Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Molybdän-Anode. LD Handblätter Physik P

Größe: px
Ab Seite anzeigen:

Download "Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Molybdän-Anode. LD Handblätter Physik P"

Transkript

1 Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik Feinstruktur der charakteristischen Röntgenstrahlung einer Molybdän-Anode P Versuchsziele Untersuchung der charakteristischen Röntgenstrahlung des Molybdän durch Bragg-Reflexion an einem NaCl-Einkristall in der fünften Beugungsordnung. Identifizierung der charakteristischen Linien K, K und K. Auflösung der Feinstruktur der K -Linie als Liniendublett und Bestimmung des Wellenlängenabstands innerhalb des Dubletts. Grundlagen Die charakteristischen Linien K und K der Röntgenstrahlung des Molybdän erweisen sich bei genauerer Betrachtung als Liniendubletts. Beide Dubletts können durch Bragg-Reflexion der Strahlung an einem NaCl-Einkristall aufgelöst werden, wenn in einer höheren Beugungsordnung gemessen wird. Ihre physikalische Natur ist jedoch unterschiedlich. Das Dublett K setzt sich zusammen aus der reinen K -Linie, also Übergängen angeregter Atome von der M-Schale in die K-Schale, und der K -Linie, also Übergängen von der N- in die K-Schale. Der Wellenlängenabstand zwischen beiden Linien beträgt lediglich 1,2 (siehe Tab. 1), sie können daher nur bei guter Auflösung getrennt beobachtet werden. Tab. 1: Übergangsenergien E, Wellenlängen und relative Anteile der charakteristischen Linien K, K und K des Molybdän (gewichtete Mittelwerte nach [1]) E kev relativer Anteil K 17,44 71,08 1,000 K 19,60 63,26 0,170 K 19,97 62,09 0,027 Dublett K + K 19,65 63, Ste Fig. 1 Schema zur Feinstruktur der charakteristischen Linie K Die Feinstruktur der K -Linie ist zurückzuführen auf die Feinstruktur der L-Schale und damit letztlich auf die Spin-Bahn- Kopplung der Elektronen. Tatsächlich besteht die L-Schale aus drei Unterniveaus, die in der Röntgenspektroskopie mit L I, L II, und L III bezeichnet werden. Übergänge von diesen Niveaus zur K-Schale unter Emission von Röntgenstrahlung unterliegen den Auswahlregeln l = ± 1, j = 0, ± 1 (I) für die Änderung des Bahndrehimpulses l und des Gesamtdrehimpulses j beim Übergang. Aus der L-Schale sind daher zwei Übergänge in die K-Schale erlaubt, die als K 1 und K 2 bezeichnet werden (siehe Fig. 1). Für Molybdän findet man in der Literatur die in Tab. 2 aufgelisteten Angaben. Der Wellenlängenabstand innerhalb des Dubletts K beträgt demnach nur = 0,43. Tab. 2: Wellenlängen (berechnet aus Literaturangaben [1] für die Übergangsenergien) und relative Anteile der K -Strahlung des Molybdän Linie relativer Anteil K 1 70,93 1,000 K 2 71,36 0,525 1

2 P LD Handblätter Physik Geräte 1 Röntgengerät / 11 1 Fensterzählrohr für -, -, - und Röntgenstrahlen zusätzlich: 1 PC mit Windows 98 -Vista Gegenstand des Versuchs ist die Auflösung dieser Feinstruktur durch Bragg-Reflexion an einem NaCl-Einkristall in höheren Beugungsordnungen. Dabei besteht nach dem Braggschen Reflexionsgesetz zwischen der Wellenlänge der einfallenden charakteristischen Strahlung und dem Glanzwinkel, unter dem ein Intensitätsmaximum zu erwarten ist, die Beziehung n = 2 d sin (II) n: Beugungsordnung, d = 282,01 : Netzebenenabstand von NaCl Fig. 2 Zur Definition der Winkelbreite und des Winkelabstandes zweier Intensitätsmaxima Fig. 3 Prinzipskizze zur Beugung von Röntgenstrahlen an einem Einkristall 1 Kollimator, 2 Einkristall, 3 Zählrohr Sicherheitshinweise Das Röntgengerät erfüllt die Vorschriften über die Bauart einer Schulröntgeneinrichtung und eines Vollschutzgeräts und ist als Schulröntgengerät und Vollschutzgerät bauartzugelassen. Durch die werksseitig eingebauten Schutz- und Abschirmvorrichtungen ist die Dosisleistung außerhalb des Röntgengeräts auf unter 1 Sv/h reduziert, einen Wert, der in der Größenordnung der natürlichen Strahlenbelastung liegt. Vor der Inbetriebnahme das Röntgengerät auf Unversehrtheit überprüfen (siehe Gebrauchsanweisung) Röntgengerät vor dem Zugriff Unbefugter schützen. Eine Überhitzung der Anode in der Röntgenröhre Mo ist zu vermeiden. Bei Einschalten des Röntgengeräts überprüfen, ob sich der Lüfter im Röhrenraum dreht. Das Goniometer wird ausschließlich über elektrische Schrittmotoren verstellt. Targetarm und Sensorarm des Goniometers nicht blockieren und nicht mit Gewalt verstellen. Dem Wellenlängenabstand zweier Linien entspricht daher ein Winkelabstand n = (III), 2 d cos der mit der Beugungsordnung größer wird. Vom Winkelabstand zu unterscheiden ist die Winkelbreite eines Intensitätsmaximums. Sie sollte kleiner sein als der Winkelabstand, damit die beiden Linien getrennt beobachtet werden können (siehe Fig. 2). Die Winkelbreite wird bestimmt durch den Eintrittsspalt des Zählrohres (siehe Fig. 3), dessen Abstand zum Kristall sowie durch die Divergenz des einfallenden Röntgenstrahls und bleibt auch bei höheren Beugungsordnungen konstant. Daher ist die Auflösung des Dubletts K in der Beugungsordnung n = 5 möglich. Aufbau Aufbau der Braggschen Anordnung: Einige wichtige Details zum Versuchsaufbau sind in Fig. 4 dargestellt. Im einzelnen sind folgende Schritte erforderlich (siehe auch Gebrauchsanweisung zum Röntgengerät): 2

3 LD Handblätter Physik Kollimator in die Kollimatoraufnahme (a) einbauen (Führungsnut beachten). Goniometer so an den Führungsstangen (d) befestigen, daß der Abstand s 1 zwischen der Spaltblende des Kollimators und dem Targetarm ca. 5 cm beträgt. Flachbandkabel (c) für die Goniometersteuerung aufstecken. Schutzkappe des Fensterzählrohrs entfernen, Fensterzählrohr in die Sensoraufnahme (e) einsetzen und Zählrohrkabel an die Buchse GM-Tube anschließen. Durch Verschieben des Sensorhalters (b) den Abstand s 2 zwischen dem Targetarm und der Spaltblende der Sensoraufnahme auf ca. 6 cm einstellen. Durchführung Programm Röntgengerät starten, korrekten Anschluß des Röntgengeräts überprüfen und ggf. vorhandene Meßdaten mit dem Button oder der Taste F4 löschen. Röhren-Hochspannung U = 35 kv, Emissionsstrom I = 1,00 ma und Winkelschrittweite = 0,1 wählen. Taster Coupled für die 2-Kopplung von Target und Sensor betätigen. a) Erste Beugungsordnung: Zur Aufzeichnung der ersten Beugungsordnung den unteren Grenzwert des Targetwinkels auf 5,5, den oberen Grenzwert auf 8,0 stellen und Meßzeit pro Winkelschritt t = 10 s wählen. Mit dem Taster SCAN Messung und Datenübertragung zum PC starten. Nach Beendigung der Messung zur Darstellung der Zählrate in Abhängigkeit von der Wellenlänge mit dem Button oder der Taste F5 Dialogfenster öffnen und Gitterabstand des NaCl eintragen. Die Meßreihe mit dem Button oder der Taste F2 unter einem passenden Namen speichern. Fig. 4 Versuchsaufbau in Braggscher Anordnung Targethalter mit Targettisch (f) einbauen. Rändelschraube (g) lösen, NaCl-Kristall flach auf den Targettisch legen, Targettisch mit Kristall vorsichtig bis zum Anschlag anheben und Rändelschraube gefühlvoll anziehen (dabei mögliches Verkanten durch leichtes Anpressen vermeiden). Ggf. die meßtechnische Nullposition des Goniometers justieren (siehe Gebrauchsanweisung zum Röntgengerät). Hinweise: NaCl-Kristalle sind hygroskopisch und zerbrechlich: Kristall möglichst trocken lagern, mechanische Belastungen auf den Kristall möglichst vermeiden, nur die Stirnseiten des Kristalls anfassen. Falls die Zählrate zu gering ist, kann der Abstand s 2 zwischen Target und Sensor etwas verkleinert werden. Der Abstand sollte allerdings nicht zu klein sein, da sonst die Winkelauflösung des Goniometers nicht mehr ausreicht. b) Fünfte Beugungsordnung: Zur Aufzeichnung der fünften Beugungsordnung den unteren Grenzwert des Targetwinkels auf 32,5, den oberen Grenzwert auf 40,5 stellen und die Meßzeit pro Winkelschritt t = 400 s wählen. Hinweis: Wegen der zu erwartenden geringen Zählrate ist eine vergleichsweise lange Meßzeit für eine zufriedenstellende statistische Genauigkeit erforderlich. Die gesamte Meßdauer beträgt bei dieser Einstellung 9 h. Mit dem Taster SCAN Messung und Datenübertragung zum PC starten. Nach Beendigung der Messung zur Darstellung der Zählrate in Abhängigkeit von der Wellenlänge mit dem Button oder der Taste F5 Dialogfenster öffnen und Gitterabstand des NaCl eintragen. Die Meßreihe mit dem Button oder der Taste F2 unter einem passenden Namen speichern. Vorbereitung der Meßwerterfassung mit PC: Ausgang USB mit PC verbinden Programm Röntgengerät unter Windows 98-Vista ggf. installieren (siehe Gebrauchsanweisung zum Röntgengerät) und gewünschte Sprache wählen. 3

4 P LD Handblätter Physik Meßbeispiel Fig. 5 zeigt das in erster Ordnung gemessene Beugungsspektrum, Fig. 6 die fünfte Beugungsordnung. a) Erste Beugungsordnung: Fig. 5 Beugungsspektrum der Röntgenstrahlung bei Bragg-Reflexion in erster Ordnung an einem NaCl- Einkristall Parameter: U = 35 kv, I = 1 ma, t = 10 s b) Fünfte Beugungsordnung: Fig. 6 Beugungsspektrum der Röntgenstrahlung bei Bragg-Reflexion in fünfter Ordnung an einem NaCl- Einkristall Parameter: U = 35 kv, I = 1 ma, t = 400 s 4

5 LD Handblätter Physik P Auswertung Durch Klicken mit der rechten Maustaste in das Diagrammfenster die Auswertungsmöglichkeiten des Programms Röntgengerät aufrufen und den Menüpunkt Koordinaten anzeigen aktivieren. Den Mauszeiger über die Peaks führen und die zugehörigen Werte n in der linken unteren Ecke des Auswertefensters ablesen. Ergebnis Die in der ersten Beugungsordnung zu beobachtenden charakteristischen Linien K und K spalten in Dubletts auf. Die Aufspaltung kann in der fünften Beugungsordnung beobachtet werden. Die Feinstruktur des Dubletts K ist auf die Feinstruktur der L-Schale zurückzuführen. Das Dublett K setzt sich aus der reinen K -Linie und der K -Linie zusammen. a) Erste Beugungsordnung: Tab. 3: Meßergebnisse der ersten Beugungsordnung und Literaturwert für die charakteristischen Wellenlängen (vgl. Tab. 1) Liniendublett Meßergebnis b) Fünfte Beugungsordnung: Literaturwert K 71,0 71,08 K + K 63,1 63,09 Zusatzinformation Auch die Linien K und K weisen streng genommen eine Feinstruktur auf, die auf die Feinstruktur der Schalen M und N zurückzuführen ist. Die Aufspaltung ist jedoch so gering, daß sie mit den vorhandenen Mitteln nicht beobachtet werden kann. In Tab. 1 sind die gewichteten Mittelwerte der jeweiligen Einzellinien aus dieser Substruktur angegeben. Literatur [1] C. M. Lederer and V. S. Shirley, Table of Isotopes, 7th Edition, 1978, John Wiley & Sons, Inc., New York, USA. Tab. 4: Meßergebnisse der fünften Beugungsordnung und Literaturwert für die charakteristischen Wellenlängen (vgl. Tab. 1 und 2) Linien Meßergebnis 5 Literaturwert K ,0 70,93 K ,4 71,36 K 316,7 63,34 63,26 K 310,3 62,06 62,09 Aufspaltung des Dubletts K : = 0,4 Literaturwert: = 0,43 Aufspaltung des Dubletts K + K : = 1,28 Literaturwert: = 1,17 LD DIDACTIC GMBH Leyboldstrasse 1 D Hürth Phone (02233) Telefax (02233) by LD Didactic GmbH Printed in the Federal Republic of Germany Technical alterations reserved

6

Atom- und Kernphysik. Bragg-Reflexion: Beugung von Röntgenstrahlen an einem Einkristall. LD Handblätter Physik P

Atom- und Kernphysik. Bragg-Reflexion: Beugung von Röntgenstrahlen an einem Einkristall. LD Handblätter Physik P Atom- und Kernphysik Röntgenphysik Physik der Atomhülle LD Handblätter Physik P6.3.3.1 Bragg-Reflexion: Beugung von Röntgenstrahlen an einem Einkristall Versuchsziele Untersuchung der Bragg-Reflexion an

Mehr

Festkörperphysik. Bragg-Reflexion: Bestimmung der Gitterkonstanten von Einkristallen. LD Handblätter Physik P Ste

Festkörperphysik. Bragg-Reflexion: Bestimmung der Gitterkonstanten von Einkristallen. LD Handblätter Physik P Ste Festkörperphysik Kristalleigenschaften Röntgenstrukturanalyse LD Handblätter Physik P7.1.2.1 Bragg-Reflexion: Bestimmung der Gitterkonstanten von Einkristallen Versuchsziele Untersuchung und Vergleich

Mehr

Atom- und Kernphysik. Untersuchung des Energiespektrums einer Röntgenröhre in Abhängigkeit von Hochspannung und Emissionsstrom. LD Handblätter Physik

Atom- und Kernphysik. Untersuchung des Energiespektrums einer Röntgenröhre in Abhängigkeit von Hochspannung und Emissionsstrom. LD Handblätter Physik Atom- und Kernphysik Röntgenphysik Physik der Atomhülle LD Handblätter Physik P6.3.3.2 Untersuchung des Energiespektrums einer Röntgenröhre in Abhängigkeit von Hochspannung und Emissionsstrom Versuchsziele

Mehr

Atom- und Kernphysik. Untersuchung der Wellenlängenabhängigkeit des Schwächungskoeffizienten. LD Handblätter Physik P

Atom- und Kernphysik. Untersuchung der Wellenlängenabhängigkeit des Schwächungskoeffizienten. LD Handblätter Physik P Atom- und Kernphysik Röntgenphysik Schwächung von Röntgenstrahlung LD Handblätter Physik P6.3.2.2 Untersuchung der Wellenlängenabhängigkeit des Schwächungskoeffizienten Versuchsziele Messung der Transmission

Mehr

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Silber-Anode. LD Handblätter Physik P

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Silber-Anode. LD Handblätter Physik P YB 2014-11 Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik Feinstruktur der charakteristischen Röntgenstrahlung einer Silber-Anode Versuchsziele Aufnahme des Spektrums

Mehr

Atom- und Kernphysik. Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung. Anode. LD Handblätter Physik P

Atom- und Kernphysik. Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung. Anode. LD Handblätter Physik P YB 2014-11 Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung einer Silber- Anode Versuchsziele Hochaufgelöste

Mehr

Atom- und Kernphysik. Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung. Anode. LD Handblätter Physik P

Atom- und Kernphysik. Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung. Anode. LD Handblätter Physik P YB 2014-11 Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung einer Eisen- Anode Versuchsziele Hochaufgelöste

Mehr

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Wolfram-Anode. LD Handblätter Physik P

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Wolfram-Anode. LD Handblätter Physik P Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik P6.3.6.5 Feinstruktur der charakteristischen Röntgenstrahlung einer Wolfram-Anode Versuchsziele g Aufnahme des Spektrums

Mehr

Atom- und Kernphysik. Untersuchung der Schwächung von Röntgenstrahlung in Abhängigkeit von Absorbermaterial. LD Handblätter Physik P6.3.2.

Atom- und Kernphysik. Untersuchung der Schwächung von Röntgenstrahlung in Abhängigkeit von Absorbermaterial. LD Handblätter Physik P6.3.2. Atom- und Kernphysik öntgenphysik Schwächung von öntgenstrahlung LD Handblätter Physik P6.3.2.1 Untersuchung der Schwächung von öntgenstrahlung in Abhängigkeit von Absorbermaterial und Absorberdicke Versuchsziele

Mehr

Atom- und Kernphysik. Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung. LD Handblätter Physik P6.3.6.17

Atom- und Kernphysik. Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung. LD Handblätter Physik P6.3.6.17 YB 014-11 Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung einer Gold-Anode Versuchsziele Hochaufgelöste

Mehr

5 Schwächung von Röntgenstrahlen in Abhängigkeit vom Absorbermaterial Messverfahren Messergebnisse Interpretation...

5 Schwächung von Röntgenstrahlen in Abhängigkeit vom Absorbermaterial Messverfahren Messergebnisse Interpretation... Inhaltsverzeichnis 1 Einleitung 2 2 Versuchsaufbau, allgemein 2 3 Messung des Nulleffekts 3 3.1 Messverfahren.................................. 3 3.2 Messergebnis.................................. 3 4

Mehr

Festkörperphysik. Laue-Aufnahme: Untersuchung der Gitterstruktur kristalliner Stoffe. LD Handblätter Physik P Ste

Festkörperphysik. Laue-Aufnahme: Untersuchung der Gitterstruktur kristalliner Stoffe. LD Handblätter Physik P Ste Festkörperphysik Kristalleigenschaften Röntgenstrukturanalyse LD Handblätter Physik P7.1.2.2 Laue-Aufnahme: Untersuchung der Gitterstruktur kristalliner Stoffe Versuchsziele Auswertung der Laue-Aufnahmen

Mehr

Festkörperphysik. Debye-Scherrer-Aufnahme: Bestimmung der Netzebenenabstände von polykristallinen Pulverproben. LD Handblätter Physik P7.1.2.

Festkörperphysik. Debye-Scherrer-Aufnahme: Bestimmung der Netzebenenabstände von polykristallinen Pulverproben. LD Handblätter Physik P7.1.2. Festkörperphysik Kristalleigenschaften Röntgenstrukturanalyse LD Handblätter Physik P7.1.2.3 Debye-Scherrer-Aufnahme: Bestimmung der Netzebenenabstände von polykristallinen Pulverproben Versuchsziele Auswertung

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen

Mehr

Messung der Intensität der -Strahlung hinter einem Absorber in Abhängigkeit von der Absorberdicke. Bestätigung des Lambertschen Schwächungsgesetzes.

Messung der Intensität der -Strahlung hinter einem Absorber in Abhängigkeit von der Absorberdicke. Bestätigung des Lambertschen Schwächungsgesetzes. Atom und Kernphysik Kernphysik -Spektroskopie LEYBOLD Handblätter Physik P6.5.5.3 Absorption von -Strahlung Versuchsziele Messung der Intensität der -Strahlung hinter einem Absorber in Abhängigkeit von

Mehr

Verwandte Themen Charakteristische Röntgenstrahlung, Energieniveaus, Auswahlregeln für Röntgenstrahlung, Termsymbole, Bragg-Gleichung.

Verwandte Themen Charakteristische Röntgenstrahlung, Energieniveaus, Auswahlregeln für Röntgenstrahlung, Termsymbole, Bragg-Gleichung. Trennung der charakteristischen TEP Verwandte Themen Charakteristische Röntgenstrahlung, Energieniveaus, Auswahlregeln für Röntgenstrahlung, Termsymbole, Bragg-Gleichung. Prinzip Die von einer Röntgenröhre

Mehr

Universität Stuttgart Stand Fakultät für Mathematik und Physik Fortgeschrittenen Praktikum

Universität Stuttgart Stand Fakultät für Mathematik und Physik Fortgeschrittenen Praktikum Universität Stuttgart Stand 14.04.11 Fakultät für Mathematik und Physik Fortgeschrittenen Praktikum Betreuer: Dr. Hubert Keller, keller@itap.uni-stuttgart.de, x65264 Leitung: Dr. B. Gompf, 0711-685-64949

Mehr

Ein neuer Detektor zur. Röntgenfluoreszenz. Referent:

Ein neuer Detektor zur. Röntgenfluoreszenz. Referent: Ein neuer Detektor zur Röntgenfluoreszenz Referent: Dr. Hans Joachim Prinz 006 Röntgenspektroskopie im Energiebereich von KeV bis 30 kev Referent: Dr. Hans Joachim Prinz LD Didactic GmbH Leyboldstr. 1

Mehr

Gebrauchsanweisung

Gebrauchsanweisung 06/05-W97-Iv/Sel Gebrauchsanweisung 559 938 Röntgenenergiedetektor (559 938) 1 Röntgenenergiedetektor 2 Sensorhalter 3 Abschwächerblende 4 Kalibriertarget 5 Stativstange mit Gewinde 1 Beschreibung Der

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen Seite 1 von 8 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen 1. Im Fadenstrahlrohr (siehe Abbildung 1) wird mit Hilfe einer

Mehr

Hinweis: Optional kann der Versuch auch mit einer Wolfram-Röntgenröhre ( ) durchgeführt werden.

Hinweis: Optional kann der Versuch auch mit einer Wolfram-Röntgenröhre ( ) durchgeführt werden. Die Intensität charakteristischer Röntgenstrahlung als Funktion von Anodenstrom und Anodenspannung TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Bragg-Gleichung, Intensität

Mehr

LD DIDACTIC Leyboldstrasse 1 D Hürth Phone: (02233) Fax: (02233)

LD DIDACTIC Leyboldstrasse 1 D Hürth Phone: (02233) Fax: (02233) Optik Lichtintensität Strahlungsgesetze LD Handblätter Physik P5.5.2.4 Das Wien sche Verschiebungsgesetz spektrale Aufnahme der Schwarzkörperstrahlung Beschreibung aus SpectraLab (467 250) LD DIDACTIC

Mehr

Mechanik. Aufnahme der Weg-Zeit-Diagramme geradliniger Bewegungen. LEYBOLD Handblätter Physik P

Mechanik. Aufnahme der Weg-Zeit-Diagramme geradliniger Bewegungen. LEYBOLD Handblätter Physik P Mechanik Translationsbewegungen des Massenpunktes Eindimensionale Bewegungen auf der Rollenfahrbahn LEYBOLD Handblätter Physik Aufnahme der Weg-Zeit-Diagramme geradliniger Bewegungen P1.3.2.4 Aufzeichnung

Mehr

TEP Bestimmung der Rydbergkonstanten, Moseleysches Gesetz und Abschirmkonstante

TEP Bestimmung der Rydbergkonstanten, Moseleysches Gesetz und Abschirmkonstante Bestimmung der Rydbergkonstanten, TEP Verwandte Themen Charakteristische Röntgenstrahlung, Bohrsches Atommodell, Energieniveaus, Bindungsenergie, Moseley-Gesetz, Rydberg- Frequenz, Abschirmkonstante, Bragg-Streuung.

Mehr

Versuchsziele Messung des Magnetfeldes am geraden Leiter und an kreisförmigen Leiterschleifen in Abhängigkeit von der Stromstärke.

Versuchsziele Messung des Magnetfeldes am geraden Leiter und an kreisförmigen Leiterschleifen in Abhängigkeit von der Stromstärke. Elektrizitätslehre Magnetostatik iot-savart-gesetz LD Handblätter Physik P3.3.4.1 Magnetfeldmessung am geraden Leiter und an kreisförmigen Leiterschleifen Versuchsziele Messung des Magnetfeldes am geraden

Mehr

Physikalisches Grundlagenpraktikum Versuch Röntgenbeugung

Physikalisches Grundlagenpraktikum Versuch Röntgenbeugung Physikalisches Grundlagenpraktikum Versuch Name:... Matrikelnummer:... Gruppe:... Antestat Datum bestanden nicht Unterschrift Prüfer bestanden Termin Nachholtermin 1. Protokollabgabe Datum Unterschrift

Mehr

Mechanik LD Handblätter Physik P Versuchsziele Grundlagen Kinetische Energie: Potentielle Energie und Gesamtenergie:

Mechanik LD Handblätter Physik P Versuchsziele Grundlagen Kinetische Energie: Potentielle Energie und Gesamtenergie: Mechanik Translationsbewegungen des Massenpunktes Eindimensionale Bewegungen auf einer Luftkissenfahrbahn LD Handblätter Physik P1.3.3.9 Kinetische Energie einer gleichmäßig beschleunigten Masse Aufzeichnung

Mehr

Optik. Bestimmung der Lichtgeschwindigkeit in verschiedenen Ausbreitungsmedien. LD Handblätter Physik P Wei

Optik. Bestimmung der Lichtgeschwindigkeit in verschiedenen Ausbreitungsmedien. LD Handblätter Physik P Wei Optik Lichtgeschwindigkeit Messung mit einem periodischen Lichtsignal LD Handblätter Physik Bestimmung der Lichtgeschwindigkeit in verschiedenen Ausbreitungsmedien P5.6.3.2 Versuchsziele Bestimmung der

Mehr

Gebrauchsanweisung

Gebrauchsanweisung 04/06-W97-Sel Gebrauchsanweisung 554 811 Röntgengerät (554 811) Röntgengerät, ohne Goniometer (554 812) Strahlenschutz, Verwaltungsmaßnahmen Vor einer Erstinbetriebnahme des Röntgengerätes ist unbedingt

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

Charakteristische Röntgenstrahlung von Wolfram

Charakteristische Röntgenstrahlung von Wolfram Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

Charakteristische Röntgenstrahlung von Molybdän

Charakteristische Röntgenstrahlung von Molybdän Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik September 2016 2 Versuch 24 Beugung von Röntgenstrahlung Röntgenstrahlen

Mehr

Mechanik. Bestätigung des ersten und zweiten Newtonschen Axioms an geradlinigen Bewegungen. LD Handblätter Physik P

Mechanik. Bestätigung des ersten und zweiten Newtonschen Axioms an geradlinigen Bewegungen. LD Handblätter Physik P Mechanik Translationsbewegungen des Massenpunktes Eindimensionale Bewegungen auf einer Luftkissenfahrbahn LD Handblätter Physik P1.3.3.7 Bestätigung des ersten und zweiten Newtonschen Axioms an geradlinigen

Mehr

Atom- und Kernphysik. Beobachtung der Aufspaltung der Balmerlinien an deuteriertem Wasserstoff (Isotopieaufspaltung) LD Handblätter Physik

Atom- und Kernphysik. Beobachtung der Aufspaltung der Balmerlinien an deuteriertem Wasserstoff (Isotopieaufspaltung) LD Handblätter Physik Ato- und Kernphysik Atohülle Baler-Serie des Wasserstoff LD Handblätter Physik P6.2.1.3 Beobachtung der Aufspaltung der Balerlinien an deuterierte Wasserstoff (Isotopieaufspaltung) P6.2.1.3 (a) P6.2.1.3

Mehr

TEP Monochromatisierung von charakteristischer Molybdän-Röntgenstrahlung

TEP Monochromatisierung von charakteristischer Molybdän-Röntgenstrahlung Monochromatisierung von charakteristischer TEP Verwandte Begriffe Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Absorption von Röntgenstrahlung, Absorptionskanten, Interferenz, Bragg-Streuung.

Mehr

Charakteristische Röntgenstrahlung von Kupfer

Charakteristische Röntgenstrahlung von Kupfer Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

Mechanik. Drittes Newtonsches Axiom und Stoßgesetze. LD Handblätter Physik P Sel/Wei

Mechanik. Drittes Newtonsches Axiom und Stoßgesetze. LD Handblätter Physik P Sel/Wei Mechanik Translationsbewegungen des Massenpunktes Impulserhaltung LD Handblätter Physik P1.3.4.4 Drittes Newtonsches Axiom und Stoßgesetze Aufzeichnung und Auswertung mit VideoCom Versuchsziele Aufzeichnung

Mehr

Charakteristische Röntgenstrahlung von Eisen

Charakteristische Röntgenstrahlung von Eisen Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen Strukturbestimmung von NaCl-Einkristallen TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Reziproke Gitter, Millersche- Indizes, Atomfaktor, Strukturfaktor,

Mehr

Atom- und Kernphysik. Compton-Effekt: Messung der Energie der gestreuten Photonen in Abhängigkeit vom Streuwinkel. LD Handblätter Physik P6.3.7.

Atom- und Kernphysik. Compton-Effekt: Messung der Energie der gestreuten Photonen in Abhängigkeit vom Streuwinkel. LD Handblätter Physik P6.3.7. Atom- und Kernphysik Röntgenphysik Compton-Effekt an Röntgenstrahlung LD Handblätter Physik P6.3.7. Compton-Effekt: Messung der Energie der gestreuten Photonen in Abhängigkeit vom Streuwinkel Versuhsziele

Mehr

Übungsaufgaben zur Experimentalphysik IV. X. Angeregte Zustände

Übungsaufgaben zur Experimentalphysik IV. X. Angeregte Zustände WALTHER-MEISSNER-INSTITUT Bayerische Akademie der Wissenschaften LEHRSTUHL FÜR TECHNISCHE PHYSIK E3 Technische Universität München PD DR. LAMBERT ALFF DATUM 18. Juni 00 Übungsaufgaben zur Experimentalphysik

Mehr

Charakteristische Röntgenstrahlung von Eisen

Charakteristische Röntgenstrahlung von Eisen Charakteristische Röntgenstrahlung von Eisen (Artikelnr.: P2540301) Curriculare Themenzuordnung Fachgebiet: ILIAS Bildungsstufe: Physik Lehrplanthema: Hochschule Unterthema: Moderne Physik Experiment:

Mehr

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4 Röntgenstrahlung Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Jakob Krämer Aktualisiert: am 12. 04. 2013 Röntgenstrahlung Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Welleneigenschaften, ionisiert Gase, regt manche Stoffe zum Leuchten

Mehr

Praktikumsprotokoll Diffraktometrie

Praktikumsprotokoll Diffraktometrie Versuchstag: 30.04.2009 Name: Christian Niedermeier Gruppe: 12 Betreuer: Verena Schendel Praktikumsprotokoll Diffraktometrie 1. Einleitung Durch Bestrahlung eines Einkristalls aus Silicium bzw. LiF mit

Mehr

Aufgabe 1: Kristallstrukturuntersuchungen

Aufgabe 1: Kristallstrukturuntersuchungen Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung

Mehr

501 - Röntgenspektren und Compton-Effekt

501 - Röntgenspektren und Compton-Effekt 51 - Röntgenspektren und Compton-Effekt 1. Aufgaben 1.1 Messen Sie das Röntgenspektrum von Molybdän in der ersten Beugungsordnung eines acl- Kristalls. 1.2 Messen Sie die Transmissionskurven von Kupfer

Mehr

c w -Wert: Abhängigkeit des Luftwiderstandes

c w -Wert: Abhängigkeit des Luftwiderstandes GENZ 2014-11 Mechanik Aero- und Hydrodynamik Luftwiderstandsmessungen LD Handblätter Physik c w -Wert: Abhängigkeit des Luftwiderstandes von der Körperform Messung der Windgeschwindigkeit mit Drucksensor

Mehr

Gebrauchsanweisung

Gebrauchsanweisung 06/05-W97-Hund Gebrauchsanweisung 575 471 Zählgerät S (575 471) 1 Beschreibung Das Zählgerät S ist ein Messgerät zur Zählung von Zählrohrimpulsen, Impulsraten oder anderen elektrischen Signalen sowie zur

Mehr

Elektrizitätslehre. Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld. LD Handblätter Physik P3.4.3.

Elektrizitätslehre. Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld. LD Handblätter Physik P3.4.3. Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld LD Handblätter Physik P3.4.3.1 Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld

Mehr

Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch.

Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Stichworte zur Vorbereitung: AVOGADRO-Konstante, Röntgenstrahlung, Röntgenröhre,

Mehr

Gebrauchsanweisung

Gebrauchsanweisung 06/05-W97-Sel Gebrauchsanweisung 337 501 Luftkissenfahrbahn (337 501) 1 Beschreibung Die Luftkissenfahrbahn ermöglicht die Überprüfung der Grundgesetze der Kinematik und der Dynamik am Beispiel eindimensionaler

Mehr

Anfängerpraktikum D11 - Röntgenstrahlung

Anfängerpraktikum D11 - Röntgenstrahlung Anfängerpraktikum D11 - Röntgenstrahlung Vitali Müller, Kais Abdelkhalek Sommersemester 2009 1 Messung des ersten Spektrums 1.1 Versuchsaufbau und Hintergrund Es sollte das Spektrum eines Röntgenapparates

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A10 - AVOGADRO-Konstante» Martin Wolf Betreuer: Herr Decker Mitarbeiter: Martin Helfrich Datum:

Mehr

A10 - AVOGADRO - Konstante

A10 - AVOGADRO - Konstante A10 - AVOGADRO - Konstante Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Stichworte zur Vorbereitung: AVOGADRO-Konstante, Röntgenstrahlung,

Mehr

Versuch 501. Röntgenspektren und Compton - Effekt. Den schematischen Aufbau einer Röntgenröhre zeigt Bild 1.

Versuch 501. Röntgenspektren und Compton - Effekt. Den schematischen Aufbau einer Röntgenröhre zeigt Bild 1. Versuch 501 Röntgenspektren und Compton - Effekt 1. Aufgaben 1.1 Messen Sie das Röntgenspektrum in der ersten Beugungsordnung eines NaCl- Kristalls. 1.2 Messen Sie die Transmissionskurven von Kupfer und

Mehr

T Regenerative Energien Photovoltaik

T Regenerative Energien Photovoltaik Regenerative Energien Photovoltaik Kat. Nr. 564 DE Solar 1. Auflage Version: 03BB05PME11W00 LD DIDACTIC GMBH. Leyboldstrasse 1. D-50354 Hürth. Phone (02233) 604-0. Fax (02233) 604-222. e-mail: info@ld-didactic.de

Mehr

Auflage Kap. 2.3, 2.4, Springer Verlag Teil 1, Kap. 4 Verlag der Wissenschaften 1971

Auflage Kap. 2.3, 2.4, Springer Verlag Teil 1, Kap. 4 Verlag der Wissenschaften 1971 A 10 AVOGADRO-Konstante 1 Aufgabenstellung Bestimmen Sie die AVOGADRO-Konstante a. mittels Röntgenbeugung b. mittels Ölfleckversuch 2 Theoretische Grundlagen Stichworte zu Vorbereitung: AVOGADRO-Konstante,

Mehr

Absorptionsgesetz für Röntgenstrahlung

Absorptionsgesetz für Röntgenstrahlung Absorptionsgesetz für TEP Verwandte Themen Bremsstrahlung, charakteristische, Bragg-Streuung, Absorptionsgesetz, Massenabsorptionskoeffizient, Absorptionskanten, Halbwertsdicke, Fotoeffekt, Compton- Effekt,

Mehr

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode.

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode. Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O 21 Röntgenstrahlung Aufgaben 1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2-Spektrums unter Verwendung

Mehr

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode.

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode. Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O 21 a Röntgenstrahlung Aufgaben 1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2-Spektrums unter

Mehr

Röntgenstrahlung (RÖN)

Röntgenstrahlung (RÖN) Röntgenstrahlung (RÖN) Manuel Staebel 2236632 / Michael Wack 2234088 1 Einleitung In diesem Versuch wird das Röntgenspektrum einer Molybdänanode auf einem x y Schreiber aufgezeichnet. Dies gelingt durch

Mehr

Röntgenstrahlung (RÖN)

Röntgenstrahlung (RÖN) Seite 1 Themengebiet: Atomphysik 1 Literatur 1 H. Krieger: Strahlungsmessung und Dosimetrie. 2. Auflage, Springer 2013 2 Grundlagen Mit dem Begriff Röntgenstrahlen bezeichnet man elektromagnetische Wellen,

Mehr

Strom-Spannungs-Kennlinie und Leistung einer Solarzelle

Strom-Spannungs-Kennlinie und Leistung einer Solarzelle Strom-Spannungs-Kennlinie und Leistung einer Solarzelle ENT Schlüsselworte Solarzelle, Kennlinie, Spannung, Stromstärke, Leistung, Widerstand, Innenwiderstand, Anpassung Prinzip Die Strom-Spannungs-Kennlinie

Mehr

Elektrizitätslehre. Kraftmessung an stromdurchflossenen Leitern im homogenen Magnetfeld. LEYBOLD Handblätter Physik P

Elektrizitätslehre. Kraftmessung an stromdurchflossenen Leitern im homogenen Magnetfeld. LEYBOLD Handblätter Physik P Elektrizitätslehre Magnetostatik Kraftwirkungen im magnetischen Feld LEYBOLD Handblätter Physik P3.3.3.2 Kraftmessung an stromdurchflossenen Leitern im homogenen Magnetfeld Aufzeichnung mit CASSY Versuchsziele

Mehr

Röntgenstrahlen (RÖN)

Röntgenstrahlen (RÖN) TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Röntgenstrahlen (RÖN) Inhaltsverzeichnis 07.11.2006 1.Einleitung...2 2.Photonenemission...2 2.1.Bremsstrahlung...2 2.2.Charakteristische Röntgenstrahlung...2

Mehr

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt

Mehr

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums Versuch A05: Bestimmung des Planck'schen Wirkungsquantums 25. April 2016 I Lernziele Entstehung des Röntgen-Bremskontinuums und der charakteristischen Röntgenstrahlung Zusammenhang zwischen Energie, Frequenz

Mehr

Elektrizitätslehre. Bestätigung des Coulombschen Gesetzes. LD Handblätter Physik P Wei. Elektrostatik Coulombsches Gesetz

Elektrizitätslehre. Bestätigung des Coulombschen Gesetzes. LD Handblätter Physik P Wei. Elektrostatik Coulombsches Gesetz Elektrizitätslehre Elektrostatik Coulombsches Gesetz LD Handblätter Physik Bestätigung des Coulombschen Gesetzes P3... Messung mit Kraftsensor und Newtonmeter Versuchsziele Messung der Kraft zwischen zwei

Mehr

Gebrauchsanweisung

Gebrauchsanweisung 06/05-W97-Hund Gebrauchsanweisung 575 451 Zählgerät P (575 451) 1 Beschreibung Das Zählgerät P ist ein Messgerät zur Zählung von Zählrohrimpulsen, Impulsraten oder anderen elektrischen Signalen sowie zur

Mehr

Anfängerpraktikum 3. Bericht: Röntgenstrahlung

Anfängerpraktikum 3. Bericht: Röntgenstrahlung Anfängerpraktikum 3 Bericht: Röntgenstrahlung Michael Seidling Timo Raab Wintersemester 17. Dezember 2012 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 2 Grundlagen 3 2.1 Röntgenstrahlung...............................

Mehr

Wie schwer ist eine Masse? S

Wie schwer ist eine Masse? S 1.1.2.1 Wie schwer ist eine Masse? S Eine Masse ist nicht nur träge, sondern auch schwer. Das soll bedeuten, dass nicht nur eine Kraft nötig ist, um eine Masse zu beschleunigen, sondern dass jede Masse

Mehr

TEP Diffraktometrisches Debye-Scherrer Diagramm einer Pulverprobe mit hexagonaler Gitterstruktur (Bragg-Brentano-Geometrie)

TEP Diffraktometrisches Debye-Scherrer Diagramm einer Pulverprobe mit hexagonaler Gitterstruktur (Bragg-Brentano-Geometrie) Diffraktometrisches Debye-Scherrer Diagramm einer TEP 5.4.3- Verwandte Themen Charakteristische Röntgenstrahlung, Monochromatisierung von Röntgenstrahlung, Kristallstrukturen, Bravais-Gitter, Reziproke

Mehr

Wie verhält sich eine Blattfeder bei Belastung?

Wie verhält sich eine Blattfeder bei Belastung? 1.1.2.2 Wie verhält sich eine Blattfeder S Blattfedern sind Metallplättchen, die sich unter Belastung elastisch verformen können: Wirkt eine Kraft auf eine Blattfeder, dann verformt sich diese. Charakteristisch

Mehr

Röntgenbeugung. 1. Grundlagen, Messmethode

Röntgenbeugung. 1. Grundlagen, Messmethode Röntgenbeugung 1. Grundlagen, Messmethode Beim Aufprall schneller Elektronen auf ein metallisches Anodenmaterial (hier: Kupfer) entsteht Röntgenstrahlung. Diese wird nach der Drehkristallmethode spektral

Mehr

A05. Röntgenspektren. (Duane-Huntsches-Gesetz) (1)

A05. Röntgenspektren. (Duane-Huntsches-Gesetz) (1) A05 Röntgenspektren Mit einem einfachen Röntgenspektrometer wird in Abhängigkeit von der Anodenspannung das Emissionsspektrum einer Röntgenröhre aufgenommen und das Plancksche Wirkungsquantum bestimmt.

Mehr

Röntgendiffraktometrie

Röntgendiffraktometrie Röntgendiffraktometrie Name: Matthias Jasch Matrikelnummer: 077 Mitarbeiter: Mirjam und Rahel Eisele Gruppennummer: 7 Versuchsdatum: 9. Mai 009 Betreuer: Verena Schendel 1 Einleitung Bei der Röntgendiffraktometrie

Mehr

Versuch 255 Röntgenspektrometer

Versuch 255 Röntgenspektrometer Versuch 255 Röntgenspektrometer NaCl-Kristall Computer mit Drucker Leuchtschirm mit CCD-Kamera (nur ein Aufbau vorhanden) II Literatur Standardwerke der Physik: Gerthsen, Bergmann-Schäfer, Tipler. Homepage

Mehr

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1 Abiturprüfung 2003 Vorschlag 2 Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1. Skizziere und beschreibe den Aufbau einer Röntgenröhre. Beschreibe kurz, wie Röntgenstrahlung entsteht.

Mehr

Optik Spektrometer Gitterspektrometer

Optik Spektrometer Gitterspektrometer Optik Spektrometer Gitterspektrometer LD Handblätter Physik P5.7.2.1 Ausmessung der Linienspektren von Edelgasen und Metalldämpfen mit einem Gitterspektrometer Versuchsziele Justierung des Gitterspektrometers

Mehr

Comptonstreuung von Röntgenstrahlung

Comptonstreuung von Röntgenstrahlung Comptonstreuung von TEP Verwandte Themen Röntgenstrahlen, Compton-Effekt, Compton-Wellenlänge, Ruheenergie, Absorption, Transmission, Energie- und Impulserhaltung, Bragg-Streuung. Prinzip Mittels einer

Mehr

AB_06_06 Röntgenstrahlung Bestimmung von h GK/LK. Gymn. Erftstadt Lechenich Dr. Jos. Fieger Straße Erftstadt

AB_06_06 Röntgenstrahlung Bestimmung von h GK/LK. Gymn. Erftstadt Lechenich Dr. Jos. Fieger Straße Erftstadt AB_06_06 Röntgenstrahlung Bestimmung von h GK/LK Unterrichtliche Voraussetzungen: vgl. Text Literaturangaben: Verfasser: Peter Bastgen Gymn. Erftstadt Lechenich Dr. Jos. Fieger Straße 50374 Erftstadt 1

Mehr

Versuch A12 Der COMPTON-Effekt. Untersuchen Sie die Winkelabhängigkeit der Energie der gestreuten RÖNTGENstrahlung infolge des COMPTON-Effektes

Versuch A12 Der COMPTON-Effekt. Untersuchen Sie die Winkelabhängigkeit der Energie der gestreuten RÖNTGENstrahlung infolge des COMPTON-Effektes Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Versuch A1 Der COMPTON-Effekt Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung Untersuchen Sie die Winkelabhängigkeit

Mehr

2.3 Abschirmung von Betastrahlen. Aufgabe. Welche Stoffe eignen sich zur Abschirmung von β-strahlen?

2.3 Abschirmung von Betastrahlen. Aufgabe. Welche Stoffe eignen sich zur Abschirmung von β-strahlen? Naturwissenschaften - Physik - Radioaktivität - 2 Strahlenarten und ihre Eigenschaften (P7300800) 2.3 Abschirmung von Betastrahlen Experiment von: Phywe Gedruckt: 6.0.203 6:22:32 intertess (Version 3.06

Mehr

Versuch A1 - Braggsche Reflexion und Röntgenspektrum. Abgabedatum: 28. Februar 2008

Versuch A1 - Braggsche Reflexion und Röntgenspektrum. Abgabedatum: 28. Februar 2008 Versuch A1 - Braggsche Reflexion und Röntgenspektrum Sven E Tobias F Abgabedatum: 28. Februar 2008 Inhaltsverzeichnis 1 Versuchsziel 3 2 Physikalischer Zusammenhang 3 2.1 Röntgenstrahlung...........................

Mehr

Röntgenstrahlung & Computertomographie.

Röntgenstrahlung & Computertomographie. Röntgenstrahlung & Computertomographie elektromagnetisches Spektrum Vergleichen Sie die Energie sichtbaren Lichtes und der Röntgenstrahlung miteinander! http://www.physik.uni-kl.de/beigang/forschungsprojekte/

Mehr

Einfluss der Anzahl der Rotorblätter

Einfluss der Anzahl der Rotorblätter Einfluss der Anzahl der Rotorblätter ENT Schlüsselworte Windenergie, Leistung, Windkraftanlage, Generator Prinzip In Europa sind derzeit relativ große metallische Formationen mit drei Rotorblättern als

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgabe ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

Aufgaben zu Röntgenstrahlen LK Physik 13/1 Sporenberg Roentgen_September_2011 Datum:

Aufgaben zu Röntgenstrahlen LK Physik 13/1 Sporenberg Roentgen_September_2011 Datum: Aufgaben zu Röntgenstrahlen LK Physik 13/1 Sporenberg Roentgen_September_2011 Datum: 08.09.2011 1.Aufgabe: In einem Röntgengerät fällt monochromatische Strahlung ( λ = 71 pm) auf die Oberfläche eines LiF-Kristalls.

Mehr

Comptonstreuung von Röntgenstrahlung

Comptonstreuung von Röntgenstrahlung Comptonstreuung von TEP Verwandte Themen Röntgenstrahlen, Compton-Effekt, Compton-Wellenlänge, Ruheenergie, Absorption, Transmission, Energie- und Impulserhaltung, Bragg-Streuung. Prinzip Mittels einer

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

10.6. Röntgenstrahlung

10.6. Röntgenstrahlung 10.6. Röntgenstrahlung Am 8. November 1895 entdeckte Wilhelm Conrad Röntgen in Würzburg die Röntgenstrahlung. Seine Entdeckung zählt zu den wohl bedeutendsten Entdeckungen in der Menschheitsgeschichte.

Mehr

Physik ea Klausur Nr Oktober 2013

Physik ea Klausur Nr Oktober 2013 Name: BE: / 77 = % Note: P. 1. Aufgabe: Röntgenstrahlung a. Skizziere den Aufbau einer Vorrichtung zur Herstellung eines gebündelten Röntgenstrahls, beschrifte ihre Bauteile und erläutere die Prozesse,

Mehr

Versuchsanleitung Laue-Experiment. F1-Praktikum, Versuch R2

Versuchsanleitung Laue-Experiment. F1-Praktikum, Versuch R2 Versuchsanleitung Laue-Experiment F1-Praktikum, Versuch R2 Inhaltsverzeichnis 1. Einleitung...3 2. Physikalischer Hintergrund...3 3. Versuchsaufbau...4 3.1 Die Laue-Apparatur...5 3.2 Das Kühlsystem...5

Mehr

1. Aufgabe a) Beschreibe den Schülerversuchsaufbau zur Dispersion von Licht. Notiere insbesondere die Namen und Aufgaben der einzelnen Objekte.

1. Aufgabe a) Beschreibe den Schülerversuchsaufbau zur Dispersion von Licht. Notiere insbesondere die Namen und Aufgaben der einzelnen Objekte. 1. Aufgabe a) Beschreibe den Schülerversuchsaufbau zur Dispersion von Licht. Notiere insbesondere die Namen und Aufgaben der einzelnen Objekte. Linie Wellenlänge /nm eigene Beobachtung Flint Kron Quarz

Mehr

Röntgenstrahlung für Nichtmediziner

Röntgenstrahlung für Nichtmediziner 1 Röntgenstrahlung für Nichtmediziner Vorbereitung: Erzeugung von Röntgenstrahlen, Funktionsweise einer Röntgenröhre, spektrale Zusammensetzung von Röntgenstrahlung, Eigenschaften von Röntgenstrahlung,

Mehr

Mechanik. LD Handblätter Physik. Messungen an selbstgebauten Tragflächen und Platten in einem Windkanal P

Mechanik. LD Handblätter Physik. Messungen an selbstgebauten Tragflächen und Platten in einem Windkanal P Mechanik Aero- und Hydrodynamik Messungen in einem Windkanal LD Handblätter Physik Messungen an selbstgebauten Tragflächen und Platten in einem Windkanal Versuchsziele Aerodynamischen Auftrieb und Strömungswiderstand

Mehr