Punktschätzer Optimalitätskonzepte

Größe: px
Ab Seite anzeigen:

Download "Punktschätzer Optimalitätskonzepte"

Transkript

1 Kapitel 1 Punktschätzer Optimalitätskonzepte Sei ein statistisches Modell gegeben: M, A, P ϑ Sei eine Funktion des Parameters ϑ gegeben, γ : Θ G, mit irgendeiner Menge G, und sei noch eine Sigma-Algebra G in G gegeben. Wir nennen die Funktion γϑ, ϑ Θ, ebenfalls einen Parameter. In der Regel: G, G = R k, B k. Unter einem Schätzer für γϑ verstehen wir eine messbare Funktion δ : M, A G, G. Ein Schätzer δ gibt also für jede mögliche Beobachtung x M die Schätzung δx für den Parameter γϑ. ϑ Θ. 1.1 Entscheidungstheoretisches Konzept Das entscheidungstheoretische Konzept zur Beurteilung bzw. zum Vergleich von Schätzern für γϑ geht von einer gegebenen Verlustfunktion L aus L steht für engl. Loss: L : G Θ R, L 0 ; für jedes ϑ Θ ist G z Lz, ϑ messbar bezgl. G und B 1. Interpretation: : Wenn ϑ Θ der wahre Parameterwert ist und als Schätzung für γϑ der Wert z G gewählt wird, dann entsteht der Verlust Lz, ϑ. Beispiele: Im Fall G, G = R, B 1 : Lz, ϑ = z γϑ 2 quadratische Abweichung / squared error, Lz, ϑ = z γϑ absolute Abweichung / absolute error, Definition 1.1 Risikofunktion eines Schätzers Für einen Schätzer δ : M, A G, G heißt Rδ, ϑ := L δx, ϑ [ dp ϑ x = E ϑ L δ, ϑ ] [ 0, ] M die Risikofunktion als Funktion von ϑ Θ des Schätzers δ. 1

2 Kapitel 1: Punktschätzer Optimalitätskonzepte 2 Beispiele im Fall G, G = R, B 1 : Für die quadratische Verlustfunktion Lz, ϑ = z γϑ 2 Rδ, ϑ = MSEδ, ϑ = E ϑ δ γϑ 2 ist Mean Squared Error ; für die absolute Abweichung als Verlust, Lz, ϑ = z γϑ, ist Rδ, ϑ = MAEδ, ϑ = E ϑ δ γϑ Mean Absolute Error. Durch die Risikofunktionen der Schätzer für γϑ ist eine Halbordnung auf der Menge dieser Schätzer gegeben. Daraus abgeleitete allgemeine Begriffe sind: Definition 1.2 Gleichmäßig besser, zulässig, gleichmäßig optimal a Seien δ 1 und δ 2 zwei Schätzer für den Parameter γϑ. Der Schätzer δ 1 heißt gleichmäßig besser als der Schätzer δ 2, wenn gilt: Rδ 1, ϑ Rδ 2, ϑ ϑ Θ und Rδ 1, ϑ 0 < Rδ 2, ϑ 0 für mind. ein ϑ 0 Θ. b Ein Schätzer δ für γϑ heißt zulässig engl. admissible, wenn es keinen anderen Schätzer für γϑ gibt, der gleichmäßig besser als δ ist. c Sei eine gegebene nicht-leere Menge von Schätzern für γϑ. Ein δ heißt gleichmäßig optimaler Schätzer in, wenn für jeden Schätzer δ gilt: Rδ, ϑ Rδ, ϑ ϑ Θ. Bemerkung: Erwartungstreuer Schätzer mit gleichmäßig minimaler Varianz, engl. Uniformly Minimum Variance Unbiased Estimator, UMVUE. Dies ist ein gleichmäßig optimaler Schätzer δ im Sinne von Definition 1.2 c im Fall G, G = R, B 1, = Menge aller erwartungstreuen Schätzer für γϑ und quadratische Verlustfunktion. Dann ist ja insbesondere für jeden Schätzer δ : MSEδ, ϑ = Var ϑ δ ϑ Θ. Verwendet man eine skalare reelle Bewertung der Größe der Risikofunktionen der Schätzer, dann erhält man eine vollständige Ordnung in der Menge der Schätzer. Populäre skalare Bewertungen sind das Worst-Case Risiko maximales Risiko und das Bayes-Risiko durchschnittliches Risiko. Definition 1.3 Worst-Case-Risiko und Minimax-Schätzer Für einen Schätzer δ für den Parameter γϑ bezeichne R max δ := sup Rδ, ϑ ϑ Θ [ 0, ], das Worst-Case-Risiko von δ. Sei eine nicht-leere Menge von Schätzern für den Parameter γϑ. Ein δ heißt Minimax- Schätzer in, wenn R max δ = min { R max δ : δ }.

3 Kapitel 1: Punktschätzer Optimalitätskonzepte 3 Definition 1.4 Bayes-Risiko und Bayes-Schätzer Seien noch eine Sigma-Algebra T in Θ und eine W-Verteilung τ a-priori-verteilung auf T gegeben. Sei eine nicht-leere Menge von Schätzern für den Parameter γϑ, deren Risikofunktionen messbar bezgl. T und B 1 sind. Für einen Schätzer δ heißt der Wert R τ δ := Θ Rδ, ϑ dτϑ das Bayes-Risiko von δ bezgl. der a-priori-verteilung τ. Ein δ heißt Bayes-Schätzer bezgl. τ in, wenn [ 0, ] R τ δ = min { R τ δ : δ }. 1.2 Bayes-Schätzer Wir setzen hier für das statistische Modell M, A, P ϑ voraus, dass ein sigma-endliches Maß ϑ Θ µ auf A und µ-dichten f ϑ von P ϑ für alle ϑ Θ gegeben sind. Außerdem sei T eine Sigma-Algebra in Θ, und die Dichten seien produkt-messbar, d.h. die Funktion M Θ x, ϑ f ϑ x ist messbar bezgl. der Produkt-Sigma-Algebra A T und der Borel schen Sigma-Algebra B 1. Definition 1.5 A-posteriori-Verteilung zu einer a-priori-verteilung Sei τ eine W-Verteilung a-priori-verteilung auf T. Bezeichne: f τ x := f ϑ x dτϑ x M, Θ M τ := { x M : 0 < f τ x < }. Für jedes x M τ ist die a-posteriori-verteilung τ x die W-Verteilung auf T mit der τ-dichte Θ ϑ f ϑ x / f τ x. Weitere Voraussetzungen: Sei γϑ der zu schätzende Parameter, wobei γ messbar sei, γ : Θ, T G, G ; sei eine produkt-messbare Verlustfunktion gegeben, L : G Θ, G T R, B 1, L 0.

4 Kapitel 1: Punktschätzer Optimalitätskonzepte 4 Theorem 1.6 Konstruktion eines Bayes-Schätzers Sei eine a-priori-verteilung τ auf T gegeben. Betrachte [ ] E τx Lz, = Lz, ϑ dτ x ϑ z G, x M τ. Θ Für jeden Schätzer δ : M, A G, G können wir sein Bayes-Risiko schreiben als [ ] R τ δ = E τx L δx, fτ x dµx. M τ Daher gilt: Wenn δ : M, A G, G ein Schätzer ist mit der Eigenschaft, dass [ E τx L δ x, ] = min E [ ] τ x Lz, x M τ, z G dann ist δ Bayes-Schätzer bezgl. τ in der Menge aller Schätzer δ : M, A G, G. Korollar 1.7 R k -wertiger Parameter und quadratische Verlustfunktion Seien G, G = R k, B k, also γϑ ein R k -wertiger Parameter und L die quadratische Verlustfunktion: Lz, ϑ = z γϑ 2 z R k, ϑ Θ, wobei die euklidische Norm bezeichnet. Ein Schätzer δ : M, A R k, B k ist Bayes-Schätzer bezgl. τ in der Menge aller Schätzer für γϑ, wenn gilt: δ x = E τx γ für jedes x M τ mit E τx γ 2 <. Korollar 1.8 Reeller Parameter und absolute Abweichung als Verlustfunktion Seien G, G = R, B 1, also γϑ ein reeller Parameter und L die absolute Abweichung: Lz, ϑ = z γϑ z R, ϑ Θ. Ein Schätzer δ : M, A R, B 1 ist Bayes-Schätzer bezgl. τ in der Menge aller Schätzer für γϑ, wenn gilt: δ x ist ein Median von τ γ x für jedes x M τ mit E τx γ <, d.h. τ x γ δ x 1 2 und τ x γ δ x 1 2 für jedes x M τ mit E τx γ <. Beispiel: Binomialmodell mit a-priori Beta-Verteilung. Statistisches Modell: M = {0, 1,..., n}, P p = Bin, p, p 0, 1 der Parameter; n N gegeben. A-priori-Verteilung τ : Die Beta-a, b-verteilung auf B 1 0, 1, wobei a, b > 0 gegebene positive reelle Zahlen sind; d.h.: τ = g a,b λ 1 0, 1 mit g a,b p = 1 Ba, b pa 1 1 p b 1 p 0, 1, wobei B die Beta-Funktion ist.

5 Kapitel 1: Punktschätzer Optimalitätskonzepte 5 Man erhält als a-posteriori-verteilungen: τ x = Betax + a, n x + b - Verteilung x {0, 1,..., n}, und mit Korollar 1.7: Bayes-Schätzer für p bezüglich τ bei quadratischem Verlust ist δ x = x + a n + a + b, x { 0, 1,..., n }. Beispiel: Vereinfachtes lineares Normalverteilungsmodell mit normaler a-priori-verteilung. Statistisches Modell: R n, B n, NBβ, V 0, mit einer gegebenen n k Matrix B vom Rang β R k k und einer gegebenen positiv definiten n n Matrix V 0. A-priori-Verteilung: τ = Nβ 0, W 0, mit gegebenen β 0 R k und W 0 k k positiv definit. Man erhält für die a-posteriori-verteilungen: τ x = N A 1 bx, A 1, wobei A = B t V 1 0 B + W 1 0, bx = B t V 1 0 x + W 1 0 β 0, für jedes x R n. Mit Korollar 1.7: Bayes-Schätzer für β bezüglich τ bei quadratischem Verlust ist δ x = A 1 bx = B t V 1 0 B + W B t V 1 0 x + W 1 0 β 0, x R n. Dieser Schätzer δ ist auch unter anderen Verlustfunktionen L Bayes-Schätzer bezüglich τ : Lz, β = Λz β, z, β R k, wobei Λ : R k [ 0, konvex und Λ t = Λt t R k. Das ergibt sich mit Theorem 1.6 und dem nachfolgenden Lemma. Lemma 1.9 Sei P eine W-Verteilung auf B k, die zu einem gegebenen Punkt t 0 R k Spiegelungs-symmetrisch ist, d.h. : P S t 0 = P, wobei S t0 : R k R k, S t0 t = 2t 0 t Spiegelung am Punkt t 0. Sei Λ : R k [ 0, eine konvexe Funktion mit Λ t = Λt t R k. Λ t 0 t dp t = min Λ z t dp t. R k z R k R k Dann gilt: 1.3 Minimax-Schätzer Die nachfolgenden zwei Resultate die hilfreich zur Konstruktion von Minimax-Schätzern sein können zeigen einen Zusammenhang zwischen Minimax- und Bayes-Schätzern; dabei setzen wir voraus: Sei γϑ der zu schätzende Parameter, und γ sei messbar, γ : Θ, T G, G ; sei eine gegebene nicht-leere Menge von Schätzern für γϑ; sei L eine gegebene Verlustfunktion, und für jedes δ sei die Risikofunktion Θ ϑ Rδ, ϑ messbar bezgl. T und B 1.

6 Kapitel 1: Punktschätzer Optimalitätskonzepte 6 Theorem 1.10 Minimax-Schätzer als Bayes-Schätzer Sei δ. Es existiere eine a-priori-verteilung τ auf T, so dass gilt: i δ ist Bayes-Schätzer in bezgl. τ, und ii Rδ, ϑ = R max δ für τ-fast alle ϑ Θ. Dann ist δ Minimax-Schätzer in. Eine gewisse Abschwächung der Voraussetzungen von Theorem 1.10 kann vorgenommen werden: Theorem 1.11 Minimax-Schätzer als uneigentliche Bayes-Schätzer Sei δ. Es existiere eine Folge τ m m N von a-priori-verteilungen auf T und eine zugehörige Folge von Bayes-Schätzern δm = δτ m in, so dass Dann ist δ Minimax-Schätzer in. lim R τ m m δm = R max δ. Beispiel: Binomialmodell. Statistisches Modell: M = {0, 1,..., n}, P p = Bin, p, p 0, 1 der Parameter; n N gegeben. Der Schätzer für p δ x := x n n + n x M, i ist Bayes-Schätzer in der Menge aller Schätzer für p bezgl. τ = Beta- 1 2 n,, 1 2 n -Verteilung, ii und seine MSE-Funktion ist konstant. Nach Theorem 1.10 daher unter quadratischer Verlustfunktion : δ ist Minimax-Schätzer in der Menge aller Schätzer für p. Beispiel: Vereinfachtes Normalverteilungsmodell Betrachte das Modell mit n reellen u.i.v. normalverteilten ZV en, wobei nur der Erwartungswert unbekannt ist hingegen die Varianz bekannt, d.h. R n, B n, n Nβ, σ0 2, σ i=1 β R 0 > 0 gegeben. Zu schätzen ist β, die Verlustfunktion sei Lz, β = Λz β z, β R, mit einer konvexen und Nullpunkt-symmetrischen Funktion Λ : R [ 0,. Der Schätzer δ x = x, x = x 1,..., x n R n, erweist sich als Minimax-Schätzer in der Menge aller Schätzer für β. Denn entsprechend Theorem 1.11: Betrachte Folge von a-priori-verteilungen auf B 1 τ m = Nβ 0, κ 2 m, m N, mit einem festen β 0 R und einer isotonen Folge κ 2 m für m. Bayes-Schätzer bezgl. τ m ist δ mx = λ m x + 1 λ m β 0 mit λ m = Abschnitt 1.2. nσ 2 0 nσ 2 0 +κ 2 m, s. Beispiel in

7 Kapitel 1: Punktschätzer Optimalitätskonzepte 7 Zeige: lim m R τ m δ m = R max δ, wobei die Risikofunktion von δ konstant ist. Bemerkung: Zwei-parametriges Normalverteilungsmodell. Wichtiger ist sicherlich das Modell mit unbekanntem Erwartungswert und unbekannter Varianz: R n, B n, n Nβ, σ 2. i=1 β,σ R 0, Zu schätzen sei wiederum β; die Verlustfunktion sei z β Lz, β, σ = Λ σ z, β R, σ > 0, mit einer konvexen und Nullpunkt-symmetrischen Funktion Λ : R [ 0,. Wiederum erweist sich der Schätzer δ x = x, x = x 1,..., x n R n, als Minimax-Schätzer in der Menge aller Schätzer für β.

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, (

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, ( Kapitel 4 Konfidenzbereiche Wir gehen wieder von einem allgemeinen parametrischen statistischen Modell aus, M, A, P ϑ ; sei eine Funktion des Parameters gegeben, die einen interessierenden Teil-Parameter

Mehr

3.3 Methoden zur Evaluierung von Schätzern

3.3 Methoden zur Evaluierung von Schätzern 3.3 Methoden zur Evaluierung von Schätzern Bis jetzt haben wir nur glaubwürdige Techniken zur Konstruktion von Punktschätzern besprochen. Falls unterschiedliche Schätzer für einen Parameter resultieren,

Mehr

5 Optimale erwartungstreue Schätzer

5 Optimale erwartungstreue Schätzer 33 5 Optimale erwartungstreue Schätzer 5.1 Definition Seien X 1,..., X n reelle Zufallsvariablen, T T (X 1,..., X n ) reellwertige Statistik. T heißt linear : c 1,..., c n R mit T n c j X j 5.2 Satz Seien

Mehr

Kapitel V - Erwartungstreue Schätzfunktionen

Kapitel V - Erwartungstreue Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Erwartungstreue Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

Mathematische Ökonometrie

Mathematische Ökonometrie Mathematische Ökonometrie Ansgar Steland Fakultät für Mathematik Ruhr-Universität Bochum, Germany ansgar.steland@ruhr-uni-bochum.de Skriptum zur LV im SoSe 2005. Diese erste Rohversion erhebt keinen Anspruch

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

4.5 Schranken an die Dichte von Kugelpackungen

4.5 Schranken an die Dichte von Kugelpackungen Gitter und Codes c Rudolf Scharlau 19. Juli 2009 341 4.5 Schranken an die Dichte von Kugelpackungen Schon in Abschnitt 1.4 hatten wir die Dichte einer Kugelpackung, speziell eines Gitters bzw. einer quadratischen

Mehr

Kapitel VIII - Tests zum Niveau α

Kapitel VIII - Tests zum Niveau α Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VIII - Tests zum Niveau α Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Testsituationen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457.

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457. Exkurs A: Bedingte Erwartungswerte, bedingte Verteilungen (Ω, A, P ) sei W-Raum, X : Ω IR P-quasiintegrierbar, F A Unter - σ- Algebra. E(X F) = E P (X F) (Version des) bedingter Erwartungswert von X unterf

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

4. Das multiple lineare Regressionsmodell

4. Das multiple lineare Regressionsmodell 4. Das multiple lineare Regressionsmodell Bisher: 1 endogene Variable y wurde zurückgeführt auf 1 exogene Variable x (einfaches lineares Regressionsmodell) Jetzt: Endogenes y wird regressiert auf mehrere

Mehr

Statistik IV. Modul P8: Grundlagen der Statistik II Vorlesung P8.1: Wahrscheinlichkeitstheorie und Inferenz II

Statistik IV. Modul P8: Grundlagen der Statistik II Vorlesung P8.1: Wahrscheinlichkeitstheorie und Inferenz II Statistik IV Modul P8: Grundlagen der Statistik II Vorlesung P8.1: Wahrscheinlichkeitstheorie und Inferenz II Prof. Dr. Torsten Hothorn Institut für Statistik Ludwig Maximilians Universität München L A

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

Lineare Regression mit einem Regressor: Einführung

Lineare Regression mit einem Regressor: Einführung Lineare Regression mit einem Regressor: Einführung Quantifizierung des linearen Zusammenhangs von zwei Variablen Beispiel Zusammenhang Klassengröße und Testergebnis o Wie verändern sich Testergebnisse,

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 28.05.2009 1 Korrektur zur letzten Vorlesung Bsp. Fehlerfortpflanzung in einer Messung c B a 2 2 E c Var c a b A b 2 2 2 n h( x)

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Bioinformatik und Medizin. Brustkrebs. Population. Molekulare Eigenschaften des Brustkrebs

Bioinformatik und Medizin. Brustkrebs. Population. Molekulare Eigenschaften des Brustkrebs Molekulare Eigenschaften des Brustkrebs Bioinformatik und Medizin Genomische Datenanalyse 11. Kapitel Medizinischer Fortschritt ist das vornehmste Ziel der Genomforschung und damit auch der Bioinformatik

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

4 Statistik der Extremwertverteilungen

4 Statistik der Extremwertverteilungen In diesem Kapitel beschäftigen wir uns mit statistischen Anwendungen der Extremwerttheorie. Wir werden zwei verschiedene Zugänge zur Modellierung von Extremwerten betrachten. Der erste Zugang basiert auf

Mehr

Auswahl von Schätzfunktionen

Auswahl von Schätzfunktionen Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

5. Statistische Schätztheorie

5. Statistische Schätztheorie 5. Statistische Schätztheorie Problem: Sei X eine Zufallsvariable (oder X ein Zufallsvektor), die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X (oder

Mehr

Tests einzelner linearer Hypothesen I

Tests einzelner linearer Hypothesen I 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

Kapitel 11. Bilinearformen über beliebigen Bilinearformen

Kapitel 11. Bilinearformen über beliebigen Bilinearformen Kapitel 11 Bilinearformen über beliebigen Körpern Wir können in diesem Kapitel rasch vorgehen, weil die meisten Konzepte im Zusammenhang mit Sesquilinearformen bereits eingeführt wurden. In diesem Abschnitt

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Topologische Begriffe

Topologische Begriffe Kapitel 3 Topologische Begriffe 3.1 Inneres, Rand und Abschluss von Mengen Definition (innerer Punkt und Inneres). Sei (V, ) ein normierter Raum über K, und sei M V eine Menge. Ein Vektor v M heißt innerer

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

17 Nichtparametrische Schätzer

17 Nichtparametrische Schätzer 17 Nichtparametrische Schätzer In diesem Paragraphen werden kurz einige Möglichkeiten skizziert, auch in nichtparametrischen Modellenzu Schätzern fürinteressierende statistische Größenzugelangen. a Empirische

Mehr

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß:

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß: Universität Regensburg Sommersemester 013 Daniel Heiß: 9: Metrische äußere Maße II I Das mehrdimensionale Lebesguemaß 1.1 Definition (i) Für reelle Zahlen a b, c d ist ein Rechteck im R die Menge R = a,

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Kapitel 1: Elemente der Statistik

Kapitel 1: Elemente der Statistik 1 Kapitel 1: Elemente der Statistik 1.1 Beispiel Ein Elektromarkt erhält eine Lieferung von N = 10000 Glühbirnen. Darunter ist eine unbekannte Anzahl h defekt, wobei h 0 1 = {0, 1,..., N}. Um Kenntnisse

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

3. Das einfache lineare Regressionsmodell

3. Das einfache lineare Regressionsmodell 3. Das einfache lineare Regressionsmodell Ökonometrie: (I) Anwendung statistischer Methoden in der empirischen Forschung in den Wirtschaftswissenschaften Konfrontation ökonomischer Theorien mit Fakten

Mehr