Übungsblatt 2 Numerische Methoden in der Bayes-Inferenz WiSe 2006/07 Michael Höhle Übung: Montag

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt 2 Numerische Methoden in der Bayes-Inferenz WiSe 2006/07 Michael Höhle Übung: Montag"

Transkript

1 Übungsblatt 2 Numerische Methoden in der Bayes-Inferenz WiSe 2006/07 Michael Höhle Übung: Montag Aufgabe 1 (MCMC Schätzung eines Mixturparameters) Angenommen Sie beobachten Daten y = (y 1,..., y n ), die unabhängig aus der Mischverteilung mit Dichte f(y δ) = δf 1 (y 7, ) + (1 δ)f 2 (y 10, ), 0 < δ < 1, stammen, wobei f i (y µ i, σi 2), i = 1, 2, die Dichte der Normalverteilung mit Erwartungswert µ i und Varianz σi 2 ist. Des Weiteren wird angenommen, dass a priori δ U(0, 1). Mittels MCMC-Methoden wird nun eine Markov-Kette erzeugt, deren stationäre Verteilung gleich der posteriori Verteilung von δ y ist. a) Schreiben Sie eine R-Funktion rmixture(size,delta), die einen Vektor mit size iid. Werten aus der obigen Mischverteilung mit δ =delta erzeugt und zurückgibt. > rmixture <- function(size, delta) { + mean <- c(7, 10) + indicator <- sample(1:2, size = size, rep = T, prob = c(delta, 1 - delta)) + return(rnorm(size, mean = mean[indicator], sd = 0.5)) b) Erzeugen Sie eine Stichprobe y = (y 1,..., y 100 ) mit δ = 0.7. > dmixture <- function(x, delta) { + delta * dnorm(x, 7, 0.5) + (1 - delta) * dnorm(x, 10, 0.5) > y <- rmixture(size = 100, delta = 0.7) > hist(y, nclass = 25, prob = T) > lines(x <- seq(min(y), max(y), length = 1000), dmixture(x, delta = 0.7), col = 2) Histogram of y y c) Schreiben Sie eine R-Funktion rdeltapost.mh(size,y,dq,rq), die eine Markov-Kette der Länge size mit f(δ y) als stationärer Verteilung durch den Metropolis-Hastings Algorithmus erzeugt. Dabei ist dq(delta) die Proposal-Dichte und rq() eine Funktion, die einen Independence-Proposal aus der Proposal-Dichte simuliert. Die Funktion rdeltapost.mh soll die size Werte als Vektor zurückgeben. 1

2 > rdeltapost.mh <- function(size, y, dq, rq) { + res <- numeric(size) + res[1] <- delta < for (i in 1:(size - 1)) { + deltanew <- rq() + alpha <- exp(sum(log(dmixture(y, deltanew)) - log(dmixture(y, delta)))) * + dq(delta)/dq(deltanew) + if (runif(1) <= alpha) { + delta <- deltanew + res[i + 1] <- delta + return(res) d) Erzeugen Sie je Werte der Markov-Kette für die Proposal-Dichte 1) Be(1, 1) 2) Be(2, 7) Erstellen Sie für jede Proposal-Dichte einen Plot von (t, δ (t) ) und ein Histogramm der δ (t). Schätzen Sie auch den posteriori Erwartungswert E(δ y) und den posteriori Median. > analyze <- function(delta) { + plot(delta, type = "l", ylab = expression(delta^((t))), xlab = "") + hist(delta, prob = T, nclass = 100, xlab = expression(delta)) + lines(dens <- density(delta), col = 2) + cat("posterior mean: ", mean(delta), "\n") + cat("posterior mode: ", dens$x[which.max(dens$y)], "\n") + cat("posterior median: ", quantile(delta, probs = c(0.5)), "\n") > rq1 <- function(deltaold) rbeta(1, 1, 1) > dq1 <- function(delta) dbeta(delta, 1, 1) > rq2 <- function(deltaold) rbeta(1, 2, 7) > dq2 <- function(delta) dbeta(delta, 2, 7) > delta1 <- rdeltapost.mh(10000, y, dq = dq1, rq = rq1)[-c(1:100)] > delta2 <- rdeltapost.mh(10000, y, dq = dq2, rq = rq2)[-c(1:100)] > par(mfcol = c(2, 2), mar = c(3, 4, 1, 1)) > analyze(delta1) Posterior mean: Posterior mode: Posterior median: > analyze(delta2) Posterior mean: Posterior mode: Posterior median: > par(mfcol = c(1, 1)) 2

3 δ ((t)) δ ((t)) Histogram of delta Histogram of delta e) Schätzen Sie für Teil d1) auch f(δ y) mittels eines Kerndichteschätzers. Hinweis: Benutzen Sie dazu die Funktion density. Danach benutzen Sie das Resultat, um den posteriori Modus zu schätzen. Lösung in der letzten Teilaufgabe. Prinzipiell ist der Ansatz etwas ad-hoc. Viel besser wäre es die Posteriori-Dichte mit numerischen Methoden zu maximieren. Dabei stört es nicht, dass die Posteriori nur bis hin zur Proportionalitätskonstante bekannt ist. f) Würde δ (t+1) N(δ (t), σ 2 ) mit σ 2 bekannt als Proposal-Dichte funktionieren? Ja, dieser random-walk proposal funktioniert. Falls δ (t) (0, 1) sorgt die priori Verteilung dafür, dass dieser Wert nicht akzeptiert wird. > rq.rw <- function(delta,...) rnorm(1, mean = delta, sd = list(...)$sigma.rw) > dq.rw <- function(deltanew, deltaold,...) { + dnorm(deltanew, mean = deltaold, sd = list(...)$sigma.rw) > sigma.rw1 < > sigma.rw2 <- 0.1 > delta.rw1 <- rdeltapost.mh2(10000, y, dq = dq.rw, rq = rq.rw, sigma.rw = sigma.rw1) > delta.rw2 <- rdeltapost.mh2(10000, y, dq = dq.rw, rq = rq.rw, sigma.rw = sigma.rw2) > par(mfcol = c(1, 2)) > plot(delta.rw1, type = "l", main = paste("random Walk N(0,", sigma.rw1, "^2)", + sep = "")) > plot(delta.rw2, type = "l", main = paste("random Walk N(0,", sigma.rw2, "^2)", + sep = "")) > par(mfcol = c(1, 1)) 3

4 Random Walk N(0,0.001^2) Random Walk N(0,0.1^2) delta.rw delta.rw Index Index g) Bestimmen Sie f(δ y) und E(δ y) mittels der integrate-funktion und vergleichen Sie einen Plot von f(δ y) mit dem Histogramm aus Teil d). > udpost <- function(delta) { + sapply(delta, function(delta) prod(dmixture(y, delta))) > norm <- integrate(udpost, lower = 0, upper = 1)$val > dpost <- function(delta) { + 1/norm * udpost(delta) > delta.grid <- seq(0, 1, length = 1000) > hist(delta1, prob = T, nclass = 100) > lines(delta.grid, dpost(delta.grid), type = "l") > integrate(dpost, lower = 0, upper = 1) 1 with absolute error < 1.9e-08 > integrate(function(delta) delta * dpost(delta), lower = 0, upper = 1) with absolute error < 8e-08 4

5 Histogram of delta delta1 h) Welche anderen Verfahren kennen Sie, um Zufallszahlen aus der posteriori Dichte von δ y zu ziehen? Rejection-Sampling. Posteriori bis zu proportionalität genügt, jedoch muss eine Vorschlagsdichte bestimmt werden, so dass δ : M q(δ) π(δ). Aufgabe 2 (Markov-Ketten) Betrachten Sie eine homogene Markovkette X 0, X 1, X 2,... mit den möglichen Zuständen S = {1, 2} sowie der Übergangsmatrix ( ) 0.7 x P =, y 0.8 wobei x und y unbekannt sind. a) Welchen Wert muss x beziehungsweise y haben? x = 0.3, y = 0.2. b) Schreiben Sie eine R-Funktion sim.markov2(p,x0,n=100), die einen Pfad der Länge n einer Markovkette mit 2 2 Übergangsmatrix P in Abhängigkeit vom Startwert X 0 = x 0 simuliert und (x 1,..., x n ) als Vektor zurückgibt. Testen Sie die Funktion mit dem obigen P, x 0 = 1 und n = 100. Erstellen Sie auch einen Plot des Pfades. Hinweis: Benutzen Sie eventuell discrete-mh.r als Inspirationsquelle. 5

6 > sim.markov2 <- function(p, x0, n = 100) { + x <- numeric(n + 1) + states <- 1:dim(P)[1] + x[1] <- x0 + for (t in 1:n) { + x[t + 1] <- sample(states, size = 1, prob = P[x[t], ]) + return(x[-1]) > P <- matrix(c(0.7, 0.3, 0.2, 0.8), 2, 2, byrow = T) > plot(sim.markov2(p, 1, 100), type = "s") sim.markov2(p, 1, 100) Index c) Bestimmen Sie die stationäre Verteilung der Markovkette. Konvergiert die Kette gegen ihre stationäre Verteilung? Die stationäre Verteilung einer Markov-Kette mit endlichem Zustandsraum kann durch die Formel π = 1(I P + Q) 1 berechnet werden, wobei 1 ein Zeilenvektor von Einsen ist, I die Einheitsmatrix, P die Übergangsmatrix der Markov-Kette und Q eine Matrix, die nur aus Einsen besteht. Die Markov-Kette ist irreduzibel und aperiodisch und konvergiert deswegen gegen π. > pi <- matrix(rep(1, 2), 1, 2) %*% solve(diag(rep(1, 2)) - P + matrix(1, 2, 2)) > pi [,1] [,2] [1,] Homepage: LaMo: 6. November 2006@13:29 6

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten

Übersicht. 1 Einführung in Markov-Chain Monte-Carlo Verfahren. 2 Kurze Wiederholung von Markov-Ketten Markov-Chain Monte-Carlo Verfahren Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Übersicht 1 Einführung

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Eine Einführung in R: Dichten und Verteilungsfunktionen

Eine Einführung in R: Dichten und Verteilungsfunktionen Eine Einführung in R: Dichten und Verteilungsfunktionen Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 25. November 2009 Bernd

Mehr

Eine Einführung in R: Dichten und Verteilungsfunktionen

Eine Einführung in R: Dichten und Verteilungsfunktionen Eine Einführung in R: Dichten und Verteilungsfunktionen Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/

Mehr

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann Probe-Klausur zur Vorlesung Ökonometrie Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte (die eigentliche Klausur wird

Mehr

80 7 MARKOV-KETTEN. 7.1 Definition und Eigenschaften von Markov-Ketten

80 7 MARKOV-KETTEN. 7.1 Definition und Eigenschaften von Markov-Ketten 80 7 MARKOV-KETTEN 7 Markov-Ketten 7. Definition und Eigenschaften von Markov-Ketten Sei X = (X 0, X, X 2,...) eine Folge von diskreten Zufallsvariablen, die alle Ausprägungen in einer endlichen bzw. abzählbaren

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Markov Chain Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 16. Januar 2018 (Humboldt-Universität zu Berlin) Markov Chain Monte Carlo 16. Januar 2018 1 / 17 Übersicht 1

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

DisMod-Repetitorium Tag 3

DisMod-Repetitorium Tag 3 DisMod-Repetitorium Tag 3 Markov-Ketten 21. März 2018 1 Markov-Ketten Was ist eine Markov-Kette? Was gehört alles dazu? Darstellung als Graph und als Matrix Stationäre Verteilung und Grenzverteilung Ergodizität

Mehr

Eine Einführung in R: Dichten und Verteilungsfunktionen

Eine Einführung in R: Dichten und Verteilungsfunktionen Eine Einführung in R: Dichten und Verteilungsfunktionen Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/

Mehr

Fortgeschrittene Ökonometrie: Maximum Likelihood

Fortgeschrittene Ökonometrie: Maximum Likelihood Universität Regensburg, Lehrstuhl für Ökonometrie Sommersemester 202 Fortgeschrittene Ökonometrie: Maximum Likelihood Poissonverteilung Man betrachte die poisson-verteilten Zufallsvariablen y t, t =, 2,...,

Mehr

CIM2004 Übung 7: Permutationstest, Bootstrap & Jackknife

CIM2004 Übung 7: Permutationstest, Bootstrap & Jackknife CIM2004 Übung 7: Permutationstest, Bootstrap & Jackknife Michael Höhle hoehle@stat.uni-muenchen.de Lösung 24. Juni 2004 1 Permutationstest Bilirubin ist ein Zerlegungsprodukt von Haemoglobin. Falls die

Mehr

Einführung in Stochastische Prozesse und Zeitreihenanalyse Vorlesung, 2017S, 2.0h 24.November 2017 Hubalek/Scherrer

Einführung in Stochastische Prozesse und Zeitreihenanalyse Vorlesung, 2017S, 2.0h 24.November 2017 Hubalek/Scherrer Name: Mat.Nr.: Bitte keinen Rotstift oder Bleistift verwenden! 105.59 Einführung in Stochastische Prozesse und Zeitreihenanalyse Vorlesung, 2017S, 2.0h 24.November 2017 Hubalek/Scherrer (Dauer 90 Minuten,

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Aufgabe 1 Ein Fahrzeugpark enthält 6 Fahrzeuge. Jedes Fahrzeug hat die Wahrscheinlichkeit p = 0.1 (bzw. p = 0.3), dass es kaputt geht. Pro Tag kann nur

Mehr

> library(nlme) > fit <- lme(y ~ 1, random = ~1 id, data = sim.y.long) > summary(fit)

> library(nlme) > fit <- lme(y ~ 1, random = ~1 id, data = sim.y.long) > summary(fit) Übungsblatt Analyse longitudinaler Daten und Zeitreihen SoSe 007 Donna Pauler Ankerst, Ulrich Mansmann, Volkmar Henschel, Michael Höhle Übung: Montag 0..007 Aufgabe 1 (Mixed Model Simulation) In dieser

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

1. Übungsblatt zu Wahrscheinlichkeitsrechnung und Statistik in den Ingenieurswissenschaften

1. Übungsblatt zu Wahrscheinlichkeitsrechnung und Statistik in den Ingenieurswissenschaften 1. Übungsblatt zu Aufgabe 1: In R können die Logarithmen zu verschiedenen Basen mit der Funktion log berechnet werden, wobei im Argument base die Basis festgelegt wird. Plotten Sie die Logarithmusfunktion

Mehr

Markov Chain Monte Carlo Verfahren. Helga Wagner Bayes Statistik WS 2010/11 407

Markov Chain Monte Carlo Verfahren. Helga Wagner Bayes Statistik WS 2010/11 407 Markov Chain Monte Carlo Verfahren Helga Wagner Bayes Statistik WS 2010/11 407 Einführung Simulationsbasierte Bayes-Inferenz erfordert Ziehungen aus der Posteriori- Verteilung MCMC-Verfahren ermöglichen

Mehr

3.4 Bayes-Verfahren Begrifflicher Hintergrund. Satz 3.22 (allgemeines Theorem von Bayes)

3.4 Bayes-Verfahren Begrifflicher Hintergrund. Satz 3.22 (allgemeines Theorem von Bayes) 3.4 Bayes-Verfahren 203 3.4.1 Begrifflicher Hintergrund Satz 3.22 (allgemeines Theorem von Bayes) Seien X und U zwei Zufallsvariablen mit gemeinsamer Wahrscheinlichkeitsfunktion f X,U ( ) bzw. Dichte f

Mehr

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington Wahrscheinlichkeit und die Normalverteilung Jonathan Harrington Der Populations-Mittelwert 100 Stück Papier nummeriert 0, 1, 2, 99 Ich ziehe 10 davon und berechne den Mittelwert. Was ist der Mittelwert

Mehr

Bedingt unabhängige Zufallsvariablen

Bedingt unabhängige Zufallsvariablen 7. Markov-Ketten 7. Definition und Eigenschaften von Markov-Ketten Benannt nach Andrei A. Markov [856-9] Einige Stichworte: Markov-Ketten Definition Eigenschaften Konvergenz Hidden Markov Modelle Sei X

Mehr

Statistische Software (R)

Statistische Software (R) Statistische Software (R) Paul Fink, M.Sc. Institut für Statistik Ludwig-Maximilians-Universität München Verteilungen und Zufallszahlen Übersicht Statistik-Funktionen Funktion mean() median() exp(mean(log(

Mehr

Nachholklausur zur Vorlesung Schätzen und Testen I. 04. April Bitte ausfüllen und unterschreiben!!!

Nachholklausur zur Vorlesung Schätzen und Testen I. 04. April Bitte ausfüllen und unterschreiben!!! Nachholklausur zur Vorlesung Schätzen und Testen I 04. April 2013 Volker Schmid, Ludwig Bothmann, Julia Sommer Aufgabe 1 2 3 4 5 6 Punkte Note Bitte ausfüllen und unterschreiben!!! Name, Vorname: Matrikelnummer:

Mehr

Stochastische Prozesse. Woche 5

Stochastische Prozesse. Woche 5 FS 2016 Stochastische Prozesse Woche 5 Aufgabe 1 PageRank-Algorithmus von Google Das Herz der Google-Suchmaschine ist ein Algorithmus, der alle Dokumente des WWW nach ihrer Wichtigkeit anordnet. Die Auflistung

Mehr

Statistische Software (R)

Statistische Software (R) Statistische Software (R) Paul Fink, M.Sc., Eva Endres, M.Sc. Institut für Statistik Ludwig-Maximilians-Universität München Verteilungen und Zufallszahlen Übersicht Statistik-Funktionen Funktion mean()

Mehr

library(lattice) nex = read.table(file.path(pfadu, "normexample.txt")) source(file.path(pfadu, "lattice.normal.r"))

library(lattice) nex = read.table(file.path(pfadu, normexample.txt)) source(file.path(pfadu, lattice.normal.r)) library(lattice) nex = read.table(file.path(pfadu, "normexample.txt")) source(file.path(pfadu, "lattice.normal.r")) 1. Der Populationsmittelwert Erstes Beispiel 100 Stück Papier nummeriert 0, 1, 2, 99

Mehr

Grundlagen der Resampling Methoden

Grundlagen der Resampling Methoden Grundlagen der Resampling Methoden Angelehnt an eine Vorlesung von Rozenn Dahyot, Trinity College, Dublin. Literatur: An Introduction to the Bootstrap, B. Efron und R.J. Tibshirani Computer Intensive Statistical

Mehr

Übungsblatt 4. Autokovarianz, Autokorrelation Invertierbarkeit und Kausalität

Übungsblatt 4. Autokovarianz, Autokorrelation Invertierbarkeit und Kausalität Empirische Methoden (MA) SS 2011 Übungsblatt 4 Willi Mutschler willi.mutschler@uni-muenster.de Autokovarianz, Autokorrelation Invertierbarkeit und Kausalität 1. Sei Z t W N(0, σ 2 ). Bestimmen Sie den

Mehr

Modellierung- und Simulation Mathis Plewa ( )

Modellierung- und Simulation Mathis Plewa ( ) Inhaltsverzeichnis Abbildungsverzeichnis... 1 Übungsaufgabe: Zufallsgeneratoren und Histogramme... 2 Standard Gleichverteilung... 2 Gaußverteilung... 3 Exponentialverteilung... 4 Übungsaufgabe: Geometrische

Mehr

Endliche Markov-Ketten - eine Übersicht

Endliche Markov-Ketten - eine Übersicht Endliche Markov-Ketten - eine Übersicht Diese Übersicht über endliche Markov-Ketten basiert auf dem Buch Monte Carlo- Algorithmen von Müller-Gronbach et. al. und dient als Sammlung von Definitionen und

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. P. Embrechts ETH Zürich Sommer 204 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Vereinfachen

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Punktschätzer Optimalitätskonzepte

Punktschätzer Optimalitätskonzepte Kapitel 1 Punktschätzer Optimalitätskonzepte Sei ein statistisches Modell gegeben: M, A, P ϑ Sei eine Funktion des Parameters ϑ gegeben, γ : Θ G, mit irgendeiner Menge G, und sei noch eine Sigma-Algebra

Mehr

Übersicht Statistik-Funktionen. Statistische Software (R) Nützliche Funktionen. Nützliche Funktionen

Übersicht Statistik-Funktionen. Statistische Software (R) Nützliche Funktionen. Nützliche Funktionen Übersicht Statistik-Funktionen Statistische Software (R) Paul Fink, M.Sc. Institut für Statistik Ludwig-Maximilians-Universität München Pseudo Zufallszahlen, Dichten, Verteilungsfunktionen, etc. Funktion

Mehr

Musterlösung der Klausur vom 29. Juli 2003

Musterlösung der Klausur vom 29. Juli 2003 Statistik für Bioinformatiker SoSe 2003 Rainer Spang Musterlösung der Klausur vom 29. Juli 2003 Aufgabe 1. 10 Definieren Sie die folgenden statistischen Begriffe in einem Satz oder in einer Formel: 1.

Mehr

Übungen mit dem Applet Rangwerte

Übungen mit dem Applet Rangwerte Rangwerte 1 Übungen mit dem Applet Rangwerte 1 Statistischer Hintergrund... 2 1.1 Verteilung der Einzelwerte und der Rangwerte...2 1.2 Kurzbeschreibung des Applets...2 1.3 Ziel des Applets...4 2 Visualisierungen

Mehr

Bachelorprüfung: Statistik (1 Stunde)

Bachelorprüfung: Statistik (1 Stunde) Prof. H.R. Künsch D-BIOL, D-CHAB Winter 2010 Bachelorprüfung: Statistik (1 Stunde) Bemerkungen: Es sind alle mitgebrachten schriftlichen Hilfsmittel und der Taschenrechner erlaubt. Natels sind auszuschalten!

Mehr

ALMA II - ÜBERBLICK STOCHASTIK. Jochen Garcke

ALMA II - ÜBERBLICK STOCHASTIK. Jochen Garcke ALMA II - ÜBERBLICK STOCHASTIK Jochen Garcke GRUNDBEGRIFFE Wahrscheinlichkeitsraum (Ω, A, P) beschreibt Zufallssituation Realisierung, Stichprobe, Elementarereignis ω Ω Ergebnisraum zufälliges Ereignis

Mehr

Bayesianische FDR (Teil 1)

Bayesianische FDR (Teil 1) Bayesianische FDR (Teil 1) Mareile Große Ruse Seminar Multiples Testen 08.11.2010 Übersicht Übersicht Übersicht Alternative: Übersicht Alternative: Übersicht Alternative: Bedingte Wahrscheinlichkeit (Ω,

Mehr

Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann. 8. Übungsblatt zur Vorlesung Ökonometrie

Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann. 8. Übungsblatt zur Vorlesung Ökonometrie Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann 8. Übungsblatt zur Vorlesung Ökonometrie Aufgabe 1: In der Vorlesung haben wir das lineare Regressionsproblem als statistisches Problem formuliert:

Mehr

Kurze Einführung in R

Kurze Einführung in R Dr. Katharina Best Sommersemester 2011 Kurze Einführung in R WiMa-Praktikum Erste Schritte R wird durch Eintippen von R in der Konsole gestartet. Beendet wird es durch q() oder quit(). Es existieren auch

Mehr

Simulationsmethoden in der Bayes-Statistik

Simulationsmethoden in der Bayes-Statistik Simulationsmethoden in der Bayes-Statistik Hansruedi Künsch Seminar für Statistik, ETH Zürich 6. Juni 2012 Inhalt Warum Simulation? Modellspezifikation Markovketten Monte Carlo Simulation im Raum der Sprungfunktionen

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Hypothesenbewertungen: Übersicht

Hypothesenbewertungen: Übersicht Hypothesenbewertungen: Übersicht Wie kann man Fehler einer Hypothese abschätzen? Wie kann man einschätzen, ob ein Algorithmus besser ist als ein anderer? Trainingsfehler, wirklicher Fehler Kreuzvalidierung

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 ETH Zürich D-USYS Institut für Agrarwissenschaften Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 Peter von Rohr Datum 30. Mai 2016 Beginn 08:00 Uhr Ende 08:45

Mehr

Bayesianische Modellwahl. Helga Wagner Bayes Statistik WS 2010/11 161

Bayesianische Modellwahl. Helga Wagner Bayes Statistik WS 2010/11 161 Bayesianische Modellwahl Helga Wagner Bayes Statistik WS 2010/11 161 Modellwahl Problem der Modellwahl: Welches von K möglichen Modellen M 1,...,M K ist für die Daten y am besten geeignet? Klassisch: LQ-Test

Mehr

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010 Stochastic Processes SS 2010 Prof. Anton Wakolbinger Klausur am 16. Juli 2010 Vor- und Nachname: Matrikelnummer: Studiengang: Tutor(in): In der Klausur können 100 Punkte erreicht werden. Die Gesamtpunktezahl

Mehr

Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse

Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Definition: Erneuerungsprozess Sei {T n, n N} eine Folge unabhängiger, nichtnegativer Zufallsvariablen mit Verteilungsfunktion F, mit F () < 1. Dann heißt

Mehr

Der Ergodensatz. Hendrik Hülsbusch

Der Ergodensatz. Hendrik Hülsbusch Der Ergodensatz Hendrik Hülsbusch 1..212 Inhaltsverzeichnis Einleitung 3 5 Stationäre Verteilungen 5 6 Reversible Markovketten 11 2 Einleitung In meinem Vortrag beschäftigen wir uns mit dem asymptotischen

Mehr

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington Wahrscheinlichkeit und die Normalverteilung Jonathan Harrington Der Bevölkerungs-Mittelwert 99 Stück Papier nummeriert 0, 1, 2, 99 Ich ziehe 10 davon und berechne den Mittelwert. Was ist der Mittelwert

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Schätzen und Testen I in 90 Minuten. 8. Februar 2010

Schätzen und Testen I in 90 Minuten. 8. Februar 2010 Schätzen und Testen I in 90 Minuten 8. Februar 2010 1. Einführung in statistische Modelle und Inferenzkonzepte 2. Klassische Schätz- und Testtheorie 3. Likelihood-Inferenz 4. Bayes-Inferenz 5. Einführung

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 25 Überblick Überblick Metropolis-Algorithmus

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. Juli 016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zufallszahlen und Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 17. Oktober 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 17. Oktober 2017 1 / 23

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

unendlich-dimensionalen lästigen Parameter auffassen.

unendlich-dimensionalen lästigen Parameter auffassen. Näherungen mit Bootstrap Werner Stahel, Seminar für Statistik, ETH Zürich, 8. 4. 2009 Dieser Text kann dazu dienen, die Ideen des Bootstrap zusammenzufassen. Es fehlen hier Beispiele. 1 Fragestellung a

Mehr

Übungen zur Vorlesung. Statistik 2

Übungen zur Vorlesung. Statistik 2 Institut für Stochastik WS 2007/2008 Universität Karlsruhe JProf. Dr. H. Holzmann Blatt 11 Dipl.-Math. oec. D. Engel Übungen zur Vorlesung Statistik 2 Aufgabe 40 (R-Aufgabe, keine Abgabe) In dieser Aufgabe

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

Erneuerungs- und Semi-Markov-Prozesse

Erneuerungs- und Semi-Markov-Prozesse Kapitel 5 Erneuerungs- und Semi-Markov-Prozesse Für den Poisson-Prozess und (reguläre) diskrete Markov-Prozesse impliziert die Markov-Eigenschaft, dass die Zwischenzeiten bzw. Verweildauern exponentialverteilt

Mehr

3.2 Maximum-Likelihood-Schätzung

3.2 Maximum-Likelihood-Schätzung 291 Die Maximum-Likelihood-Schätzung ist die populärste Methode zur Konstruktion von Punktschätzern bei rein parametrischen Problemstellungen. 292 3.2.1 Schätzkonzept Maximum-Likelihood-Prinzip: Finde

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, 2. Juli 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Konjugierte Prior Konjugierte Prior

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 26. Juni 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 40 Überblick Überblick Grundlegendes zu Markov-Ketten

Mehr

Modellanpassung. Einführung in die induktive Statistik. Statistik. Statistik. Friedrich Leisch

Modellanpassung. Einführung in die induktive Statistik. Statistik. Statistik. Friedrich Leisch Modellanpassung Einführung in die induktive Statistik Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München SS 2009 Statistik Statistik Wahrscheinlichkeitsrechnung: Gesetze bekannt,

Mehr

Die Monte Carlo (MC) Methode

Die Monte Carlo (MC) Methode Die Monte Carlo (MC) Methode 9. März 2004 1 Die Idee Sei F (x) eine beliebige Verteilungsfunktion und es existiere der Erwartungswert einer Funktion g(x), d.h. E(g(X)) = g(x)df (x)

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele Woche 5: Deskriptive Statistik Teil VII Patric Müller Deskriptive Statistik ETHZ WBL 17/19, 22.05.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Aufgaben. Frage: (Aufgabe 3) Warum findet R den Befehl approx.r nicht?

Aufgaben. Frage: (Aufgabe 3) Warum findet R den Befehl approx.r nicht? Aufgaben Frage: (Aufgabe 3) Warum findet R den Befehl approx.r nicht? Antwort: Weil es kein Befehl ist! Es ist eine Skriptdatei die man sich von der HP der Vorlesung runterladen und in R ausführen soll.

Mehr

(Reine) Bayes-Punktschätzung

(Reine) Bayes-Punktschätzung 233 3.4.3 (Reine) Bayes-Punktschätzung Def. 3.33 (MPD-Schätzung) Gegeben eine Beobachtung x und die posteriori Verteilung mit Dichte bzw. Wahrscheinlichkeitsfunktion π(ϑ x) heißt ϑ mit π(ˆϑ x) = max ϑ

Mehr

Einführung in Markoff-Ketten

Einführung in Markoff-Ketten Einführung in Markoff-Ketten von Peter Pfaffelhuber Version: 6. Juli 200 Inhaltsverzeichnis 0 Vorbemerkung Grundlegendes 2 Stationäre Verteilungen 6 3 Markoff-Ketten-Konvergenzsatz 8 0 Vorbemerkung Die

Mehr

Ein Beispiel: Random Walk

Ein Beispiel: Random Walk Ein Beispiel: Random Walk Ein einfaches Modell für einen zufälligen Prozess ist der Random Walk oder auch Irrfahrt genannt. Sei q die Koordinationszahl eines Gitters Λ. N (fest) sei die Anzahl der Schritte.

Mehr

Seminar in Statistik - FS Nonparametric Bayes. Handout verfasst von. Ivo Francioni und Philippe Muller

Seminar in Statistik - FS Nonparametric Bayes. Handout verfasst von. Ivo Francioni und Philippe Muller Seminar in Statistik - FS 2008 Nonparametric Bayes Handout verfasst von Ivo Francioni und Philippe Muller Zürich, 17. März 2008 1 EINLEITUNG 1 1 Einleitung Bis jetzt haben wir in der Bayes schen Statistik

Mehr

x t2 y t = 160, y = 8, y y = 3400 t=1

x t2 y t = 160, y = 8, y y = 3400 t=1 Aufgabe 1 (25 Punkte) 1. Eine Online Druckerei möchte die Abhängigkeit des Absatzes gedruckter Fotos vom Preis untersuchen. Dazu verwendet die Firma das folgende lineare Regressionsmodell: wobei y t =

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

Übersicht deskriptiver Maße & anderer. Nützliche Funktionen. Statistische Software (R) artihmetische Mittel median() mean()

Übersicht deskriptiver Maße & anderer. Nützliche Funktionen. Statistische Software (R) artihmetische Mittel median() mean() Übersicht deskriptiver Maße & anderer nützlicher Funktionen Statistische Software (R) Paul Fink, M.Sc. Institut für Statistik Ludwig-Maximilians-Universität München Pseudo Zufallszahlen, Dichten, Verteilungsfunktionen,

Mehr

Teil IX. Verteilungen an Daten anpassen ( Maximum-Likelihood-Schätzung. fitten ) Woche 7: Maximum-Likelihood-Schätzung. Lernziele

Teil IX. Verteilungen an Daten anpassen ( Maximum-Likelihood-Schätzung. fitten ) Woche 7: Maximum-Likelihood-Schätzung. Lernziele Woche 7: Maimum-Lielihood-Schätzung Patric Müller ETHZ Teil IX Verteilungen an Daten anpassen ( fitten ): Maimum-Lielihood-Schätzung WBL 17/19, 12.06.2017 Wahrscheinlicheit

Mehr

Statistik I für Betriebswirte Vorlesung 13

Statistik I für Betriebswirte Vorlesung 13 Statistik I für Betriebswirte Vorlesung 13 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 6. Juli 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 13 Version: 7. Juli

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 13 Allgemeine Theorie zu Markov-Prozessen (stetige Zeit, diskreter Zustandsraum) Literatur Kapitel 13 * Grimmett & Stirzaker: Kapitel 6.9 Wie am Schluss von Kapitel

Mehr

7. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17

7. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17 7. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17 1. Aufgabe: a) Grundgesamtheit sind alle Reifen aus der Produktion von Langstone aus dem Monat März der entsprechenden Reifentypen.

Mehr

Übungen mit dem Applet Wahrscheinlichkeitsnetz

Übungen mit dem Applet Wahrscheinlichkeitsnetz Wahrscheinlichkeitsnetz 1 Übungen mit dem Applet Wahrscheinlichkeitsnetz 1 Statistischer Hintergrund... 1.1 Verteilungen... 1. Darstellung von Daten im Wahrscheinlichkeitsnetz...4 1.3 Kurzbeschreibung

Mehr

Statistische Methoden der Datenanalyse. Übung IV

Statistische Methoden der Datenanalyse. Übung IV Albert-Ludwigs-Universität Freiburg Wintersemester 203/204 Statistische Methoden der Datenanalyse Markus Schumacher, Stan Lai, Florian Kiss Übung IV 9..203, 20..203 Anwesenheitsaufgaben Aufgabe 2 Zufallsgenerator

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

Klausur,,Algorithmische Mathematik II

Klausur,,Algorithmische Mathematik II Institut für angewandte Mathematik Sommersemester 03 Andreas Eberle Matthias Erbar / Jan Maas Klausur Algorithmische Mathematik II Musterlösung. (Zufallsvariablen und ihre Verteilung a Wir nehmen an dass

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr