Dr. Jan Friedrich Nr

Größe: px
Ab Seite anzeigen:

Download "Dr. Jan Friedrich Nr"

Transkript

1 Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 2005 Dr. Jan Friedrich Nr Jan.Friedrich@ph.tum.de Telefon 089/ Physik Department E8, Raum Aufgabe 5 : Rydberg-Atome Wird in einem freien Atom ein Elektron in einen Zustand mit sehr kleiner Bindungsenergie gebracht, so nimmt die Wellenfunktion einen sehr großen Raum ein, und die Struktur des restlichen Atoms spielt fast keine Rolle mehr. Man spricht dann von Rydberg-Zuständen. a. Zur Anregung der Rydberg-Zustände von Wasserstoff-Atomen werden zwei Laser benutzt. Ein Laser habe die feste Frequenz zur Photonenenergie E =.50 ev, der andere Laser sei durchstimmbar. Welche Wellenlängen muss man an diesem einstellen, um die Zustände mit n = 20, 30, 40, 50 und 00 anzuregen? (2 Punkte) Lösung: Im Rydberg-Atom sind die Bedingungen für das Bohrsche Korrespondenzprinzip gut erfüllt, d.h. dass für grosse Quantenzahlen n und Prozesse, bei denen nur kleine Energieänderungen E n auftreten, die quantenmechanische Beschreibung in die klassische übergeht. Aus der Bohrschen Beschreibung für das Wasserstoffatom ist bekannt, dass für die Anregung vom Niveau i zu f die Energie ( ) E Anr = E H () n 2 i erforderlich ist. Für die Anregung steht die Energie n 2 f E Anr = E Laser + E Laser2 = hc λ + hc λ 2 (2) zur Verfügung. Somit muss die Wellenlänge des zweiten Lasers λ 2 = E H ( n 2 f 2π c ) (3) E Laser n 2 i betragen. Mit c = MeV fm, E H = 3.60 ev, n i = (Grundzustand) und E Laser =.50 ev erhält man folgende Werte: n f λ 2 [nm]

2 b. Wie groß sind die Radien und Bindungsenergien dieser Zustände? Welche Linienbreite dürfen die Laser maximal haben, um nur einen Zustand n anzuregen? Veranschaulichen Sie die Orbitale für die Unterzustände mit maximalem Bahndrehimpuls l und l n. (4 Punkte) Lösung: (i) In Aufgabe 6b wurde bereits der Radius der Elektronenbahnen nach dem Bohrschen Atommodell berechnet: r n = n 2 4πɛ 0 2 m e e 2 = n 2 a B (4) Der Radius der ersten Bahn (Bohrscher Radius) berechnet sich zu a B = m (5) (ii) Die Bindungsenergie E n des n-ten Niveaus berechnet sich aus ( ) E = E H n 2 i n 2 f (6) im Grenzfall n i : E n = E H n 2 ; (7) Folgende Radien und Bindungsenergien werden für das Rydbergatom berechnet: n f r n [0 0 m] E n [mev] (iii) Die maximale Linienbreite, die ein Laser haben darf, um nur einen Zustand (z. B. n = 00) anzuregen, ist bestimmt durch die Energiedifferenz zum nächsten Niveau (im Beispiel n = 0): E = E 0 E 00 = E H ( Dies entspricht einer Frequenzunschärfe von ) mev (8) f = E/h 6.5 GHz (9) Laser emittiert Licht mit der Frequenz f =.50 ev/h Hz, Laser 2 mit f 2 = c/590.8 nm Hz. Die Auflösung von Laser muss also f/f sein und die des zweiten Lasers f/f (iv) Halbklassische Betrachtung: Sommerfeld hat das Bohrsche Atommodell erweitert. Ähnlich wie beim Planetensystem sind auch elliptische Bahnen des Elektrons möglich, was aber eine zusätzliche Quantenzahl l erfordert, die die Exzentrität der Ellipse beschreibt (große Exzentrität für kleine l). Aus den Sommerfeldschen Ergänzungen folgt direkt, dass für kleine l die klassischen Bahnen Ellipsen sind und durch das Zentralpotential eine Drehung ihrer großen Halbachse erfahren. Für l n werden die Bahnen immer kreisförmiger. 2

3 Skizze aus Demtröder Experimentalphysik 2. Auflage S. 26 Quantenmechanische Betrachtung: Betrachte 3D-Darstellung der Kugelflächenfunktion; für l max = m max = n und immer größer werdendes n wird die Kugelflächenfunktion zu einem flachen Torus. Die Radialwellenfunktion liefert, dass die Aufenthaltswahrscheinlichkeit des Elektrons mit großem n nach außen hin zunimmt (siehe Skript von Prof. Gross S. 03). c. Welche Änderung dieser Werte erwarten Sie (qualitativ) für Natrium-Atome, insbesondere für die Entartung der Drehimpuls-Unterzustände? (2 Punkte) Lösung: Das Leuchtelektron bewegt sich im elektrischen Feld der Kernladung +Z e, das durch die Z inneren Elektronen weitgehend abgeschirmt ist. Bei großer Entfernung r vom Kern ist die auf das Leuchtelektron wirkende Kernladung bis auf eine Ladungseinheit durch die inneren Elektronen kompensiert. Je näher das Elektron an den Kern gelangt, um so mehr unterliegt es der unabgeschirmten Wirkung der Kernladung. Für das effektive Potential V (r) gilt nicht mehr die Proportionalität zu r, welche verantwortlich für die l-entartung war. Im Sommerfeldschen Bild der so genannten Tauchbahnen erfährt ein Elektron mit unterschiedlichem Bahndrehimpuls l, d. h. unterschiedlicher Bahnform, unterschiedliche Abschirmung. Im Natrium ist die l-entartung von vornherein aufgehoben. 3

4 Skizze aus Haken-Wolf S. 78. Aufgabe 6 : Energiezustände im Heliumatom a. Die gesamte Abtrennarbeit für beide Elektronen beträgt für den Grundzustand des Heliums 79 ev. Berechnen Sie die Abtrennarbeit des zweiten Elektrons (Ionisation des einfach geladenen He + -Ions zum zweifach geladenen He ++ ) aus derjenigen des Elektrons im Wasserstoff-Atom, und folgern Sie die Bindungsenergie des ersten (Leucht-)Elektrons. (2 Punkte) Lösung: Bindungsenergie des einfach geladenen He + -Ions (Z = 2, n = ): E He + = Z2 e 4 m e 8ɛ 2 0h 2 n = E 2 H Z2 = 3.6 ev 4 = 54.4 ev (0) n2 mit der Bindungsenergie des Grundzustands des Ortho-Heliums E He-ortho = 79 ev folgt E He-Leucht = E He-ortho E He + = 79 ev ( 54.4) ev = 24.6 ev () b. Skizzieren Sie das Energiespektrum von Para- und Ortho-Helium. Erklären Sie die Nomenklatur der vorkommenden Zustände. Welche Feinstruktur beobachtet man beim Para- Helium, und welche Spinkopplung kann man folgern? (4 Punkte) Lösung: (i) Erklärung der Nomenklatur: LS-Kopplung (Russel-Sanders-Kopplung): Wenn sowohl die Kopplungsenergie zwischen den Bahndrehimpulsen der einzelnen Elektronen als auch die Kopplungsenergie zwischen den einzelnen Spins der Elektronen groß ist gegenüber der Kopplungsenergie zwischen dem Spin- und Bahnmoment, dann koppeln die einzelnen Bahndrehimpulse und Spins zu einem Gesamtdrehimpuls/Gesamtspin. Spezialfall Helium: Gesamtbahndrehimpuls L = l + l 2 ; L = L(L + ) L nimmt die Werte l + l 2, l + l 2,..., l l 2 an (für l l 2 ) 4

5 Gesamtspin S = s + s 2 ; S = S(S + ) S nimmt die Werte /2 ± /2 = 0, an. der Gesamtdrehimpuls der Elektronhülle ist dann J = L+ S; J = J(J + ) für S = 0 ist J = L (Singulett) für S = ist J = L +, L, L (Triplett) Vollständige Nomenklatur für Terme oder Energiezustände von Atomen: n 2S+ L J n: Hauptquantenzahl des am höchsten angeregten Elektrons (Leuchtelektrons) 2S + : Multiplizität Buchstabensymbol S, P, D, F,... für Gesamtbahndrehimpuls L = 0,, 2, 3,... tiefgestellter Index J für Gesamtdrehimpuls Skizze aus Mayer-Kuckuck Atomphysik 2. Auflage S. 59 (ii) Energiespektrum von Para- und Ortho-Helium Para-Helium: Spins antiparallel S = 0 Ortho-Helium: Spins parallel S = 5

6 Termschema aus Haken Wolf Atom- und Quantenphysik 7. Auflage S. 306 Es gibt keine Übergänge von Ortho- zu Para-Helium, denn Übergänge mit S 0 sind verboten (kein Spinflip). (iii) Im Para-Helium beobachtet man im Gegensatz zum Ortho-Helium keine Feinstruktur (alle Linien sind einfach), da die beiden Spins der Elektronen antiparallel sind und sich deshalb vektoriell zu S = 0 zusammensetzen. c. Welche Hauptquantenzahl hat der niedrigste Energiezustand der beiden Konfigurationen? In welchen Wellenlängen-Bereichen erwartet man entsprechend die Übergänge in den Grundzustand? (3 Punkte) Lösung: (i) Hauptquantenzahlen der niedrigsten Energiezustände i. Para-Helium: n =, S 0 6

7 ii. Ortho-Helium: n = 2, S 3 Der Zustand bei (s) 2 fehlt bei Ortho-Helium wegen des Pauliverbots: Die Spinwellenfunktion ist symmetrisch unter Austausch der beiden Elektronen, also muss die Ortswellenfunktion antisymmetrisch sein. (ii) Die Übergänge des Leuchtelektrons vom angeregten Zustand in den Grundzustand im Para-Helium überspannen einen Energiebereich von ev, liegen also im ultravioletten Spektralbereich. Bei Übergängen im Ortho-Helium beträgt die Energiedifferenz maximal 5 ev, das emittierte Licht liegt entsprechend im infraroten und sichtbaren Spektralbereich. Aufgabe 7 : Positronium Das Positron, das Antiteilchen des Elektrons hat dieselbe Masse und denselben Spin wie das Elektron, aber positive Ladung. An ihm kann ein Elektron (vor der Annihilation) gebunden werden, analog zur Bildung des Wasserstoff-Atoms. a. Berechnen Sie die Radien der Bohrschen Bahnen für den Elektron-Positron-Bindungszustand (Positronium). (3 Punkte) Lösung: Ansatz wie Aufgabe 6b: Zentripetalkraft (Coulombkraft) = Zentrifugalkraft Aber da im Positronium beide Teilchen dieselbe Masse aufweisen, halbiert der Schwerpunkt die Verbindungsstrecke. Beide Teilchen bewegen sich um den zwischen ihnen liegenden Schwerpunkt. Die reduzierte Masse µ = m e m e + m e + m e + = m e 2 führt dazu, dass der Bohrsche Radius des Positroniums zweimal so groß ist wie beim Wasserstoff: e 2 = µv2 4πɛ 0 r 2 r e 2 r = µ2 r 2 v 2 4πɛ 0 µ r n = n 2 4πɛ 0 2 m e 2 e2 = 2 n 2 a B n =µrv = n2 2 µ (2) b. Skizzieren Sie das Termschema von Positronium für die Zustände mit n = und n = 2. Berücksichtigen Sie dabei die Größenordnung der Hyperfein-Wechselwirkung. (2 Punkte) Lösung: Elektron und Positron haben ein dem Betrag nach gleiches magnetisches Moment, die magnetische Wechselwirkung ist jedoch viel größer (etwa 2000) als im H- Atom, wo das kleine magnetische Moment µ k des Protons nur eine kleine Hyperfein- Wechselwirkung bewirkt. Die Hyperfein-Wechselwirkung ist deshalb von der gleichen Größenordnung wie die Feinstruktur. 7

8 8

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme FERIENKURS EXPERIMENTALPHYSIK 4 Vorlesung 3 am 04.09.2013 Mehrelektronensysteme Hannah Schamoni, Susanne Goerke Inhaltsverzeichnis 1 Das Helium-Atom 2 1.1 Grundlagen und Ortswellenfunktion........................

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

5. Atome mit 1 und 2 Leucht-Elektronen 5.1 Alkali-Atome 5.2 He-Atom

5. Atome mit 1 und 2 Leucht-Elektronen 5.1 Alkali-Atome 5.2 He-Atom 5. Atome mit 1 und 2 Leucht- 5.1 Alkali-Atome 5.2 He-Atom 5.1 5.1 Alkali Atome ein "Leuchtelektron" Alkali Erdalkali 5.2 Tauchbahnen grosser Bahndrehimpuls l: geringes Eintauchen kleiner Bahndrehimpuls

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

Ferienkurs der TU München- - Experimentalphysik 4 Wasserstoffatom, Feinstruktur und Atome im Magnetfeld. Jonas J. Funke

Ferienkurs der TU München- - Experimentalphysik 4 Wasserstoffatom, Feinstruktur und Atome im Magnetfeld. Jonas J. Funke Ferienkurs der TU München- - Experimentalphysik 4 Wasserstoffatom, Feinstruktur und Atome im Magnetfeld Lösung Jonas J. Funke 0.08.00-0.09.00 Aufgabe (Drehimpulsaddition). : Gegeben seien zwei Drehimpulse

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 4. Vorlesung Mehrelektronensysteme Felix Bischoff, Christoph Kastl, Max v. Vopelius 27.08.2009 1 Atome mit mehreren Elektronen 1.1 Das Heliumatom Das Heliumatom besteht

Mehr

Übungsblatt 06. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 3. 6.

Übungsblatt 06. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 3. 6. Übungsblatt 06 PHYS400 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 2. 6. 2005 oder 3. 6. 2005 Aufgaben. Schätzen Sie die relativistische Korrektur E

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4

FERIENKURS EXPERIMENTALPHYSIK 4 FERIENKURS EXPERIMENTALPHYSIK 4 Musterlösung 3 - Mehrelektronensysteme Hannah Schamoni 1 Hundsche Regeln Ein Atom habe die Elektronenkonfiguration Ne3s 3p 6 3d 6 4s. Leite nach den Hundschen Regeln die

Mehr

Übersicht Teil 1 - Atomphysik

Übersicht Teil 1 - Atomphysik Übersicht Teil - Atomphysik Datum Tag Thema Dozent VL 3.4.3 Mittwoch Einführung Grundlegende Eigenschaften von Atomen Schlundt ÜB 5.4.3 Freitag Ausgabe Übung Langowski VL 8.4.3 Montag Kernstruktur des

Mehr

Quantenzahlen. A B z. Einführung in die Struktur der Materie 67

Quantenzahlen. A B z. Einführung in die Struktur der Materie 67 Quantenzahlen Wir haben uns bis jetzt nur mit dem Grundzustand des H + 2 Moleküls beschäftigt Wie sieht es aus mit angeregten Zuständen wie z.b. 2p Zuständen im H Atom? Bezeichnung der Molekülorbitale

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 3 Mehrelektronensysteme Markus Perner, Rolf Ripszam, Christoph Kastl 17.02.2010 1 Das Heliumatom Das Heliumatom als einfachstes Mehrelektronensystem besteht aus

Mehr

14. Atomphysik Physik für E-Techniker. 14. Atomphysik

14. Atomphysik Physik für E-Techniker. 14. Atomphysik 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

2.3. Atome in äusseren Feldern

2.3. Atome in äusseren Feldern .3. Atome in äusseren Feldern.3.1. Der Zeeman-Effekt Nobelpreis für Physik 19 (...researches into the influence of magnetism upon radiation phenomena ) H. A. Lorentz P. Zeeman Die Wechselwirkung eines

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 00 Übung - Musterlösung Kopplung von Drehimpulsen und spektroskopische Notation (*) Vervollständigen Sie untenstehende Tabelle mit den fehlenden Werten der Quantenzahlen.

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 04. Juni 2009 5 Fortsetzung: Atome mit mehreren Elektronen In der bisherigen

Mehr

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur VL 16 VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2. Paschen-Back Effekt VL15. Wasserstoffspektrum 15.1. Lamb Shift VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz

Mehr

Musterlösung 02/09/2014

Musterlösung 02/09/2014 Musterlösung 0/09/014 1 Streuexperimente (a) Betrachten Sie die Streuung von punktförmigen Teilchen an einer harten Kugel vom Radius R. Bestimmen Sie die Ablenkfunktion θ(b) unter der Annahme, dass die

Mehr

Ferienkurs Experimentalphysik Probeklausur - Musterlösung

Ferienkurs Experimentalphysik Probeklausur - Musterlösung Ferienkurs Experimentalphysik 4 2010 Probeklausur - Musterlösung 1 Allgemeine Fragen a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable eine Erhaltungsgröße darstellt? b) Was

Mehr

8.3 Die Quantenmechanik des Wasserstoffatoms

8.3 Die Quantenmechanik des Wasserstoffatoms Dieter Suter - 409 - Physik B3 8.3 Die Quantenmechanik des Wasserstoffatoms 8.3.1 Grundlagen, Hamiltonoperator Das Wasserstoffatom besteht aus einem Proton (Ladung +e) und einem Elektron (Ladung e). Der

Mehr

Atome mit mehreren Elektronen

Atome mit mehreren Elektronen Atome mit mehreren Elektronen In diesem Kapitel wollen wir uns in die reale Welt stürzen und Atome mit mehr als einem Elektron untersuchen. Schließlich besteht sie Welt nicht nur aus Wasserstoff. Die wesentlichen

Mehr

14. Atomphysik. Inhalt. 14. Atomphysik

14. Atomphysik. Inhalt. 14. Atomphysik Inhalt 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Zusammenfassung Wasserstoffatom

Zusammenfassung Wasserstoffatom Ach ja... ter Teil der Vorlesung Prof. Dr. Tobias Hertel Lehrstuhl II für Physikalische Chemie Institut für Physikalische und Theoretische Chemie Raum 13 Tel.: 0931 318 6300 e-mail: tobias.hertel@uni-wuerzburg.de

Mehr

14. Atomphysik Aufbau der Materie

14. Atomphysik Aufbau der Materie 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

VL Landé-Faktor (Einstein-deHaas Effekt) Berechnung des Landé-Faktors Anomaler Zeeman-Effekt

VL Landé-Faktor (Einstein-deHaas Effekt) Berechnung des Landé-Faktors Anomaler Zeeman-Effekt VL 14 VL13. Spin-Bahn-Kopplung (II) 13.1. Landé-Faktor (Einstein-deHaas Effekt) 13.2. Berechnung des Landé-Faktors 13.3. Anomaler Zeeman-Effekt VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2.

Mehr

6. Viel-Elektronen Atome

6. Viel-Elektronen Atome 6. Viel-Elektronen 6.1 Periodensystem der Elemente 6.2 Schwerere 6.3 L S und j j Kopplung 6.1 6.1 Periodensystem der Elemente 6.2 Auffüllen der Elektronen-Orbitale Pauliprinzip: je 1 Elektron je Zustand

Mehr

SS 2015 Supplement to Experimental Physics 2 (LB-Technik) Prof. E. Resconi

SS 2015 Supplement to Experimental Physics 2 (LB-Technik) Prof. E. Resconi Quantenmechanik des Wasserstoff-Atoms [Kap. 8-10 Haken-Wolf Atom- und Quantenphysik ] - Der Aufbau der Atome Quantenmechanik ==> Atomphysik Niels Bohr, 1913: kritische Entwicklung, die schließlich Plancks

Mehr

Ferienkurs Experimentalphysik Lösung zur Übung 2

Ferienkurs Experimentalphysik Lösung zur Übung 2 Ferienkurs Experimentalphysik 4 01 Lösung zur Übung 1. Ermitteln Sie für l = 1 a) den Betrag des Drehimpulses L b) die möglichen Werte von m l c) Zeichnen Sie ein maßstabsgerechtes Vektordiagramm, aus

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 08/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 3 Atome im Magnetfeld, Mehrelektronensysteme Florian Lippert & Andreas Trautner 9.08.01 Inhaltsverzeichnis 1 Atome im externen Magnetfeld 1 1.1 Elektronenspin-Resonanz...........................

Mehr

Die zu dieser Zeit bekannten 63 Elemente konnten trotzdem nach ihren chemischen Eigenschaften in einem periodischen System angeordnet werden.

Die zu dieser Zeit bekannten 63 Elemente konnten trotzdem nach ihren chemischen Eigenschaften in einem periodischen System angeordnet werden. phys4.022 Page 1 12.4 Das Periodensystem der Elemente Dimitri Mendeleev (1869): Ordnet man die chemischen Elemente nach ihrer Ladungszahl Z, so tauchen Elemente mit ähnlichen chemischen und physikalischen

Mehr

12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2 Spinmagnetismus (Stern-Gerlach-Versuch)

12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2 Spinmagnetismus (Stern-Gerlach-Versuch) VL 14 VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2 Spinmagnetismus (Stern-Gerlach-Versuch) VL13. Spin-Bahn-Kopplung (II) 13.1. Landé-Faktor (Einstein-deHaas Effekt) 13.2. Berechnung

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #25 03/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

FK Ex 4 - Musterlösung 08/09/2015

FK Ex 4 - Musterlösung 08/09/2015 FK Ex 4 - Musterlösung 08/09/2015 1 Spektrallinien Die Natrium-D-Linien sind emittiertes Licht der Wellenlänge 589.5932 nm (D1) und 588.9965 nm (D2). Diese charakteristischen Spektrallinien entstehen beim

Mehr

Physik IV (Atomphysik) Vorlesung SS Prof. Ch. Berger

Physik IV (Atomphysik) Vorlesung SS Prof. Ch. Berger Physik IV (Atomphysik) Vorlesung SS 2003 Prof. Ch. Berger Zusammenfassung Das Skript gibt eine gedrängte Zusammenfassung meiner Vorlesung an der RWTH Aachen im SS 2003. Verglichen mit vielen, auch neueren

Mehr

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Simon Lewis Lanz 2015 simonlanzart.de Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Zeeman-Effekt, Paschen-Back-Effekt, Fein- und Hyperfeinstrukturaufspaltung Fließt elektrischer Strom

Mehr

Das Rutherfordsche Atommodelle

Das Rutherfordsche Atommodelle Dieses Lernskript soll nochmals die einzelnen Atommodelle zusammenstellen und die Bedeutung der einzelnen Atommdelle veranschaulichen. Das Rutherfordsche Atommodelle Entstehung des Modells Rutherford beschoss

Mehr

Ferienkurs Experimentalphysik 4. Hannah Schamoni, Susanne Goerke. Lösung Probeklausur

Ferienkurs Experimentalphysik 4. Hannah Schamoni, Susanne Goerke. Lösung Probeklausur Ferienkurs Experimentalphysik 4 Hannah Schamoni, Susanne Goerke Lösung Probeklausur 1 Kurzfragen 1. Wie ist der Erwartungswert eines Operators definiert? Was bedeutet er?. Bestimme die spektroskopischen

Mehr

1 Atome mit mehreren Elektronen

1 Atome mit mehreren Elektronen 1 Atome mit mehreren Elektronen 1.1 Zentralfeldnäherungen Wir wollen uns in diesem Abschnitt die Elektronenkonfiguration (besser Zustandskonfiguration) von Atomen mit mehreren Elektronen klarmachen. Die

Mehr

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS 9.1 Wasserstoff-Molekül Ion H + 9. Wasserstoff-Molekül H 9.3 Schwerere Moleküle 9.4 Angeregte Moleküle 9.1 9.1 Wasserstoff-Molekül Ion H + Einfachstes Molekül: H + = p + e p + Coulomb-Potenzial: Schrödinger-Gleichung:

Mehr

8 Das Bohrsche Atommodell. 8. Das Bohrsche Atommodell

8 Das Bohrsche Atommodell. 8. Das Bohrsche Atommodell 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse, Isotopie 4. Atomkern und Hülle:

Mehr

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 09/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 09/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 09/09/15 Inhaltsverzeichnis Technische Universität München 1 Nachtrag: Helium-Atom 1 2 Röntgen-Spektren 2 3 Approximationen 6 3.1 Linear

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 8 VL8. VL9. VL10. Das Wasserstoffatom in der klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren

Mehr

Physik 4, Übung 12, Prof. Förster

Physik 4, Übung 12, Prof. Förster Physik 4, Übung 12, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

J(J + 1) + S(S + 1) L(L + 1) = g J m J µ B B 0 mit g J = 1 +. (A.2) 2J(J + 1) g J 2

J(J + 1) + S(S + 1) L(L + 1) = g J m J µ B B 0 mit g J = 1 +. (A.2) 2J(J + 1) g J 2 A. Atomdaten A.. Fein- und Hyperfeinstruktur im Magnetfeld A... Feinstruktur-Aufspaltung Aus der Spin-Bahn-Kopplung eines Zustandes ( J = L + S) ergibt sich die Zusatzenergie E LS = a {J (J + ) L(L + )

Mehr

Das Periodensystem der Elemente

Das Periodensystem der Elemente Q34 LK Physik 17. November 2015 Aufbau Die ermittelten Zusammenhänge der Elektronenzustände in der Atomhülle sollen dazu dienen, den der Elemente zu verstehen. Dem liegen folgende Prinzipien zugrunde:

Mehr

Probeklausur Musterlösung

Probeklausur Musterlösung Probeklausur Musterlösung Aufgabe 1 Gegeben sei eine 1-dimensionale Potentialstufe 0 für x < 0 V(x) = V 0 für x > 0 (a) Ein Teilchen der Masse m bewege sich mit definierter Energie E = 2V 0 in positive

Mehr

Das Wasserstoffatom Energiestufen im Atom

Das Wasserstoffatom Energiestufen im Atom 11. 3. Das Wasserstoffatom 11.3.1 Energiestufen im Atom Vorwissen: Hg und Na-Dampflampe liefern ein charakteristisches Spektrum, das entweder mit einem Gitter- oder einem Prismenspektralapparat betrachtet

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Atome und ihre Eigenschaften

Atome und ihre Eigenschaften Atome und ihre Eigenschaften Vom Atomkern zum Atom - von der Kernphysik zur Chemie Die Chemie beginnt dort, wo die Temperaturen soweit gefallen sind, daß die positiv geladenen Atomkerne freie Elektronen

Mehr

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle?

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? FK Ex 4-07/09/2015 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Betreuer Andreas Branding - 1 - Theorie Zur Erläuterung

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 211 Übung 2 - Musterlösung 1. Wasserstoffatom Die Wellenfunktionen für ein Elektron im Zustand 1s und 2s im Coulombpotential eines Kerns mit Kernladungszahl Z sind gegeben

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 16 09.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 16 Prof. Thorsten Kröll 09.06.2011 1 Online-Vorlesung

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 26. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 28. Atomphysik, Röntgenstrahlung, Bohrsches Atommodell Versuche: Elektronenbeugung Linienspektrum

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

Lösung zur Klausur

Lösung zur Klausur ösung zur Klausur 1..01 Aufgabe 1.) a) Hundsche Regeln: maximaler Spin, dann maximales Bahnmoment. Die beiden Elektronen im 4s kann man vernachlässigen, da sie weder Spin- noch Bahmoment beitragen. Damit

Mehr

Ferienkurs Experimentalphysik 4 WS09/10. Übung 3: Musterlösung

Ferienkurs Experimentalphysik 4 WS09/10. Übung 3: Musterlösung Ferienkurs Experimentalphysik 4 WS09/10 1 Elektronenpotential Übung 3: Musterlösung Wie sieht das Potential für das zweite Elektron im He-Atom aus, wenn das erste Elektron durch eine 1s-Wellenfunktion

Mehr

Physik IV - Schriftliche Sessionsprüfung Winter 2008/2009

Physik IV - Schriftliche Sessionsprüfung Winter 2008/2009 Physik IV - Schriftliche Sessionsprüfung Winter 2008/2009 9:00 11:00, Donnerstag, 29. Januar 2009, HG D 5.2 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt 6 Aufgaben auf FÜNF Blättern. Es können

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 28. Mai 2009 5 Atome mit mehreren Elektronen Im Gegensatz zu Ein-Elektronen

Mehr

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 9 - Atomphysik

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 9 - Atomphysik Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 9 - Atomphysik Sommersemester 2018 Vorlesung: Boris Bergues ausgegeben am 07.06.2018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 12.06.2018

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Helium-Atom Vorlesung: Mo 10h-12h, Do9h-10h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Dr. Jan Friedrich Nr Z 2. E n,z = µα2 n 2, n 2 E H und r µ n = µe

Dr. Jan Friedrich Nr Z 2. E n,z = µα2 n 2, n 2 E H und r µ n = µe Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 25 Dr. Jan Friedrich Nr. 8 2.6.25 Email Jan.Friedrich@ph.tum.de Telefon 89/289-2586 Physik Department E8, Raum 3564 http://www.e8.physik.tu-muenchen.de/teaching/phys4/

Mehr

Um das zu verdeutlichen, seien noch einmal Wasserstoff-Wellenfunktionen gezeigt:

Um das zu verdeutlichen, seien noch einmal Wasserstoff-Wellenfunktionen gezeigt: II. 3 Schalenmodell der Elektronen Bei den wasserstoff-ähnlichen Alkali-Atomen und gerade beim He hatten wir schon kurz über den Einfluß des effektiven Potentials auf die energetische Lage der verschiedenen

Mehr

1. Zusammenfassung: Masse in der klassischen Mechanik. 2. Energie des klassischen elektromagnetischen Feldes

1. Zusammenfassung: Masse in der klassischen Mechanik. 2. Energie des klassischen elektromagnetischen Feldes 2. Vorlesung 1. Zusammenfassung: Masse in der klassischen Mechanik + 1. Übungsaufgabe 2. Energie des klassischen elektromagnetischen Feldes Literatur: beliebiges Lehrbuch klassische Elektrodynamik z.b.

Mehr

Moleküle und Wärmestatistik

Moleküle und Wärmestatistik Moleküle und Wärmestatistik Musterlösung.08.008 Molekülbindung Ein Molekül bestehe aus zwei Atomkernen A und B und zwei Elektronen. a) Wie lautet der Ansatz für die symmetrische Wellenfunktion in der Molekülorbitalnäherung?

Mehr

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2 Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik Sommersemester 018 Vorlesung: Boris Bergues ausgegeben am 1.06.018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 6.06.018 Aufgabe

Mehr

Musterlösung Übung 9

Musterlösung Übung 9 Musterlösung Übung 9 Aufgabe 1: Elektronenkonfiguration und Periodensystem a) i) Lithium (Li), Grundzustand ii) Fluor (F), angeregter Zustand iii) Neon (Ne), angeregter Zustand iv) Vanadium (V), angeregter

Mehr

Wie wir wissen, besitzt jedes Elektron einen Bahndrehimpuls und einen Spin. bezeichnen die zugehörigen Einteilchenoperatoren mit. L i und S i (5.

Wie wir wissen, besitzt jedes Elektron einen Bahndrehimpuls und einen Spin. bezeichnen die zugehörigen Einteilchenoperatoren mit. L i und S i (5. http://oobleck.chem.upenn.edu/ rappe/qm/qmmain.html finden Sie ein Programm, welches Ihnen gestattet, die Mehrelektronenverteilung für alle Elemente zu berechnen und graphisch darzustellen. Einen Hatree-Fock

Mehr

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz phys4.024 Page 1 12.8 Eigenschaften von elektronischen Übergängen Übergangsfrequenz betrachte die allgemeine Lösung ψ n der zeitabhängigen Schrödinger-Gleichung zum Energieeigenwert E n Erwartungswert

Mehr

Instrumentelle Analytik Atom- und Molekülspektren Seite. 2. Optische Analyseverfahren (optische Spektroskopie) 2.1 Begriffe, Definitionen

Instrumentelle Analytik Atom- und Molekülspektren Seite. 2. Optische Analyseverfahren (optische Spektroskopie) 2.1 Begriffe, Definitionen . Optische Analyseverfahren (optische Spektroskopie).1 Begriffe, Definitionen N031_Wechselwirkung_b_BAneu.doc - 1/14 Alle optischen Analyseverfahren basieren auf der Wechselwirkung von Licht mit Materie.

Mehr

H LS = W ( r) L s, (2)

H LS = W ( r) L s, (2) Vorlesung 5 Feinstruktur der Atomspektren Wir betrachten ein Wasserstoffatom. Die Energieeigenwerte des diskreten Spektrums lauten E n = mα c n, (1 wobei α 1/137 die Feinstrukturkonstante, m die Elektronmasse

Mehr

Linienform- und Breite

Linienform- und Breite Linienform- und Breite a) Wodurch ist die Breite eienr Absorptions- (Emissions-) Linie gegeben? welche Anteile gibt es, welcher Anteil dominiert im Normalfall? Dopplerbreite, Stossverbreiterung, natuerliche

Mehr

selber sehr klein, der Feldgradrient aber beträchtlich ist? Was passiert in einem starken Feld mit einem vernachlässigbaren

selber sehr klein, der Feldgradrient aber beträchtlich ist? Was passiert in einem starken Feld mit einem vernachlässigbaren UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Georg Maret Experimentalphysik) Raum P 009, Tel. 0753)88-45 E-mail: Georg.Maret@uni-konstanz.de Prof. Dr. Matthias Fuchs Theoretische Physik) Raum P 907,

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Ferienkurs Experimentalphysik 4 - SS 2008

Ferienkurs Experimentalphysik 4 - SS 2008 Physik Departement Technische Universität München Karsten Donnay (kdonnay@ph.tum.de) Musterlösung latt 3 Ferienkurs Experimentalphysik - SS 28 1 Verständnisfragen (a) Was ist eine gute Quantenzahl? Was

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2016 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 2. Vorlesung, 17. 3. 2016 Wasserstoffspektren, Zeemaneffekt, Spin, Feinstruktur,

Mehr

VL 18 VL Laser VL Mehrelektronensysteme VL Periodensystem

VL 18 VL Laser VL Mehrelektronensysteme VL Periodensystem VL 18 VL 17 17.1. Laser (Light Amplification by Stimulated Emission of Radiation) Maser = Laser im Mikrowellenbereich, d.h. Microwave Amplification by Stimulated Emission of Radiation) VL 18 18.1. Mehrelektronensysteme

Mehr

Physikalisches Praktikum A 5 Balmer-Spektrum

Physikalisches Praktikum A 5 Balmer-Spektrum Physikalisches Praktikum A 5 Balmer-Spektrum Versuchsziel Es wird das Balmer-Spektrum des Wasserstoffatoms vermessen und die Rydberg- Konstante bestimmt. Für He und Hg werden die Wellenlängen des sichtbaren

Mehr

Spin- und Ortsraum-Wellenfunktion

Spin- und Ortsraum-Wellenfunktion Spin- und Ortsraum-Wellenfunktion Der Spin,,lebt in einem unabhängigen abstrakten Raum. 02.07.2013 Michael Buballa 1 Spin- und Ortsraum-Wellenfunktion Der Spin,,lebt in einem unabhängigen abstrakten Raum.

Mehr

Die Schrödingergleichung II - Das Wasserstoffatom

Die Schrödingergleichung II - Das Wasserstoffatom Die Schrödingergleichung II - Das Wasserstoffatom Das Wasserstoffatom im Bohr-Sommerfeld-Atommodell Entstehung des Emissionslinienspektrums von Wasserstoff Das Bohr-Sommerfeld sche Atommodell erlaubt für

Mehr

FK Experimentalphysik 3, Lösung 4

FK Experimentalphysik 3, Lösung 4 1 Sterne als schwarze Strahler FK Experimentalphysik 3, 4 1 Sterne als schwarze Strahler Betrachten sie folgende Sterne: 1. Einen roten Stern mit einer Oberflächentemperatur von 3000 K 2. einen gelben

Mehr

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16.

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 16 MICHAEL FEINDT & THOMAS KUH INSTITUT FÜ EXPEIMENTELLE KENPHYSIK Kernkraft KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

Vorlesung 9: Roter Faden: Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome. Spektren des Wasserstoffatoms. Bohrsche Atommodell

Vorlesung 9: Roter Faden: Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome. Spektren des Wasserstoffatoms. Bohrsche Atommodell Vorlesung 9: Roter Faden: Franck-Hertz Versuch Emissions- und Absorptionsspektren der Atome Spektren des Wasserstoffatoms Bohrsche Atommodell Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik4. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 6. Atom- und Molekülphysik 6.1 - GV Atom- und Molekülspektren Durchgeführt am 22.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Sarah Dirk Marius Schirmer

Mehr