T, T h, T d, O, O h, I, I h Kubische Gruppen (T, T h ), T d, (O), O h T d : Tetraeder ( Flächen, Ecken, 6 Kanten) SE: E, 8 C ( C +, C ); C, 6 S, 6 Φ d (h = ): BF, CH, CCl, MCl (M = Ti, Si), NH +, PO -, SO -, ClO, XeO, OsO, [NiCl ] -, [Ni(CN) ] -, Ni(CO), [CpFe(CO)], Ir (CO), [CpMS], Rh 6 (CO) 6, B Cl, P O 6, P O 0, N (CH ) 6 (Urotropin), C 0 H 6 (Adamantan).

11 Zur Veranschaulichung der Symmetrieelemente: O h : Drei Anordnungen: Oktaeder, Würfel, Kuboktaeder SE: E, 8 C ( C +, C ), C, 6 C, 6 C, i, 8 S 6, 6 S, σ h, 6 σ d (h = 8) Oktaeder: (8 Flächen, 6 Ecken, Kanten): SF 6, PF 6, SiF - 6, AlF - 6, M(CO) 6 (M = Cr, Mo, W), Mn(H O) + 6, CoF - - 6, B 6 H 6 Würfel: (6 Flächen, 8 Ecken, Kanten): MF 8 (M = Pa, U, Np), C 8 H 8 (Cuban) C in der Raumdiagonalen Kuboktaeder: ( Flächen, Ecken, Kanten): ccp, S, Perowskit alternative Ansichten: : : - bzw. : 6 planar : -Anordnung (Kippen um 0 ) Zur Veranschaulichung der Symmetrieelemente: Kuboktaeder-Generierung und -Darstellungen:

12 Ikosaedrische Gruppen (I), Ih I h : Drei Anordnungen: Ikosaeder, pentag. Dodekaeder, Fulleren (Footballen) SE: E, C 5 (6 C + 5, 6 C 5 ), C 5 (6 C + 5, 6 C - 5 ), 0 C (0 C +, 0 C ), 5 C, i, S 0, S 0, 0 S 6, 5 σ (h = 0) Ikosaeder ( Ecken, 0 Flächen, 0 Kanten): - B, B H alternative Ansichten: : 5 : 5 : - bzw. : 6 gewellt : -Anordnung (Kippen um 90 ) : 5 : 5 : : 6 : Dodekaeder (0 Ecken, Flächen, 0 Kanten): C 0 H 0 Footballen (Fulleren, 60 Ecken, Flächen, 90 Kanten): C 60

13

Seminar zum Praktikum Anorganische Chemie III III

Seminar zum Praktikum Anorganische Chemie III III Seminar zum Praktikum Anorganische Chemie III III Metallorganische Chemie Dr. J. Wachter IR-Teil3 www.chemie.uni-regensburg.de/anorganische_chemie/scheer/lehre.html www.chemie.uniregensburg.de/anorganische_chemie/wachter/lehre.html

Mehr

Absorptionsspektrum von PTCDA und DiMe-PTCDI

Absorptionsspektrum von PTCDA und DiMe-PTCDI 3. Gruppentheorie Absorption coefficient *10 5 6 4 2 0 Absorptionsspektrum von PTCDA und DiMe-PTCDI PTCDA Wavelength / nm 800 700 600 500 400 HOMO-LUMO Übergang S 0 -S 1 transition S 0 -S 2 transition

Mehr

Verknüpfung zweier C 2 Drehachsen

Verknüpfung zweier C 2 Drehachsen Phsikalische und Theoretische Methoden der Anorganischen Chemie, WS 2009/10 Verknüpfung zweier Drehachsen 2 C (360 /2) = C 360 /2 D (360 /2) Phsikalische und Theoretische Methoden der Anorganischen Chemie,

Mehr

Allgemeine Chemie Symmetrie von Molekülen

Allgemeine Chemie Symmetrie von Molekülen Allgemeine Chemie Symmetrie von Molekülen AC_Molekuelsymmetrie.doc Seite 1 von 23 Fck / 12.10.05 Inhaltsverzeichnis 1 Einleitung...3 1.1 Anwendungsbereiche der Molekülsymmetrie...3 1.2 Sinn und Zweck der

Mehr

= {e} U (1) U (2) U (3) = {e,a,b,c} 4 : e a b e e a b a a c e b b e c

= {e} U (1) U (2) U (3) = {e,a,b,c} 4 : e a b e e a b a a c e b b e c KONZEPT DER GRUPPE 6.7 Untergruppen U ist eine Gruppe mit derselben Gruppenoperation wie G und der Ordnung h U h G U ist dann eine Untergruppe von G, wenn alle u i G sind. Beispiel 9: Untergruppen von

Mehr

ACF-Vorkurs: Symmetrie in der Anorganischen Chemie

ACF-Vorkurs: Symmetrie in der Anorganischen Chemie ACF-Vorkurs: Symmetrie in der Anorganischen Chemie Stichworte: - Symmetrielemente - Punktgruppen - Charaktertafeln - Anwendung in der MO-Theorie I.1 Zur qualitativen Beschreibung genügt es oft, die Form

Mehr

Symmetrieelemente C 3 C 2 C 3 O H H N H H H

Symmetrieelemente C 3 C 2 C 3 O H H N H H H Symmetrieelemente Ein Symmetrielement liegt vor, wenn ein Objekt (hier: Molekül) durch eine Symmetrieoperation mit sich selbst zur Deckung gebracht werden kann. neue und alter Orientierung nicht unterscheidbar

Mehr

Kristallstruktur und Mikrostruktur Teil I Vorlesung 2

Kristallstruktur und Mikrostruktur Teil I Vorlesung 2 Kristallstruktur und Mikrostruktur Teil I Vorlesung 2 1 Kristallstruktur und Teil I Scripte Mikrostruktur http://www.uni-stuttgart.de/mawi/aktuelles_lehrangebot/lehrangebot.html 2 Wiederholung Koordinatensysteme

Mehr

Kristallstruktur und Mikrostruktur Teil I Vorlesung 2

Kristallstruktur und Mikrostruktur Teil I Vorlesung 2 Kristallstruktur und Mikrostruktur Teil I Vorlesung 2 1 Kristallstruktur und Teil I Scripte Mikrostruktur http://www.uni-stuttgart.de/mawi/aktuelles_lehrangebot/lehrangebot.html 2 Wiederholung Koordinatensysteme

Mehr

Lösungen zum Übungsblatt 10

Lösungen zum Übungsblatt 10 Lösungen zum Übungsblatt 10 Aufgabe 1 a) vierbeiniger, rechteckiger Tisch C 2 -Achse senkrecht zur Tischplatte in der Tischmitte zwei Spiegelebenen σ v, die die C 2 -Achse enthalten und je zwei Seiten

Mehr

2 Symmetrieoperationen und -elemente. 1.8 Klassen 2 SYMMETRIEOPERATIONEN UND -ELEMENTE 7

2 Symmetrieoperationen und -elemente. 1.8 Klassen 2 SYMMETRIEOPERATIONEN UND -ELEMENTE 7 SYMMETRIEOPERATIONEN UND -ELEMENTE 7.8 Klassen Zweck: Zusammenfassen zueinander ähnlicher (konjugierter) Elemente einer Gruppe. Durch Bestimmung aller Klassen ergibt sich eine eindeutige Zerlegung on G:

Mehr

Metallorganische Chemie und Katalyse der Übergangsmetalle

Metallorganische Chemie und Katalyse der Übergangsmetalle etallorganische Chemie und Katalyse der Übergangsmetalle Nadia C. ösch-zanetti Institut für Anorganische Chemie der Universität Göttingen Inhalt indestens eine etall-kohlenstoffbindung n CR 3 n CR 2 n

Mehr

Anhang 5. Radionuklid A 1. in Bq. Ac-225 (a) Ac-227 (a) Ac Ag Ag-108m (a) Ag-110m (a)

Anhang 5. Radionuklid A 1. in Bq. Ac-225 (a) Ac-227 (a) Ac Ag Ag-108m (a) Ag-110m (a) 1 Anhang 5 Auszug aus der Tabelle 2.2.7.7.2.1 der Anlage zur 15. Verordnung zur Änderung der Anlagen A und B zum ADR-Übereinkommen vom 15. Juni 2001 (BGBl. II Nr. 20 S. 654), getrennter Anlagenband zum

Mehr

Lösungen zu den Übungen zur Experimentalvorlesung AC

Lösungen zu den Übungen zur Experimentalvorlesung AC Lösungen zu den Übungen zur Experimentalvorlesung AC 1. Stöchiometrisches Rechnen 1.1. n (S = mol n (S 8 = 0,5 mol 1.. n (P = 8 mol n (P = mol 1.3. m (P =,8 g m (P =,8 g m (P = 1, g 1.. m (1/3 As 3+ =

Mehr

PC II Kinetik und Struktur. Kapitel 5. Symmetrie

PC II Kinetik und Struktur. Kapitel 5. Symmetrie PC II Kinetik und Struktur Kapitel 5 Symmetrie Symmetrie Wozu? Symmetrieoperationen, Punktgruppen, Charakterentafeln Symmetrie von Molekülen, Orbitalen, Schwingungen 1 Was ist Symmetrie? 2 Symmetrie -

Mehr

PC II Kinetik und Struktur. Kapitel 5. Symmetrie

PC II Kinetik und Struktur. Kapitel 5. Symmetrie PC II Kinetik und Struktur Kapitel 5 Symmetrie Symmetrie Wozu? Symmetrieoperationen, Punktgruppen, Charakterentafeln Symmetrie von Molekülen, Orbitalen, Schwingungen 1 Was ist Symmetrie? 2 Symmetrie -

Mehr

Seminar zum Praktikum Anorganische Chemie III III

Seminar zum Praktikum Anorganische Chemie III III Seminar zum Praktikum Anorganische hemie III III Metallorganische hemie Dr. J. Wachter IR-Teil 4 www.chemie.uni-regensburg.de/anorganische_hemie/scheer/lehre.html www.chemie.uniregensburg.de/anorganische_hemie/wachter/lehre.html

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Hybridisierung, sp3-hybridorbitale, Tetraeder, sp2-hybridorbitale: Dreieck, sp- Hybridorbitale: lineare Anordnung, Oktetterweiterung, Mesomerie/Resonanz Thema

Mehr

Übung 11 (Chemie der Elemente der Gruppen 17 und 18)

Übung 11 (Chemie der Elemente der Gruppen 17 und 18) Übung 11 (Chemie der Elemente der Gruppen 17 und 18) Literatur: Housecroft Chemistry, Kap. 22.12-13 1. Prüfungsaufgabe W2013 a) Vergleichen Sie die Eigenschaften des Chlors mit folgenden Elementen. Setzen

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 92 Grundlagen der Allgemeinen und Anorganischen Chemie 3. Das Periodensystem der Elemente 93

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Wiederholung der letzten Vorlesungsstunde: Thema: Chemische Bindungen II

Wiederholung der letzten Vorlesungsstunde: Thema: Chemische Bindungen II Wiederholung der letzten Vorlesungsstunde: Thema: Chemische Bindungen II Elektronenpaarbindung, Elektronegativität, polare Atombindung, Dipolmoment, Hybridisierung von Atomorbitalen, sp 3 -, sp 2 -, sp-hybridorbitale,

Mehr

4.2 Kovalente Bindung. Theorie der kovalenten Bindung, Gilbert Newton Lewis (1916)

4.2 Kovalente Bindung. Theorie der kovalenten Bindung, Gilbert Newton Lewis (1916) 4.2 Kovalente Bindung Theorie der kovalenten Bindung, Gilbert Newton Lewis (1916) Treten Atome von Nichtmetallen miteinander in Wechselwirkung, kommt es nicht zu einer Übertragung von Elektronen. Nichtmetallatome

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Chemische Bindungen, starke, schwache Bindungen, Elektronenpaarbindung, bindende und freie Elektronenpaare, Oktettregel, Edelgaskonfiguration, Lewis-Formeln,

Mehr

Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln

Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln Periodensystem Physik und Chemie Sprachkompendium und einfache Regeln 1 Begriffe Das (neutrale) Wasserstoffatom kann völlig durchgerechnet werden. Alle anderen Atome nicht; ein dermaßen komplexes System

Mehr

Molekülsymmetrie. A.1 Symmetriepunktgruppen. Symmetrieelemente und Symmetrieoperationen

Molekülsymmetrie. A.1 Symmetriepunktgruppen. Symmetrieelemente und Symmetrieoperationen A Molekülsymmetrie Jedes Molekül hat gewisse Symmetrieeigenschaften, es läßt sich einer bestimmten Symmetriepunktgruppe zuordnen. Damit können die Methoden der Gruppentheorie angewandt werden. Dies gestattet

Mehr

Auf n-kugeln einer dichtesten Packung kommen n-oktaederlücken und 2n-Tetraederlücken

Auf n-kugeln einer dichtesten Packung kommen n-oktaederlücken und 2n-Tetraederlücken 2.1 Kugelpackungen In einer Verbindung A m X n haben die X-Atome die Anordnung einer dichtesten Kugelpackung und A-Atome besetzen die Oktaederlücken (OL). Geben Sie die resultierenden Formeln A m X n an,

Mehr

Bindungen: Kräfte, die Atome zusammenhalten, Bindungsenergie,

Bindungen: Kräfte, die Atome zusammenhalten, Bindungsenergie, Wiederholung der letzten Vorlesungsstunde: Thema: Chemische h Bindungen Bindungen: Kräfte, die Atome zusammenhalten, Bindungsenergie, unterschiedliche Arten chemischer Bindungen, Atombindung, kovalente

Mehr

Elektronenspektrum von [Ti(H 2 O) 6 ] 3+

Elektronenspektrum von [Ti(H 2 O) 6 ] 3+ Elektronenspektrum von [Ti(H 2 O) 6 ] 3+ 3 2 1 15 20 25 30 1000 cm -1 e g hv t 2g Deutung der Elektronenspektren Absorption bestimmter Frequenzen des eingestrahlten Lichts durch: Elektronenübergang zwischen

Mehr

Trace Analysis of Surfaces

Trace Analysis of Surfaces Trace Analysis of Surfaces Metall-Spurenanalyse auf Oberflächen mittels VPD- Verfahren Babett Viete-Wünsche 2 Das Unternehmen Unser Serviceportofolio Die VPD-Analyse 3 Das Unternehmen: 4 Einige unserer

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung

Mehr

Anorganische Chemie 3 (3.1) Teil 1 - Symmetrie. Was ist Symmetrie?

Anorganische Chemie 3 (3.1) Teil 1 - Symmetrie. Was ist Symmetrie? Anorganische Chemie 3 (3.1) Teil 1 - Symmetrie Was ist Symmetrie? AC3 WS 2011/12 1 Symmetrie (griechisch = Ebenmaß, Gleichmaß) bedeutet die gesetzmäßige Wiederholung eines Motivs und damit die Übereinstimmung

Mehr

2. Exkurs: Spaziergang durch die Gruppentheorie!"#$

2. Exkurs: Spaziergang durch die Gruppentheorie!#$ 2. Exkurs: Spaziergang durch die Gruppentheorie $ Gruppentheorie ein durchaus kompliziertes Teilgebiet der Mathematik!" Gegenstand: systematische Behandlung von Symmetrie!" Bei Verzicht auf mathematische

Mehr

Röntgenstrukturanalyse von Einkristallen

Röntgenstrukturanalyse von Einkristallen Strukturmethoden: Röntgenstrukturanalyse von Einkristallen Sommersemester 2017 Christoph Wölper Institut für Anorganische Chemie der Universität Duisburg-Essen Wiederholung Was bisher geschah Symmetrie,

Mehr

Symmetrie im Raum An Hand der platonischen Körper

Symmetrie im Raum An Hand der platonischen Körper Symmetrie im Raum An Hand der platonischen Körper Simon Steurer 25.6.2013 Historisches Platonische Körper Vorüberlegungen Oktaeder Hexaeder Tetraeder Dodekaeder & Ikosaeder Historisches benannt nach Platon

Mehr

Ligandbeiträge g zum VE-Zählen

Ligandbeiträge g zum VE-Zählen Die 18 Valenzelektronen-Regel 18 VE-Regel basiert auf VB-Betrachtung lokalisierter Bindungen und besagt: Stabile ÜM-Komplexe liegen vor, wenn die Summe der Metall-d-Elektronen und der Elektronen, die von

Mehr

g g 1 = g 1 g = e. (79)

g g 1 = g 1 g = e. (79) B Anhang B B.1 Kristallographische Symmetriegruppen B.1.1 Definition Eine Menge G = {g 1, g 2,...,g k,... } von Elementen g k nennt man eine Gruppe, wenn die Verknüpfung (Operator: ) der Elemente g k die

Mehr

- komplizierte anorganische oder metallorganische Fragmente oder Moleküle werden auf einfache organische Teilchen zurückgeführt

- komplizierte anorganische oder metallorganische Fragmente oder Moleküle werden auf einfache organische Teilchen zurückgeführt 2) Isolobalanalogie (Hoffmann) - isolobal bezeichnet die Ähnlichkeit der Grenzorbitale zweier Fragmente - da Grenzorbitale einer Verbindung deren Chemie sehr deutlich prägen, bedeuten ähnliche Grenzorbitale

Mehr

Wiederholung der letzten Vorlesungsstunde

Wiederholung der letzten Vorlesungsstunde Wiederholung der letzten Vorlesungsstunde Festkörper, ausgewählte Beispiele spezieller Eigenschaften von Feststoffen, Kohlenstoffmodifikationen, Nichtstöchiometrie, Unterscheidung kristalliner und amorpher

Mehr

Einführungskurs 7. Seminar

Einführungskurs 7. Seminar ABERT-UDWIGS- UNIVERSITÄT FREIBURG Einführungskurs 7. Seminar Prof. Dr. Christoph Janiak iteratur: Riedel, Anorganische Chemie,. Aufl., 00 Kapitel.8.0 und Jander,Blasius, ehrb. d. analyt. u. präp. anorg.

Mehr

k.com Vorlesung Geomaterialien 2. Doppelstunde Kristallographische Grundlagen Prof. Dr. F.E. Brenker

k.com Vorlesung Geomaterialien 2. Doppelstunde Kristallographische Grundlagen Prof. Dr. F.E. Brenker k.com Vorlesung Geomaterialien 2. Doppelstunde Kristallographische Grundlagen Prof. Dr. F.E. Brenker Institut für Geowissenschaften FE Mineralogie JWG-Universität Frankfurt Netzebene Translation: Verschiebung,

Mehr

Klausur zur Vorlesung Symmetrie in Chemie und Spektroskopie

Klausur zur Vorlesung Symmetrie in Chemie und Spektroskopie Klausur zur Vorlesung Symmetrie in Chemie und Spektroskopie Zulässige Hilfsmittel: Charakterentafeln, Schema Hierarchie der Punktgruppen SS 6 Prof. Dr. B. Dick Aufgabe 1 (15P): Finden Sie die Punktgruppe

Mehr

Anorganische Chemie II

Anorganische Chemie II Anorganische Chemie II Christian Lehmann 11. Mai 2004 Inhaltsverzeichnis I Komplexchemie 2 1 Aufbau und Eigenschaften von Komplexen 2 2 Nomenklatur 2 3 Der räumliche Aufbau von Komplexen 3 3.1 Koordinationszahlen

Mehr

5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5.

5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5. 5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5. Atomradien 5.6. Atomvolumina 5.7. Dichte der Elemente 5.8. Schmelzpunkte

Mehr

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Das Gitter Kristalle bestehen

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

Kristallstruktur und Mikrostruktur Teil I Vorlesung 3

Kristallstruktur und Mikrostruktur Teil I Vorlesung 3 Kristallstruktur und Mikrostruktur Teil I Vorlesung 3 1 Wiederholung Punktsymmetrie - Erkennung 1/ Eine Punktsymmetrie-Gruppe {G} mit Ordnung N hat N Punktsymmetrieoperationen G i, i = 1,2, N. aber nur

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2012/13 Christoph Wölper Universität Duisburg-Essen Symmetrie Kombination von Symmetrie-Elementen Symmetrie Kombination von Symmetrie-Elementen

Mehr

1 Konzept der Gruppe. 1.1 Allgemeine Nomenklatur. 1.2 Gruppenaxiome 1 KONZEPT DER GRUPPE 1

1 Konzept der Gruppe. 1.1 Allgemeine Nomenklatur. 1.2 Gruppenaxiome 1 KONZEPT DER GRUPPE 1 1 KONZEPT DER GRUPPE 1 In dieser Vorlesung sollen spektroskopische Auswahlregeln, die auf der Symmetrie von Molekülen basieren, vorgestellt werden. Mit Hilfe dieser Regeln lassen sich optische und Schwingungs-Spektren

Mehr

MO-Theorie: Molekülorbitale, Bindungsordnung, Molekülorbitaldiagramme von F 2, O 2, N 2, H 2 O, Benzol, Wasserstoffbrückenbindungen

MO-Theorie: Molekülorbitale, Bindungsordnung, Molekülorbitaldiagramme von F 2, O 2, N 2, H 2 O, Benzol, Wasserstoffbrückenbindungen Wiederholung der letzten Vorlesungsstunde: Thema: Chemische Bindungen VI Molkülorbitaltheorie II MO-Theorie: Molekülorbitale, Bindungsordnung, Molekülorbitaldiagramme von F 2, O 2, N 2, H 2 O, Benzol,

Mehr

Anlage 1. Messzeit: 10 s. Impulszählung (bei Ratemeteranzeige ist S min bei gleicher Messzeit größer als bei Impulszählung)

Anlage 1. Messzeit: 10 s. Impulszählung (bei Ratemeteranzeige ist S min bei gleicher Messzeit größer als bei Impulszählung) Anlage 1 Mindestens erforderliches Oberflächenansprechvermögen von festinstallierten Hand-, Fuß-, Kleider und Ganzkörper-Kontaminationsmessgräten (Schuhdetektor) sowie von tragbaren Kontaminationsmessgeräten

Mehr

2. Punktgruppen/Kristallklassen

2. Punktgruppen/Kristallklassen Symmetrie mit konstantem Punkt M+K-Basiskurs Kristallographie und Beugung, WS 2018/2019, C. Röhr 2.1. Einleitung Definitionen, Nomenklatur, Klassifizierung I: Rotationen (SO) /Drehachsen (SE) II: Spiegelung

Mehr

Hexagonal dichtest gepackte Struktur

Hexagonal dichtest gepackte Struktur Hexagonal dichtest gepackte Struktur Auch diese Struktur ist sehr wichtig, da sie von sehr vielen Systemen angenommen wird (kein Bravaisgitter). Das einfach hexagonale Bravais-Gitter (in 3-dim): zwei-dim:

Mehr

Schrödinger-Gleichung

Schrödinger-Gleichung Schrödinger-Gleichung abgeleitet aus Teilchen-Welle-Dualismus (de Broglie) Ψ = Ε Ψ Der amiltonian enthält kinetische und potentielle Energie aller Teilchen wirkt auf die Wellenfunktion Ψ. Ψ 2 beschreibt

Mehr

2. Punktgruppen/Kristallklassen

2. Punktgruppen/Kristallklassen 2. Punktgruppen/Kristallklassen Symmetrie mit konstantem Punkt M+K-Basiskurs Kristallographie und Beugung, WS 2016/2017, C. Röhr 2.1. Einleitung Definitionen, Nomenklatur, Klassifizierung I: Rotationen

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 26. April 2002 Mathematische Definition

Mehr

Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02

Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02 Chemische Bindung locker bleiben Wie halten Atome zusammen? positiv Welche Atome können sich verbinden? power keep smiling Chemische Bindung Die chemischen Reaktionen spielen sich zwischen den Hüllen der

Mehr

6. Seminar. Prof. Dr. Christoph Janiak. Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002

6. Seminar. Prof. Dr. Christoph Janiak. Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002 ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG 6. Seminar Prof. Dr. Christoph Janiak Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002 Riedel, Anorganische Chemie, 5. Aufl., 2002

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

3. Seminar. Prof. Dr. Christoph Janiak. Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002

3. Seminar. Prof. Dr. Christoph Janiak. Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002 ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG 3. Seminar Prof. Dr. Christoph Janiak Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002 Riedel, Anorganische Chemie, 5. Aufl., 2002

Mehr

H Wasserstoff. O Sauerstoff

H Wasserstoff. O Sauerstoff He Helium Ordnungszahl 2 Atommasse 31,8 268,9 269,7 0,126 1,25 H Wasserstoff Ordnungszahl 1 Atommasse 14,1 252,7 259,2 2,1 7,14 1 3,45 1,38 Li Lithium Ordnungszahl 3 Atommasse 13,1 1330 180,5 1,0 0,53

Mehr

Wie kommen Metalle vor? CaO, MgO, Al 2 O 3, CaCO 3, CaSO 4 vs. Cu 2 S, HgS, PbS. Welche Kombinationen führen zu hohen Oxidationsstufen?

Wie kommen Metalle vor? CaO, MgO, Al 2 O 3, CaCO 3, CaSO 4 vs. Cu 2 S, HgS, PbS. Welche Kombinationen führen zu hohen Oxidationsstufen? HSAB-Prinzip Wie kommen Metalle vor? CaO, MgO, Al 2 O 3, CaCO 3, CaSO 4 vs. Cu 2 S, HgS, PbS Welche Kombinationen führen zu hohen Oxidationsstufen? XeO 6 4, ClO 4, MnO 4, MnS 4, ClS 4 Warum entsteht der

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen Inhaltsverzeichnis Teil II: Gruppen 2 3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen.................. 2 3.1.1 Gruppen.......................................... 2 3.1.2 Untergruppen.......................................

Mehr

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper Strukturmethoden: Röntgenstrukturanalyse von Einkristallen Sommersemester 2012 Christoph Wölper Christoph Wölper christoph.woelper@uni-due.de http://www.uni-due.de/~adb297b Vorlesungs-Script unter: http://www.uni-due.de/~adb297b/ss2012/strukturmethoden_vorlesung.pdf

Mehr

AC I (AC) HS 2011 Übungen + Lösungen Serie 10

AC I (AC) HS 2011 Übungen + Lösungen Serie 10 rof. A. Togni, D-CHAB, HCI H 239 AC I (AC) HS 2011 Übungen ösungen Serie 10 Koordinationschemie A 1. rinzipiell liessen sich sechs iganden () in einem Metallkomplex M 6 nicht nur oktaedrisch sondern auch

Mehr

zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe

zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe BGBl. II - Ausgegeben am 22. Mai 2006 - Nr. 191 1 von 148 Anlage 1 zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 A. Allgemeines Voraussetzungen

Mehr

D-MATH Tommaso Goldhirsch. Serie 4. C h (g) = hgh 1, L h (g) = hg

D-MATH Tommaso Goldhirsch. Serie 4. C h (g) = hgh 1, L h (g) = hg Serie 4 Aufgabe 1 Wahr oder Falsch Es sei G eine Gruppe. Für h G betrachten wir die Abbildungen C h, L h : G G, C h (g) = hgh 1, L h (g) = hg genannt Konjugation beziehungsweise Linksmultiplikation. Welche

Mehr

OC 3 - Stereochemie. Allgemeine Hintergründe

OC 3 - Stereochemie. Allgemeine Hintergründe OC 3 - Stereochemie Allgemeine Hintergründe Einführung Folie Nr. 2 3-dimensionale Anordnung (relativ/absolut) in der realen Welt sind extrem wichtig Bild rechts: http://de.wikipedia.org/wiki/pfefferminz,

Mehr

Allgemeine Mineralogie - Kristallographie. Diamant

Allgemeine Mineralogie - Kristallographie. Diamant Allgemeine Mineralogie - Kristallographie Diamant Bravaisgitter Aus den fünf 2-D Gittern können durch Translation in die dritte Dimension insgesamt 14 Bravaisgitter erzeugt werden Einteilung der Bravais

Mehr

Strukturchemie. Kristallstrukturen. Elementstrukturen. Kugelpackungen. Kubisch dichte Kugelpackung. Lehramt 1a Sommersemester

Strukturchemie. Kristallstrukturen. Elementstrukturen. Kugelpackungen. Kubisch dichte Kugelpackung. Lehramt 1a Sommersemester Kugelpackungen Kubisch dichte Kugelpackung Lehramt 1a Sommersemester 2010 1 Kugelpackungen: kubisch dichte Packung (kdp, ccp) C B A A C B A C B A C Lehramt 1a Sommersemester 2010 2 Kugelpackungen Atome

Mehr

Rahmenbedingungen und Ansatzpunkte zur Steigerung der Rohstoffproduktivität

Rahmenbedingungen und Ansatzpunkte zur Steigerung der Rohstoffproduktivität 7. BMBF Forum für Nachhaltigkeit Forschung für Nachhaltigkeit Berlin, 2. bis 4. November 2010 C5 Rohstoffproduktivität bis 2020 verdoppeln Ist das noch zu schaffen? Rahmenbedingungen und Ansatzpunkte zur

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 4 (WS 2015/16) 1. Abgabetermin: Donnerstag, 19. November.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 4 (WS 2015/16) 1. Abgabetermin: Donnerstag, 19. November. Algebra I Prof. Dr. M. Rost Übungen Blatt 4 (WS 2015/16) 1 Abgabetermin: Donnerstag, 19. November http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Thema heute: Grundlegende Ionenstrukturen

Thema heute: Grundlegende Ionenstrukturen Wiederholung der letzten Vorlesungsstunde Einfache Metallstrukturen, Dichtestpackung von "Atomkugeln", N Oktaeder-, 2N Tetraederlücken, Hexagonal-dichte Packung, Schichtfolge ABAB, hexagonale Elementarzelle,

Mehr

AC II Übung 3 Abgabe Mittwoch, 11. März 2009

AC II Übung 3 Abgabe Mittwoch, 11. März 2009 3.1 Rotes PbO a) Skizzieren Sie die idealisierte Struktur von PbO (rot) in perspektivischer Darstellung (eine Elementarzelle). Pb-Atome: weiss, O-Atome: orange. b) Geben Sie die Koordinationspolyeder und

Mehr

Festk0203_ /11/2002. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:

Festk0203_ /11/2002. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können: Festk234 37 11/11/22 2.9. Drehungen und Drehinversionen Bereits kennen gelernt: Translationssymmetrie. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:

Mehr

Ausarbeitung zum Vortrag Symmetrie in der Molekülphysik

Ausarbeitung zum Vortrag Symmetrie in der Molekülphysik WWU Münster Institut für Theoretische Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Ausarbeitung zum Vortrag Symmetrie in der Molekülphysik Marcel Hahn, m hahn07@uni-muenster.de

Mehr

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 1 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 1 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 1 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Teil. 1. Kristallstrukturbestimmung

Mehr

Chrom(VI)-Ersatz auf Zink

Chrom(VI)-Ersatz auf Zink Ulmer Gespräch 1 Chrom(VI)-Ersatz auf Zink Nachbehandlungsverfahren in der Praxis Dr. Rolf Jansen und Patricia Preikschat,, D-64673 Zwingenberg Themen: Wonach wird gesucht? Eigenschaften sechswertiger

Mehr

Semestralklausur Einführung in die Algebra für M, MCS, LaG

Semestralklausur Einführung in die Algebra für M, MCS, LaG Fachbereich Mathematik Prof. Dr. Jürgen Bokowski Dipl.-Math. Hasan Gündoğan Dr. Lars Schewe Wintersemester 2007/2008 4. Februar 2008 Semestralklausur Name in Druckschrift:......................... Vorname

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung

Mehr

Die 18 Valenzelektronen-Regel

Die 18 Valenzelektronen-Regel Die 18 Valenzelektronen-Regel 18 VE-Regel basiert auf VB-Betrachtung lokalisierter Bindungen und besagt: Stabile ÜM-Komplexe liegen vor wenn die Summe der Metall-d-Elektronen und der Elektronen, die von

Mehr

Probeklausur zur anorganischen Chemie II

Probeklausur zur anorganischen Chemie II Probeklausur zur anorganischen Chemie II Prof. Dr. K. Heinze Johannes Gutenberg-Universität Mainz Institut für Anorganische und Analytische Chemie xx. xxxx xxx xx - xx Uhr, C01 Beantworten Sie die Fragen

Mehr

2. Struktur von Festkörpern

2. Struktur von Festkörpern . Struktur von Festkörpern Energie-Minimum wird erreicht, wenn jedes Atom möglichst dieselbe Umgebung hat Periodische Anordnung von Atomen. Periodische Anordnung erleichtert theoretische Beschreibung erheblich.

Mehr

Stereochemie organischer Verbindungen

Stereochemie organischer Verbindungen Stereochemie organischer Verbindungen Stereochemische Prinzipien 1.1 Symmetrie, Symmetrieoperationen, Punktgruppen Der Begriff Stereochemie (griech: stereos = Feststoff) bezieht sich auf die Betrachtung

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zur Vorlesung Anorganische Chemie III Wintersemester 2015/16 Christoph Wölper Institut für Anorganische Chemie der Universität Duisburg-Essen Wiederholung Was bisher geschah # Darstellungen für

Mehr

Synthese, Struktur, Bindung

Synthese, Struktur, Bindung -Metallcarbonyl-Kationen: Synthese, Struktur, Bindung Universität Regensburg Anorganisches Kolloquium 2006/2007 Oliver Härtl Predominantly -Bonded Metal Carbonyl Cations( -Carbonyls): New Synthetic, Structural,

Mehr

Klausur zu den Übungen AAC I. Studienordnung: alt Bachelor

Klausur zu den Übungen AAC I. Studienordnung: alt Bachelor Klausur zu den Übungen AAC I am 6. Februar 2009 Name: Matrikelnummer: Studienordnung: alt Bachelor Aufg. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 /Note max. Punkte 5 2 2 3 3 9 6 7 4 4 6 4 4 5 64 erzielte Punkte

Mehr

Einführung in die Algebra 3. Übung

Einführung in die Algebra 3. Übung Einführung in die Algebra 3. Übung Lösungsvorschlag Gruppenübung G 9 (Zyklenzerlegung) ( ) 1 2 3 4 5 6 7 8 9 Gegeben sei σ = S 6 3 7 4 8 1 2 9 5 9. G 10 (Zykeln) 1. Bestimmen Sie die kanonische Zerlegung

Mehr

4. Isomerie von Komplexverbindungen

4. Isomerie von Komplexverbindungen 4. Isomerie von Komplexverbindungen 4. Isomerie bei Koordinationsverbindungen Grundsätzlich unterscheidet man Konstitutionsisomerie Strukturisomerie) und Stereoisomerie (Konfigutationsisomerie). Konstitutionsisomerie:

Mehr

D-MATH Tommaso Goldhirsch. Serie 3

D-MATH Tommaso Goldhirsch. Serie 3 Serie 3 Aufgabe 1 Sei G eine Gruppe und X eine Teilmenge von G. Die von X erzeugte Untergruppe von G ist die kleinste Untergruppe von G die X enthält. (Dass es eindeutig eine "kleinste" gibt wird in der

Mehr

O ist gegenüber C 2. invariant. Allgemein bezeichnet man mit C n. ist symmetrisch gegenüber, das JCl Ion gegenüber C 4

O ist gegenüber C 2. invariant. Allgemein bezeichnet man mit C n. ist symmetrisch gegenüber, das JCl Ion gegenüber C 4 107 KAPITEL J Symmetrien 1. Einleitung a) Warum Symmetriebetrachtungen? Je komplizierter die Probleme, desto mehr spielen Symmetriebetrachtungen eine Rolle. Die Symmetriebetrachtungen in der Molekülphysik

Mehr

zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe

zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe BGBl. II - Ausgegeben am 22. Mai 2006 - Nr. 191 1 von 148 Anlage 1 zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 A. Allgemees Voraussetzungen

Mehr

4 Matrixdarstellung von Symmetrieoperationen

4 Matrixdarstellung von Symmetrieoperationen 4 MATRIXDARSTELLUNG VON SYMMETRIEOPERATIONEN 4 Konsistenz der minimalen Symmetrieanalyse: fehlende Symmetrieelemente? Beispiel 3: Punktgruppe D h Im Schema (3.1) wird die Punktgruppe D h durch Auffinden

Mehr

6. Edelgase. Gliederung. 6.1 Ursprung und physikalische Eigenschaften

6. Edelgase. Gliederung. 6.1 Ursprung und physikalische Eigenschaften Gliederung 6. Edelgase 6.1 Ursprung und physikalische Eigenschaften 6.2 Gewinnung 6.3 Edelgasverbindungen 6.4 Das VSEPR Modell 6.5 Verwendung 6.6 Gasentladungslampen 6.7 129 Xe-NMR-Spektroskopie Folie

Mehr

GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II

GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II Universität Bielefeld WS 2012/13 GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II DR. PHILIPP LAMPE Rat sucht man deshalb, weil man die einzige Lösung kennt, aber nichts davon wissen will. Erica Jong

Mehr

4. Isomerie von Komplexverbindungen

4. Isomerie von Komplexverbindungen 4. Isomerie von Komplexverbindungen 4. Isomerie bei Koordinationsverbindungen Grundsätzlich unterscheidet man Konstitutionsisomerie Strukturisomerie) und Stereoisomerie (Konfigutationsisomerie). Konstitutionsisomerie:

Mehr

Algebra I. (c) Der Homomorphismus ϕ ist genau dann injektiv, wenn der Kern nur aus dem neutralen Element besteht. 2 ) = ϕ(g 1g 1.

Algebra I. (c) Der Homomorphismus ϕ ist genau dann injektiv, wenn der Kern nur aus dem neutralen Element besteht. 2 ) = ϕ(g 1g 1. WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 1. Übungsblatt Aufgabe 1: (1+1+1=3 P Seien G und H Gruppen und ϕ : G H ein Gruppenhomomorphismus. Zeigen Sie: (a Das Bild ϕ(g von ϕ ist eine Untergruppe

Mehr

Algebra I. Musterlösung 2. . (a) Aus Aufgabe 6a) wissen wir kgvp120, 12 21q 120. g g 1 ô g 1 1 g P H.

Algebra I. Musterlösung 2. . (a) Aus Aufgabe 6a) wissen wir kgvp120, 12 21q 120. g g 1 ô g 1 1 g P H. PD Dr. L. Halbeisen D-MATH Herbstsemester 2016 Untergruppen, Nebenklassen, Normalteiler Algebra I Musterlösung 2 13. Seien m 12 und n 21 und sei g ein Erzeuger der zyklischen Gruppe C mn. Weiter sei x

Mehr