Festkörperphysik. Bragg-Reflexion: Bestimmung der Gitterkonstanten von Einkristallen. LD Handblätter Physik P Ste

Größe: px
Ab Seite anzeigen:

Download "Festkörperphysik. Bragg-Reflexion: Bestimmung der Gitterkonstanten von Einkristallen. LD Handblätter Physik P Ste"

Transkript

1 Festkörperphysik Kristalleigenschaften Röntgenstrukturanalyse LD Handblätter Physik P Bragg-Reflexion: Bestimmung der Gitterkonstanten von Einkristallen Versuchsziele Untersuchung und Vergleich der Bragg-Reflexion an einem LiF- und einem NaCl-Einkristall Bestimmung der Gitterkonstanten a 0 von NaCl und LiF Grundlagen Das Braggsche Reflexionsgesetz beschreibt die Beugung ebener Wellen an einem Einkristall als selektive Reflexion der Wellen an einer Netzebenenschar im Kristall. Wegen der Periodizität des Kristalls weisen die Netzebenen einer Schar einen festen Abstand d auf. Eine einlaufende Welle mit der Wellenlänge wird mit maximaler Intensität reflektiert, wenn die Bragg-Bedingung n = 2 d sin (I) n: Beugungsordnung : Wellenlänge d: Netzebenenabstand Fig. 1 Räumliche Darstellung der NaCl-Struktur d: Abstand der Netzebenen in [1,0,0]-Richtung a 0 : Gitterkonstante. erfüllt ist (siehe Versuch P ). Der Winkel gibt die Richtung von einlaufender und auslaufender Welle zur Netzebenenschar an und wird häufig als Glanzwinkel bezeichnet. In einem kubischen Kristall mit NaCl-Struktur (vgl. Fig. 1) verlaufen die Netzebenen im einfachsten Fall parallel zu den Oberflächen der Einheitszellen des Kristalls. Ihr Abstand d entspricht hier der halben Gitterkonstante: d = a 0 (II) 2 Damit wird (I) zu einer Bestimmungsgleichung für die Gitterkonstante a 0 : n = a 0 sin (III) D.h. die Bestimmung von a 0 erfordert die Messung des Glanzwinkels bei bekannter Wellenlänge und Beugungsordnung n. Diese Methode wird genauer, wenn die Glanzwinkel auch in höheren Beugungsordnungen gemessen werden. Als Strahlung bekannter Wellenlänge wird im Versuch die charakteristische Röntgenstrahlung des Molybdän verwendet. Deren Wellenlängen sind in Tab. 1 angegeben Ste Tab. 1: Wellenlängen der charakteristischen Röntgenstrahlung des Molybdän (gewichtete Mittelwerte [1]) Linie K 71,08 K 63,09 Zum Nachweis der Röntgenstrahlen dient ein Geiger-Müller- Zählrohr, das zusammen mit dem Kristall gegenüber dem einfallenden Röntgenstrahl in 2 -Kopplung geschwenkt wird; d.h. das Zählrohr wird jeweils um einen doppelt so großen 1

2 P LD Handblätter Physik Geräte 1 Röntgengerät / 11 1 Fensterzählrohr für -, -, - und Röntgenstrahlen LiF-Einkristall für Bragg-Reflexion zusätzlich: 1 PC mit Windows 98 - Vista Winkel geschwenkt wie der Kristall (vgl. Fig. 2). Der Nullpunkt = 0 ist dadurch ausgezeichnet, daß Netzebenen und Zählrohrachse parallel zum einfallenden Röntgenstrahl ausgerichtet sind. Da die Netzebenen i.a. nicht exakt parallel zur Oberfläche des Kristalls liegen, muß die Nullpunktkalibrierung für jeden Kristall individuell vorgenommen werden. Sicherheitshinweise Das Röntgengerät erfüllt die Vorschriften über die Bauart einer Schulröntgeneinrichtung und eines Vollschutzgeräts und ist als Schulröntgengerät und Vollschutzgerät bauartzugelassen. Durch die werksseitig eingebauten Schutz- und Abschirmvorrichtungen ist die Dosisleistung außerhalb des Röntgengeräts auf unter 1 Sv/h reduziert, einen Wert, der in der Größenordnung der natürlichen Strahlenbelastung liegt. Vor der Inbetriebnahme das Röntgengerät auf Unversehrtheit überprüfen Fig. 2 Aufbau Prinzipskizze zur Beugung von Röntgenstrahlen an einem Einkristall und zur 2 -Kopplung zwischen Zählrohrwinkel und Streuwinkel (Glanzwinkel) 1 Kollimator, 2 Einkristall, 3 Zählrohr Aufbau der Braggschen Anordnung: Einige wichtige Details zum Versuchsaufbau sind in Fig. 3 dargestellt. Im einzelnen sind folgende Schritte erforderlich (siehe auch Gebrauchsanweisung zum Röntgengerät): Kollimator in die Kollimatoraufnahme (a) einbauen (Führungsnut beachten). Goniometer so an den Führungsstangen (d) befestigen, daß der Abstand s 1 zwischen der Spaltblende des Kollimators und dem Targetarm ca. 5 cm beträgt. Flachbandkabel (c) für die Goniometersteuerung aufstecken. Schutzkappe des Fensterzählrohrs entfernen, Fensterzählrohr in die Sensoraufnahme (e) einsetzen und Zählrohrkabel an die Buchse GM-Tube anschließen. (siehe Gebrauchsanweisung zum Röntgengerät). Röntgengerät vor dem Zugriff Unbefugter schützen. Eine Überhitzung der Anode in der Röntgenröhre Mo ist zu vermeiden. Bei Einschalten des Röntgengeräts überprüfen, ob sich der Lüfter im Röhrenraum dreht. Das Goniometer wird ausschließlich über elektrische Schrittmotoren verstellt. Targetarm und Sensorarm des Goniometers nicht blockieren und nicht mit Gewalt verstellen. Fig. 3 Versuchsaufbau in Braggscher Anordnung 2

3 LD Handblätter Physik P Durch Verschieben des Sensorhalters (b) den Abstand s 2 zwischen dem Targetarm und der Spaltblende der Sensoraufnahme auf ca. 6 cm einstellen. Targethalter mit Targettisch (f) einbauen. Target- und Sensorarm manuell mit dem Dreheinsteller Adjust waagerecht ausrichten und durch gleichzeitiges Drücken der Taster TARGET, COUPLED und β LIMITS die Stellung von Target und Sensor als meßtechnische Nullposition speichern (siehe Gebrauchsanweisung zum Röntgengerät). Vorbereitung der Meßwerterfassung mit PC: Ausgang USB mit PC verbinden Programm Röntgengerät unter Windows 98 - Vista ggf. installieren (siehe Gebrauchsanweisung zum Röntgengerät) und gewünschte Sprache wählen. Im Scan-Modus Coupled das Target um 10,2 zurückdrehen (evtl. auch zu negativen Werten!). Durch gleichzeitiges Drücken der Taster TARGET, COUPLED und β LIMITS die Stellung von Target und Sensor als meßtechnische Nullposition speichern. Aufzeichnung des Beugungsspektrums: Programm Röntgengerät starten, korrekten Anschluß des Röntgengeräts überprüfen und ggf. vorhandene Meßdaten mit dem Button oder der Taste F4 löschen. Meßzeit pro Winkelschritt t = 10 s und Winkelschrittweite = 0,1 wählen. Taster COUPLED für die 2 -Kopplung von Target und Sensor betätigen und den unteren Grenzwert des Targetwinkels auf 4, den oberen Grenzwert auf 34 stellen. Mit dem Taster SCAN Messung und Datenübertragung zum PC starten. Nach Beendigung der Messung die Meßreihe mit dem Button oder der Taste F2 unter einem passenden Namen speichern. Durchführung Hinweise: NaCl- und LiF-Kristalle sind hygroskopisch und zerbrechlich: Kristalle möglichst trocken lagern, mechanische Belastungen auf den Kristall möglichst vermeiden, nur die Stirnseiten des Kristalls anfassen. Falls die Zählrate zu gering ist, kann der Abstand s 2 zwischen Target und Sensor etwas verkleinert werden. Der Abstand sollte allerdings nicht zu klein sein, da sonst die Winkelauflösung des Goniometers nicht mehr zur Trennung der charakteristischen Linien K und K ausreicht. a) Bragg-Reflexion an einem LiF-Einkristall: Rändelschraube (g) lösen, LiF-Kristall flach auf den Targettisch legen, Targettisch mit Kristall vorsichtig bis zum Anschlag anheben und Rändelschraube gefühlvoll anziehen (dabei mögliches Verkanten durch leichtes Anpressen vermeiden). Röhren-Hochspannung U = 35,0 kv und Emissionsstrom I = 1,00 ma einstellen. Bestimmung der meßtechnischen Nullposition: Im Scan-Modus Coupled das Target mit dem Dreheinsteller Adjust bis etwa 10,2 drehen. Röhren-Hochspannung mit Taster HV on/off einschalten. Targetposition unverändert lassen und im Scan-Modus Sensor von Hand das Maximum der Zählrate für das erste Reflexionsmaximum der K a -Linie suchen. Sensor unverändert in der Position maximaler Zählrate lassen und im Scan-Modus Target von Hand das Maximum der Zählrate suchen. Abwechselnd in den Scan-Modi Sensor und Target überprüfen, ob das Maximum der Zählrate gefunden wurde. b) Bragg-Reflexion an einem NaCl-Einkristall: Target- und Sensorarm mit dem Taster Zero in die aktuelle Nullposition zurückfahren. LiF-Kristall entnehmen und NaCl-Kristall vorsichtig montieren. Bestimmung der meßtechnischen Nullposition: Im Scan-Modus Coupled das Target mit dem Dreheinsteller Adjust bis etwa 7,2 drehen. Röhren-Hochspannung mit Taster HV on/off einschalten. Targetposition unverändert lassen und im Scan-Modus Sensor von Hand das Maximum der Zählrate für das erste Reflexionsmaximum der K a -Linie suchen. Sensor unverändert in der Position maximaler Zählrate lassen und im Scan-Modus Target von Hand das Maximum der Zählrate suchen. Abwechselnd in den Scan-Modi Sensor und Target überprüfen, ob das Maximum der Zählrate gefunden wurde. Im Scan-Modus Coupled das Target um 7,2 zurückdrehen (evtl. auch zu negativen Werten!). Durch gleichzeitiges Drücken der Taster TARGET, COUPLED und β LIMITS die Stellung von Target und Sensor als meßtechnische Nullposition speichern. Aufzeichnung des Beugungsspektrums: Programm Röntgengerät erneut starten oder vorhandene Meßdaten mit dem Button oder der Taste F4 löschen. Taster COUPLED für die 2 -Kopplung von Target und Sensor betätigen und den unteren Grenzwert des Targetwinkels auf 4, den oberen Grenzwert auf 24 stellen. Mit dem Taster SCAN Messung und Datenübertragung zum PC starten. Nach Beendigung der Messung die Meßreihe mit dem Button oder der Taste F2 unter einem passenden Namen speichern. 3

4 P LD Handblätter Physik Meßbeispiel a) Bragg-Reflexion an einem LiF-Einkristall: Fig. 4 Beugungsspektrum der Röntgenstrahlung bei Bragg-Reflexion bis zur dritten Ordnung an einem LiF- Einkristall mit logarithmischer Darstellung der Zählrate R Parameter der Röntgenröhre: U = 35 kv und I = 1 ma b) Bragg-Reflexion an einem NaCl-Einkristall: Fig. 5 Beugungsspektrum der Röntgenstrahlung bei Bragg-Reflexion bis zur dritten Ordnung an einem NaCl- Einkristall mit logarithmischer Darstellung der Zählrate R Parameter der Röntgenröhre: U = 35 kv und I = 1 ma Auswertung Nacheinander bei beiden Beugungsspektren durch Klicken mit der rechten Maustaste in das Diagrammfenster die Auswertungsmöglichkeiten des Programms Röntgengerät aufrufen und den Menüpunkt Peakschwerpunkt berechnen wählen. Mit der linken Maustaste die Peaks jeweils über ihre gesamte Breite markieren und die Schwerpunkte als Glanzwinkel in einer Tabelle notieren (siehe Tab. 2 und 3). Zusätzlich zu jedem Glanzwinkel die Werte sin und n berechnen und die entsprechende Wertepaare in ein Diagramm eintragen (siehe Fig. 6). Die Ergebnisse liegen jeweils auf einer Ursprungsgeraden, deren Steigung gemäß (III) der Gitterkonstanten a 0 entspricht. 4

5 LD Handblätter Physik P Tab. 3: Glanzwinkel des NaCl-Kristalls 200 nλ 100 sin Linie n n 6,41 0,112 K 1 63,06 7,23 0,126 K 1 71,08 12,91 0,223 K 2 126,12 14,57 0,252 K 2 142,16 19,55 0,335 K 3 189,18 22,15 0,377 K 3 213,24 Fig ,1 0,2 0,3 0,4 0,5 sin ϑ Wertepaare n als Funktion von sin LiF: Quadrate, Geradensteigung = 404,5 NaCl: Kreise, Geradensteigung = 565,2 Ergebnis a) LiF-Kristall: Meßergebnis: a 0 = 404,5 Literaturwert [2]: a 0 = 402,7 Ionenradien [3]: 68 (Li + ), 133 (F ) Summe der Ionenradien: 201 Tab. 2: Glanzwinkel des LiF-Kristalls sin Linie n n 8,95 0,156 K 1 63,06 10,10 0,175 K 1 71,08 18,17 0,312 K 2 126,12 20,54 0,351 K 2 142,16 27,91 0,468 K 3 189,18 31,82 0,527 K 3 213,24 b) NaCl-Kristall: Meßergebnis: a 0 = 565,2 Literaturwert: a 0 = 564,02 Ionenradien [3]: 98 (Na + ), 181 (Cl ) Summe der Ionenradien: 279 Resümee: Das LiF-Gitter weist eine deutlich kleinere Gitterkonstante auf als das NaCl-Gitter, da die Radien der beteiligten Ionen kleiner ausfallen. Literatur [1] C. M. Lederer and V. S. Shirley, Table of Isotopes, 7th Edition, 1978, John Wiley & Sons, Inc., New York, USA. [2] Handbook of Chemistry and Physics, 52nd Edition ( ), The Chemical Rubber Company, Cleveland, Ohio, USA. [3] Charles Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc. New York, USA LD DIDACTIC GMBH Leyboldstrasse 1 D Hürth Phone (02233) Telefax (02233) by LD Didactic GmbH Printed in the Federal Republic of Germany Technical alterations reserved

6

Atom- und Kernphysik. Bragg-Reflexion: Beugung von Röntgenstrahlen an einem Einkristall. LD Handblätter Physik P

Atom- und Kernphysik. Bragg-Reflexion: Beugung von Röntgenstrahlen an einem Einkristall. LD Handblätter Physik P Atom- und Kernphysik Röntgenphysik Physik der Atomhülle LD Handblätter Physik P6.3.3.1 Bragg-Reflexion: Beugung von Röntgenstrahlen an einem Einkristall Versuchsziele Untersuchung der Bragg-Reflexion an

Mehr

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Molybdän-Anode. LD Handblätter Physik P

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Molybdän-Anode. LD Handblätter Physik P Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik Feinstruktur der charakteristischen Röntgenstrahlung einer Molybdän-Anode P6.3.6.1 Versuchsziele Untersuchung der charakteristischen

Mehr

Atom- und Kernphysik. Untersuchung des Energiespektrums einer Röntgenröhre in Abhängigkeit von Hochspannung und Emissionsstrom. LD Handblätter Physik

Atom- und Kernphysik. Untersuchung des Energiespektrums einer Röntgenröhre in Abhängigkeit von Hochspannung und Emissionsstrom. LD Handblätter Physik Atom- und Kernphysik Röntgenphysik Physik der Atomhülle LD Handblätter Physik P6.3.3.2 Untersuchung des Energiespektrums einer Röntgenröhre in Abhängigkeit von Hochspannung und Emissionsstrom Versuchsziele

Mehr

Atom- und Kernphysik. Untersuchung der Wellenlängenabhängigkeit des Schwächungskoeffizienten. LD Handblätter Physik P

Atom- und Kernphysik. Untersuchung der Wellenlängenabhängigkeit des Schwächungskoeffizienten. LD Handblätter Physik P Atom- und Kernphysik Röntgenphysik Schwächung von Röntgenstrahlung LD Handblätter Physik P6.3.2.2 Untersuchung der Wellenlängenabhängigkeit des Schwächungskoeffizienten Versuchsziele Messung der Transmission

Mehr

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Silber-Anode. LD Handblätter Physik P

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Silber-Anode. LD Handblätter Physik P YB 2014-11 Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik Feinstruktur der charakteristischen Röntgenstrahlung einer Silber-Anode Versuchsziele Aufnahme des Spektrums

Mehr

Atom- und Kernphysik. Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung. Anode. LD Handblätter Physik P

Atom- und Kernphysik. Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung. Anode. LD Handblätter Physik P YB 2014-11 Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung einer Silber- Anode Versuchsziele Hochaufgelöste

Mehr

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Wolfram-Anode. LD Handblätter Physik P

Atom- und Kernphysik. Feinstruktur der charakteristischen Röntgenstrahlung einer Wolfram-Anode. LD Handblätter Physik P Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik P6.3.6.5 Feinstruktur der charakteristischen Röntgenstrahlung einer Wolfram-Anode Versuchsziele g Aufnahme des Spektrums

Mehr

Festkörperphysik. Laue-Aufnahme: Untersuchung der Gitterstruktur kristalliner Stoffe. LD Handblätter Physik P Ste

Festkörperphysik. Laue-Aufnahme: Untersuchung der Gitterstruktur kristalliner Stoffe. LD Handblätter Physik P Ste Festkörperphysik Kristalleigenschaften Röntgenstrukturanalyse LD Handblätter Physik P7.1.2.2 Laue-Aufnahme: Untersuchung der Gitterstruktur kristalliner Stoffe Versuchsziele Auswertung der Laue-Aufnahmen

Mehr

Festkörperphysik. Debye-Scherrer-Aufnahme: Bestimmung der Netzebenenabstände von polykristallinen Pulverproben. LD Handblätter Physik P7.1.2.

Festkörperphysik. Debye-Scherrer-Aufnahme: Bestimmung der Netzebenenabstände von polykristallinen Pulverproben. LD Handblätter Physik P7.1.2. Festkörperphysik Kristalleigenschaften Röntgenstrukturanalyse LD Handblätter Physik P7.1.2.3 Debye-Scherrer-Aufnahme: Bestimmung der Netzebenenabstände von polykristallinen Pulverproben Versuchsziele Auswertung

Mehr

Atom- und Kernphysik. Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung. LD Handblätter Physik P6.3.6.17

Atom- und Kernphysik. Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung. LD Handblätter Physik P6.3.6.17 YB 014-11 Atom- und Kernphysik Röntgenphysik Struktur von Röntgenspektren LD Handblätter Physik Hochaufgelöste Feinstruktur der charakteristischen Röntgenstrahlung einer Gold-Anode Versuchsziele Hochaufgelöste

Mehr

Physikalisches Grundlagenpraktikum Versuch Röntgenbeugung

Physikalisches Grundlagenpraktikum Versuch Röntgenbeugung Physikalisches Grundlagenpraktikum Versuch Name:... Matrikelnummer:... Gruppe:... Antestat Datum bestanden nicht Unterschrift Prüfer bestanden Termin Nachholtermin 1. Protokollabgabe Datum Unterschrift

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik September 2016 2 Versuch 24 Beugung von Röntgenstrahlung Röntgenstrahlen

Mehr

Universität Stuttgart Stand Fakultät für Mathematik und Physik Fortgeschrittenen Praktikum

Universität Stuttgart Stand Fakultät für Mathematik und Physik Fortgeschrittenen Praktikum Universität Stuttgart Stand 14.04.11 Fakultät für Mathematik und Physik Fortgeschrittenen Praktikum Betreuer: Dr. Hubert Keller, keller@itap.uni-stuttgart.de, x65264 Leitung: Dr. B. Gompf, 0711-685-64949

Mehr

Versuchsziele Messung des Magnetfeldes am geraden Leiter und an kreisförmigen Leiterschleifen in Abhängigkeit von der Stromstärke.

Versuchsziele Messung des Magnetfeldes am geraden Leiter und an kreisförmigen Leiterschleifen in Abhängigkeit von der Stromstärke. Elektrizitätslehre Magnetostatik iot-savart-gesetz LD Handblätter Physik P3.3.4.1 Magnetfeldmessung am geraden Leiter und an kreisförmigen Leiterschleifen Versuchsziele Messung des Magnetfeldes am geraden

Mehr

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen Strukturbestimmung von NaCl-Einkristallen TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Reziproke Gitter, Millersche- Indizes, Atomfaktor, Strukturfaktor,

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen

Mehr

Ein neuer Detektor zur. Röntgenfluoreszenz. Referent:

Ein neuer Detektor zur. Röntgenfluoreszenz. Referent: Ein neuer Detektor zur Röntgenfluoreszenz Referent: Dr. Hans Joachim Prinz 006 Röntgenspektroskopie im Energiebereich von KeV bis 30 kev Referent: Dr. Hans Joachim Prinz LD Didactic GmbH Leyboldstr. 1

Mehr

Gebrauchsanweisung

Gebrauchsanweisung 04/06-W97-Sel Gebrauchsanweisung 554 811 Röntgengerät (554 811) Röntgengerät, ohne Goniometer (554 812) Strahlenschutz, Verwaltungsmaßnahmen Vor einer Erstinbetriebnahme des Röntgengerätes ist unbedingt

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen Seite 1 von 8 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen 1. Im Fadenstrahlrohr (siehe Abbildung 1) wird mit Hilfe einer

Mehr

Verwandte Themen Charakteristische Röntgenstrahlung, Energieniveaus, Auswahlregeln für Röntgenstrahlung, Termsymbole, Bragg-Gleichung.

Verwandte Themen Charakteristische Röntgenstrahlung, Energieniveaus, Auswahlregeln für Röntgenstrahlung, Termsymbole, Bragg-Gleichung. Trennung der charakteristischen TEP Verwandte Themen Charakteristische Röntgenstrahlung, Energieniveaus, Auswahlregeln für Röntgenstrahlung, Termsymbole, Bragg-Gleichung. Prinzip Die von einer Röntgenröhre

Mehr

TEP Bestimmung der Rydbergkonstanten, Moseleysches Gesetz und Abschirmkonstante

TEP Bestimmung der Rydbergkonstanten, Moseleysches Gesetz und Abschirmkonstante Bestimmung der Rydbergkonstanten, TEP Verwandte Themen Charakteristische Röntgenstrahlung, Bohrsches Atommodell, Energieniveaus, Bindungsenergie, Moseley-Gesetz, Rydberg- Frequenz, Abschirmkonstante, Bragg-Streuung.

Mehr

Hinweis: Optional kann der Versuch auch mit einer Wolfram-Röntgenröhre ( ) durchgeführt werden.

Hinweis: Optional kann der Versuch auch mit einer Wolfram-Röntgenröhre ( ) durchgeführt werden. Die Intensität charakteristischer Röntgenstrahlung als Funktion von Anodenstrom und Anodenspannung TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Bragg-Gleichung, Intensität

Mehr

Gebrauchsanweisung

Gebrauchsanweisung 06/05-W97-Iv/Sel Gebrauchsanweisung 559 938 Röntgenenergiedetektor (559 938) 1 Röntgenenergiedetektor 2 Sensorhalter 3 Abschwächerblende 4 Kalibriertarget 5 Stativstange mit Gewinde 1 Beschreibung Der

Mehr

Messung der Intensität der -Strahlung hinter einem Absorber in Abhängigkeit von der Absorberdicke. Bestätigung des Lambertschen Schwächungsgesetzes.

Messung der Intensität der -Strahlung hinter einem Absorber in Abhängigkeit von der Absorberdicke. Bestätigung des Lambertschen Schwächungsgesetzes. Atom und Kernphysik Kernphysik -Spektroskopie LEYBOLD Handblätter Physik P6.5.5.3 Absorption von -Strahlung Versuchsziele Messung der Intensität der -Strahlung hinter einem Absorber in Abhängigkeit von

Mehr

Charakteristische Röntgenstrahlung von Wolfram

Charakteristische Röntgenstrahlung von Wolfram Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

TEP Monochromatisierung von charakteristischer Molybdän-Röntgenstrahlung

TEP Monochromatisierung von charakteristischer Molybdän-Röntgenstrahlung Monochromatisierung von charakteristischer TEP Verwandte Begriffe Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Absorption von Röntgenstrahlung, Absorptionskanten, Interferenz, Bragg-Streuung.

Mehr

Auflage Kap. 2.3, 2.4, Springer Verlag Teil 1, Kap. 4 Verlag der Wissenschaften 1971

Auflage Kap. 2.3, 2.4, Springer Verlag Teil 1, Kap. 4 Verlag der Wissenschaften 1971 A 10 AVOGADRO-Konstante 1 Aufgabenstellung Bestimmen Sie die AVOGADRO-Konstante a. mittels Röntgenbeugung b. mittels Ölfleckversuch 2 Theoretische Grundlagen Stichworte zu Vorbereitung: AVOGADRO-Konstante,

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

Mechanik. Aufnahme der Weg-Zeit-Diagramme geradliniger Bewegungen. LEYBOLD Handblätter Physik P

Mechanik. Aufnahme der Weg-Zeit-Diagramme geradliniger Bewegungen. LEYBOLD Handblätter Physik P Mechanik Translationsbewegungen des Massenpunktes Eindimensionale Bewegungen auf der Rollenfahrbahn LEYBOLD Handblätter Physik Aufnahme der Weg-Zeit-Diagramme geradliniger Bewegungen P1.3.2.4 Aufzeichnung

Mehr

Optik. Bestimmung der Lichtgeschwindigkeit in verschiedenen Ausbreitungsmedien. LD Handblätter Physik P Wei

Optik. Bestimmung der Lichtgeschwindigkeit in verschiedenen Ausbreitungsmedien. LD Handblätter Physik P Wei Optik Lichtgeschwindigkeit Messung mit einem periodischen Lichtsignal LD Handblätter Physik Bestimmung der Lichtgeschwindigkeit in verschiedenen Ausbreitungsmedien P5.6.3.2 Versuchsziele Bestimmung der

Mehr

Charakteristische Röntgenstrahlung von Kupfer

Charakteristische Röntgenstrahlung von Kupfer Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

LD DIDACTIC Leyboldstrasse 1 D Hürth Phone: (02233) Fax: (02233)

LD DIDACTIC Leyboldstrasse 1 D Hürth Phone: (02233) Fax: (02233) Optik Lichtintensität Strahlungsgesetze LD Handblätter Physik P5.5.2.4 Das Wien sche Verschiebungsgesetz spektrale Aufnahme der Schwarzkörperstrahlung Beschreibung aus SpectraLab (467 250) LD DIDACTIC

Mehr

Mechanik. Drittes Newtonsches Axiom und Stoßgesetze. LD Handblätter Physik P Sel/Wei

Mechanik. Drittes Newtonsches Axiom und Stoßgesetze. LD Handblätter Physik P Sel/Wei Mechanik Translationsbewegungen des Massenpunktes Impulserhaltung LD Handblätter Physik P1.3.4.4 Drittes Newtonsches Axiom und Stoßgesetze Aufzeichnung und Auswertung mit VideoCom Versuchsziele Aufzeichnung

Mehr

Mechanik LD Handblätter Physik P Versuchsziele Grundlagen Kinetische Energie: Potentielle Energie und Gesamtenergie:

Mechanik LD Handblätter Physik P Versuchsziele Grundlagen Kinetische Energie: Potentielle Energie und Gesamtenergie: Mechanik Translationsbewegungen des Massenpunktes Eindimensionale Bewegungen auf einer Luftkissenfahrbahn LD Handblätter Physik P1.3.3.9 Kinetische Energie einer gleichmäßig beschleunigten Masse Aufzeichnung

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A10 - AVOGADRO-Konstante» Martin Wolf Betreuer: Herr Decker Mitarbeiter: Martin Helfrich Datum:

Mehr

Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch.

Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Stichworte zur Vorbereitung: AVOGADRO-Konstante, Röntgenstrahlung, Röntgenröhre,

Mehr

Charakteristische Röntgenstrahlung von Molybdän

Charakteristische Röntgenstrahlung von Molybdän Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt

Mehr

A10 - AVOGADRO - Konstante

A10 - AVOGADRO - Konstante A10 - AVOGADRO - Konstante Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Stichworte zur Vorbereitung: AVOGADRO-Konstante, Röntgenstrahlung,

Mehr

Charakteristische Röntgenstrahlung von Eisen

Charakteristische Röntgenstrahlung von Eisen Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

Elektrizitätslehre. Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld. LD Handblätter Physik P3.4.3.

Elektrizitätslehre. Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld. LD Handblätter Physik P3.4.3. Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld LD Handblätter Physik P3.4.3.1 Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld

Mehr

Atom- und Kernphysik. Beobachtung der Aufspaltung der Balmerlinien an deuteriertem Wasserstoff (Isotopieaufspaltung) LD Handblätter Physik

Atom- und Kernphysik. Beobachtung der Aufspaltung der Balmerlinien an deuteriertem Wasserstoff (Isotopieaufspaltung) LD Handblätter Physik Ato- und Kernphysik Atohülle Baler-Serie des Wasserstoff LD Handblätter Physik P6.2.1.3 Beobachtung der Aufspaltung der Balerlinien an deuterierte Wasserstoff (Isotopieaufspaltung) P6.2.1.3 (a) P6.2.1.3

Mehr

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung

Mehr

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4 Röntgenstrahlung Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Jakob Krämer Aktualisiert: am 12. 04. 2013 Röntgenstrahlung Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Mechanik. Bestätigung des ersten und zweiten Newtonschen Axioms an geradlinigen Bewegungen. LD Handblätter Physik P

Mechanik. Bestätigung des ersten und zweiten Newtonschen Axioms an geradlinigen Bewegungen. LD Handblätter Physik P Mechanik Translationsbewegungen des Massenpunktes Eindimensionale Bewegungen auf einer Luftkissenfahrbahn LD Handblätter Physik P1.3.3.7 Bestätigung des ersten und zweiten Newtonschen Axioms an geradlinigen

Mehr

Physik ea Klausur Nr Oktober 2013

Physik ea Klausur Nr Oktober 2013 Name: BE: / 77 = % Note: P. 1. Aufgabe: Röntgenstrahlung a. Skizziere den Aufbau einer Vorrichtung zur Herstellung eines gebündelten Röntgenstrahls, beschrifte ihre Bauteile und erläutere die Prozesse,

Mehr

Gebrauchsanweisung

Gebrauchsanweisung 06/05-W97-Sel Gebrauchsanweisung 337 501 Luftkissenfahrbahn (337 501) 1 Beschreibung Die Luftkissenfahrbahn ermöglicht die Überprüfung der Grundgesetze der Kinematik und der Dynamik am Beispiel eindimensionaler

Mehr

Aufgabe 1: Kristallstrukturuntersuchungen

Aufgabe 1: Kristallstrukturuntersuchungen Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung

Mehr

Elektrizitätslehre. Bestätigung des Coulombschen Gesetzes. LD Handblätter Physik P Wei. Elektrostatik Coulombsches Gesetz

Elektrizitätslehre. Bestätigung des Coulombschen Gesetzes. LD Handblätter Physik P Wei. Elektrostatik Coulombsches Gesetz Elektrizitätslehre Elektrostatik Coulombsches Gesetz LD Handblätter Physik Bestätigung des Coulombschen Gesetzes P3... Messung mit Kraftsensor und Newtonmeter Versuchsziele Messung der Kraft zwischen zwei

Mehr

Röntgenstrahlung (RÖN)

Röntgenstrahlung (RÖN) Röntgenstrahlung (RÖN) Manuel Staebel 2236632 / Michael Wack 2234088 1 Einleitung In diesem Versuch wird das Röntgenspektrum einer Molybdänanode auf einem x y Schreiber aufgezeichnet. Dies gelingt durch

Mehr

501 - Röntgenspektren und Compton-Effekt

501 - Röntgenspektren und Compton-Effekt 51 - Röntgenspektren und Compton-Effekt 1. Aufgaben 1.1 Messen Sie das Röntgenspektrum von Molybdän in der ersten Beugungsordnung eines acl- Kristalls. 1.2 Messen Sie die Transmissionskurven von Kupfer

Mehr

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums Versuch A05: Bestimmung des Planck'schen Wirkungsquantums 25. April 2016 I Lernziele Entstehung des Röntgen-Bremskontinuums und der charakteristischen Röntgenstrahlung Zusammenhang zwischen Energie, Frequenz

Mehr

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1 Abiturprüfung 2003 Vorschlag 2 Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1. Skizziere und beschreibe den Aufbau einer Röntgenröhre. Beschreibe kurz, wie Röntgenstrahlung entsteht.

Mehr

Atom- und Kernphysik. Compton-Effekt: Messung der Energie der gestreuten Photonen in Abhängigkeit vom Streuwinkel. LD Handblätter Physik P6.3.7.

Atom- und Kernphysik. Compton-Effekt: Messung der Energie der gestreuten Photonen in Abhängigkeit vom Streuwinkel. LD Handblätter Physik P6.3.7. Atom- und Kernphysik Röntgenphysik Compton-Effekt an Röntgenstrahlung LD Handblätter Physik P6.3.7. Compton-Effekt: Messung der Energie der gestreuten Photonen in Abhängigkeit vom Streuwinkel Versuhsziele

Mehr

Elektrizitätslehre. Kraftmessung an stromdurchflossenen Leitern im homogenen Magnetfeld. LEYBOLD Handblätter Physik P

Elektrizitätslehre. Kraftmessung an stromdurchflossenen Leitern im homogenen Magnetfeld. LEYBOLD Handblätter Physik P Elektrizitätslehre Magnetostatik Kraftwirkungen im magnetischen Feld LEYBOLD Handblätter Physik P3.3.3.2 Kraftmessung an stromdurchflossenen Leitern im homogenen Magnetfeld Aufzeichnung mit CASSY Versuchsziele

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgabe ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

Röntgendiffraktometrie

Röntgendiffraktometrie Röntgendiffraktometrie Name: Matthias Jasch Matrikelnummer: 077 Mitarbeiter: Mirjam und Rahel Eisele Gruppennummer: 7 Versuchsdatum: 9. Mai 009 Betreuer: Verena Schendel 1 Einleitung Bei der Röntgendiffraktometrie

Mehr

Absorptionsgesetz für Röntgenstrahlung

Absorptionsgesetz für Röntgenstrahlung Absorptionsgesetz für TEP Verwandte Themen Bremsstrahlung, charakteristische, Bragg-Streuung, Absorptionsgesetz, Massenabsorptionskoeffizient, Absorptionskanten, Halbwertsdicke, Fotoeffekt, Compton- Effekt,

Mehr

Röntgenstrahlung (RÖN)

Röntgenstrahlung (RÖN) Seite 1 Themengebiet: Atomphysik 1 Literatur 1 H. Krieger: Strahlungsmessung und Dosimetrie. 2. Auflage, Springer 2013 2 Grundlagen Mit dem Begriff Röntgenstrahlen bezeichnet man elektromagnetische Wellen,

Mehr

Comptonstreuung von Röntgenstrahlung

Comptonstreuung von Röntgenstrahlung Comptonstreuung von TEP Verwandte Themen Röntgenstrahlen, Compton-Effekt, Compton-Wellenlänge, Ruheenergie, Absorption, Transmission, Energie- und Impulserhaltung, Bragg-Streuung. Prinzip Mittels einer

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

T Regenerative Energien Photovoltaik

T Regenerative Energien Photovoltaik Regenerative Energien Photovoltaik Kat. Nr. 564 DE Solar 1. Auflage Version: 03BB05PME11W00 LD DIDACTIC GMBH. Leyboldstrasse 1. D-50354 Hürth. Phone (02233) 604-0. Fax (02233) 604-222. e-mail: info@ld-didactic.de

Mehr

Anfängerpraktikum D11 - Röntgenstrahlung

Anfängerpraktikum D11 - Röntgenstrahlung Anfängerpraktikum D11 - Röntgenstrahlung Vitali Müller, Kais Abdelkhalek Sommersemester 2009 1 Messung des ersten Spektrums 1.1 Versuchsaufbau und Hintergrund Es sollte das Spektrum eines Röntgenapparates

Mehr

Strom-Spannungs-Kennlinie und Leistung einer Solarzelle

Strom-Spannungs-Kennlinie und Leistung einer Solarzelle Strom-Spannungs-Kennlinie und Leistung einer Solarzelle ENT Schlüsselworte Solarzelle, Kennlinie, Spannung, Stromstärke, Leistung, Widerstand, Innenwiderstand, Anpassung Prinzip Die Strom-Spannungs-Kennlinie

Mehr

Gebrauchsanweisung

Gebrauchsanweisung 06/05-W97-Hund Gebrauchsanweisung 575 471 Zählgerät S (575 471) 1 Beschreibung Das Zählgerät S ist ein Messgerät zur Zählung von Zählrohrimpulsen, Impulsraten oder anderen elektrischen Signalen sowie zur

Mehr

Protokoll in Physik. Datum:

Protokoll in Physik. Datum: Protokoll in Physik Datum: 04.11.2010 Protokollantin: Alrun-M. Seuwen Fachlehrer: Herr Heidinger Inhalt: h) Die Bragg-Reflexion 1) Die Wellenlänge des Röntgenlichts 2) Das Bragg-Kristall 3) Inteferenz

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 5. Schwingungen und Wellen 5.6 - Beugung von Ultraschall Durchgeführt am 3.0.06 Dozent: Praktikanten (Gruppe ): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer E3-463

Mehr

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode.

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode. Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O 21 Röntgenstrahlung Aufgaben 1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2-Spektrums unter Verwendung

Mehr

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode.

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode. Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O 21 a Röntgenstrahlung Aufgaben 1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2-Spektrums unter

Mehr

Fortgeschrittenenpraktikum. 2. Praktikumsversuch aus Halbleiterphysik. Röntgenbeugung

Fortgeschrittenenpraktikum. 2. Praktikumsversuch aus Halbleiterphysik. Röntgenbeugung 2. Praktikumsversuch aus Halbleiterphysik Röntgenbeugung, 0555150 (Autor), 0555342 Gruppe I/1 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3 1.1 Bragg-Bedingung.............................................

Mehr

Röntgenstrahlen (RÖN)

Röntgenstrahlen (RÖN) TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Röntgenstrahlen (RÖN) Inhaltsverzeichnis 07.11.2006 1.Einleitung...2 2.Photonenemission...2 2.1.Bremsstrahlung...2 2.2.Charakteristische Röntgenstrahlung...2

Mehr

Versuch 255 Röntgenspektrometer

Versuch 255 Röntgenspektrometer Versuch 255 Röntgenspektrometer NaCl-Kristall Computer mit Drucker Leuchtschirm mit CCD-Kamera (nur ein Aufbau vorhanden) II Literatur Standardwerke der Physik: Gerthsen, Bergmann-Schäfer, Tipler. Homepage

Mehr

Röntgenographische Charakterisierung der hergestellten Feststoffe mittels Pulverdiffraktion, sowie Auswertung der erhaltenen Pulverdiffraktogramme

Röntgenographische Charakterisierung der hergestellten Feststoffe mittels Pulverdiffraktion, sowie Auswertung der erhaltenen Pulverdiffraktogramme Röntgenographische Charakterisierung der hergestellten Feststoffe mittels Pulverdiffraktion, sowie Auswertung der erhaltenen Pulverdiffraktogramme Vorbemerkung: Wegen der umfassenden Theorie von kristallographischen

Mehr

TEP Diffraktometrische Debye-Scherrer Messungen zur Untersuchung von Walztexturen

TEP Diffraktometrische Debye-Scherrer Messungen zur Untersuchung von Walztexturen Diffraktometrische Debye-Scherrer Messungen TEP Verwandte Themen Charakteristische Röntgenstrahlung, Monochromatisierung von Röntgenstrahlung, Kristallstrukturen, Bravais-Gitter, Reziproke Gitter, Millersche-Indizes,

Mehr

Übungen zur Physik des Lichts

Übungen zur Physik des Lichts ) Monochromatisches Licht (λ = 500 nm) wird an einem optischen Gitter (000 Striche pro cm) gebeugt. a) Berechnen Sie die Beugungswinkel der Intensitätsmaxima bis zur 5. Ordnung. b) Jeder einzelne Gitterstrich

Mehr

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Welleneigenschaften, ionisiert Gase, regt manche Stoffe zum Leuchten

Mehr

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut Versuch Nr. 24: Röntgenographische Methoden Betreuer: M. Cwik, Tel.: 470 3574, E-mail: cwik@ph2.uni-koeln.de November 2004 Im

Mehr

Optik. Bestimmung der. Lichtgeschwindigkeit. nach der Drehspiegelmethode von Foucault und Michelson. LD Handblätter Physik P

Optik. Bestimmung der. Lichtgeschwindigkeit. nach der Drehspiegelmethode von Foucault und Michelson. LD Handblätter Physik P Optik Lichtgeschwindigkeit Messung nach Foucault und Michelson LD Handblätter Physik P5.6.1.1 Bestimmung der Lichtgeschwindigkeit nach der Drehspiegelmethode von Foucault und Michelson Messung der Bildverschiebung

Mehr

TEP Diffraktometrische Debye-Scherrer Diagramm (Bragg-Brentano Geometrie) von Pulverproben der drei kubischen Bravais Gitter

TEP Diffraktometrische Debye-Scherrer Diagramm (Bragg-Brentano Geometrie) von Pulverproben der drei kubischen Bravais Gitter Diffraktometrische Debye-Scherrer Diagramm TEP 5.4.1- Verwandte Themen Charakteristische Röntgenstrahlung, Monochromatisierung von Röntgenstrahlung, Kristallstrukturen, Bravais-Gitter, Reziproke Gitter,

Mehr

Comptonstreuung von Röntgenstrahlung

Comptonstreuung von Röntgenstrahlung Comptonstreuung von TEP Verwandte Themen Röntgenstrahlen, Compton-Effekt, Compton-Wellenlänge, Ruheenergie, Absorption, Transmission, Energie- und Impulserhaltung, Bragg-Streuung. Prinzip Mittels einer

Mehr

Optik. Bestimmung der. Lichtgeschwindigkeit. nach der Drehspiegelmethode von Foucault und Michelson. LEYBOLD Handblätter Physik P

Optik. Bestimmung der. Lichtgeschwindigkeit. nach der Drehspiegelmethode von Foucault und Michelson. LEYBOLD Handblätter Physik P Optik Lichtgeschwindigkeit Messung nach Foucault und Michelson LEYBOLD Handblätter Physik P5.6.1.1 Bestimmung der Lichtgeschwindigkeit nach der Drehspiegelmethode von Foucault und Michelson Messung der

Mehr

Optik Lichtgeschwindigkeit Messung mit kurzen Lichtimpulsen

Optik Lichtgeschwindigkeit Messung mit kurzen Lichtimpulsen Optik Lichtgeschwindigkeit Messung mit kurzen Lichtimpulsen LD Handblätter Physik P5.6.2.1 Bestimmung der Lichtgeschwindigkeit in Luft aus Laufweg und Laufzeit eines kurzen Lichtimpulses Versuchsziele

Mehr

Röntgenbeugung. 1. Grundlagen, Messmethode

Röntgenbeugung. 1. Grundlagen, Messmethode Röntgenbeugung 1. Grundlagen, Messmethode Beim Aufprall schneller Elektronen auf ein metallisches Anodenmaterial (hier: Kupfer) entsteht Röntgenstrahlung. Diese wird nach der Drehkristallmethode spektral

Mehr

IU1. Modul Universalkonstanten. Erdbeschleunigung

IU1. Modul Universalkonstanten. Erdbeschleunigung IU1 Modul Universalkonstanten Erdbeschleunigung Das Ziel des vorliegenden Versuches ist die Bestimmung der Erdbeschleunigung g aus der Fallzeit eines Körpers beim (fast) freien Fall durch die Luft. Î

Mehr

TEP Strukturbestimmung von Einkristallen mit Hilfe der Laue-Methode

TEP Strukturbestimmung von Einkristallen mit Hilfe der Laue-Methode Strukturbestimmung von Einkristallen TEP Verwandte Themen Charakteristische Röntgenstrahlung, Bravais-Gitter, Reziproke Gitter, Millersche-Indizes, Atomfaktor, Strukturfaktor, Bragg- Streuung. Prinzip

Mehr

A05. Röntgenspektren. (Duane-Huntsches-Gesetz) (1)

A05. Röntgenspektren. (Duane-Huntsches-Gesetz) (1) A05 Röntgenspektren Mit einem einfachen Röntgenspektrometer wird in Abhängigkeit von der Anodenspannung das Emissionsspektrum einer Röntgenröhre aufgenommen und das Plancksche Wirkungsquantum bestimmt.

Mehr

PRISMEN - SPEKTRALAPPARAT

PRISMEN - SPEKTRALAPPARAT Grundpraktikum der Physik Versuch Nr. 20 PRISMEN - SPEKTRALAPPARAT Versuchsziel: Bestimmung der Winkeldispersionskurve und des Auflösungsvermögens von Prismen. brechende Kante Ablenkwinkel einfallendes

Mehr

10.6. Röntgenstrahlung

10.6. Röntgenstrahlung 10.6. Röntgenstrahlung Am 8. November 1895 entdeckte Wilhelm Conrad Röntgen in Würzburg die Röntgenstrahlung. Seine Entdeckung zählt zu den wohl bedeutendsten Entdeckungen in der Menschheitsgeschichte.

Mehr

Stehende Wellen im Mikrowellenbereich

Stehende Wellen im Mikrowellenbereich Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Reflexion, Abstandsgesetz. Prinzip Werden elektromagnetische Wellen zwischen zwei Reflektoren hin- und hergeworfen, so bildet sich eine stehende

Mehr

Versuch A12 Der COMPTON-Effekt. Untersuchen Sie die Winkelabhängigkeit der Energie der gestreuten RÖNTGENstrahlung infolge des COMPTON-Effektes

Versuch A12 Der COMPTON-Effekt. Untersuchen Sie die Winkelabhängigkeit der Energie der gestreuten RÖNTGENstrahlung infolge des COMPTON-Effektes Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Versuch A1 Der COMPTON-Effekt Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung Untersuchen Sie die Winkelabhängigkeit

Mehr

Versuch A1 - Braggsche Reflexion und Röntgenspektrum. Abgabedatum: 28. Februar 2008

Versuch A1 - Braggsche Reflexion und Röntgenspektrum. Abgabedatum: 28. Februar 2008 Versuch A1 - Braggsche Reflexion und Röntgenspektrum Sven E Tobias F Abgabedatum: 28. Februar 2008 Inhaltsverzeichnis 1 Versuchsziel 3 2 Physikalischer Zusammenhang 3 2.1 Röntgenstrahlung...........................

Mehr

2.3 Abschirmung von Betastrahlen. Aufgabe. Welche Stoffe eignen sich zur Abschirmung von β-strahlen?

2.3 Abschirmung von Betastrahlen. Aufgabe. Welche Stoffe eignen sich zur Abschirmung von β-strahlen? Naturwissenschaften - Physik - Radioaktivität - 2 Strahlenarten und ihre Eigenschaften (P7300800) 2.3 Abschirmung von Betastrahlen Experiment von: Phywe Gedruckt: 6.0.203 6:22:32 intertess (Version 3.06

Mehr

Wie verhält sich eine Blattfeder bei Belastung?

Wie verhält sich eine Blattfeder bei Belastung? 1.1.2.2 Wie verhält sich eine Blattfeder S Blattfedern sind Metallplättchen, die sich unter Belastung elastisch verformen können: Wirkt eine Kraft auf eine Blattfeder, dann verformt sich diese. Charakteristisch

Mehr

Gebrauchsanweisung

Gebrauchsanweisung 06/05-W97-Hund Gebrauchsanweisung 575 451 Zählgerät P (575 451) 1 Beschreibung Das Zählgerät P ist ein Messgerät zur Zählung von Zählrohrimpulsen, Impulsraten oder anderen elektrischen Signalen sowie zur

Mehr

Aufgaben zu Röntgenstrahlen LK Physik 13/1 Sporenberg Roentgen_September_2011 Datum:

Aufgaben zu Röntgenstrahlen LK Physik 13/1 Sporenberg Roentgen_September_2011 Datum: Aufgaben zu Röntgenstrahlen LK Physik 13/1 Sporenberg Roentgen_September_2011 Datum: 08.09.2011 1.Aufgabe: In einem Röntgengerät fällt monochromatische Strahlung ( λ = 71 pm) auf die Oberfläche eines LiF-Kristalls.

Mehr

Eigenschaften und Anwendungen von Röntgenstrahlung

Eigenschaften und Anwendungen von Röntgenstrahlung Eigenschaften und Anwendungen von Röntgenstrahlung Christoph Mahnke und Matthias Lütgens 23. November 2005 Inhaltsverzeichnis Datum : 19.11.2005 Betreuer : Dr. Nicula 1 Vorbetrachtung 2 1.1 Röntgenstrahlung...................................

Mehr

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15 5. Oberflächen-und Dünnschichtanalytik 1 5.1 Übersicht Schichtanalytik - Schichtmorphologie: - Oberflächeneigenschaften - Lichtmikroskop - Rasterelektronenmikroskop - Transmissionselektronenmikroskop -(STM,

Mehr

Röntgenkristallstrukturanalyse : Debye-Scherrer

Röntgenkristallstrukturanalyse : Debye-Scherrer 16.04.2009 Gliederung Bragg-Bedingung Bragg-Bedingung Bragg-Bedingung: 2d m m m h k l sin(ϑ) = nλ für kubisches Gitter: 2sin(ϑ) = λ h 2 + k 2 + l 2 a d m m m h k l...netzebenenabstand ϑ...braggwinkel n...

Mehr

1 Versuchsbeschreibung Versuchsvorbereitung Versuch: Wellennatur des Elektrons... 3

1 Versuchsbeschreibung Versuchsvorbereitung Versuch: Wellennatur des Elektrons... 3 Versuch: EB Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: M. Kreller i.a. Dr. Escher Bearbeitet: A. Otto Aktualisiert: am 24. 02. 2011 Elektronenbeugung Inhaltsverzeichnis 1 Versuchsbeschreibung

Mehr

ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 /

ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 / ISP-Methodenkurs Pulverdiffraktometrie Prof. Dr. Michael Fröba, AC Raum 4, Tel: 4 / 4838-337 www.chemie.uni-hamburg.de/ac/froeba/ Röntgenstrahlung (I) Wilhelm Conrad Röntgen (845-93) 879-888 Professor

Mehr