Membranphysiologie II

Größe: px
Ab Seite anzeigen:

Download "Membranphysiologie II"

Transkript

1 Membranphysiologie II

2 Wiederholung Biophysikalische Grundlagen Adolf Eugen Fick ( )

3 Transportprozesse über Biomembranen Übersicht In biologischen Membranen lassen sich aktive und passive Transportmechanismen unterscheiden. Bei einem passiven Transport folgt ein Stoff seinem Konzentrationsgradienten. Man unterscheidet : Freie Diffusion: Einige Stoffe können frei durch die Zellmembran diffundieren. Hierzu zählen Wasser und gelöste Gase wie O 2 und CO 2. Ebenfalls gut diffundieren lipidlösliche Stoffe. Diffusion durch spezifische Membranporen (Kanäle) Transport durch Transportproteine (erleichterte Diffusion) : Für einige Stoffe existieren in der Plasmamembran spezifische Trasnsporterproteine, die die Diffusion über die Membran erleichtern sollen. Ein aktiver Transportmechanismus transportiert einen Stoff gegen seinen Konzentrationsgradienten. Man unterscheidet : Primär aktiver Transport : Die Energie für den Transport wird durch ATP bereitgestellt. Sekundär aktiver Transport : Die Energie für den Transport wird aus dem Konzentrationsgradienten eines anderen Ions bezogen.

4 Transportprozesse über Biomembranen Übersicht

5 Ionenkanäle Eigenschaften von Ionenkanälen Ionenkanäle können eine große Zahl von Ionen transportieren Ionen/s Ionenkanäle sind (meist) selektiv. Ionenkanäle können geschaltet werden.

6 Ionenkanäle Öffnungsmechanismen Depolarisation oder Hyperpolarisation der Zellmembran Beispiele: Acetylcholin, Glutamat, GABA Beispiele: camp, cgmp, Ca 2+ Dehnung der Membran

7 Ionenkanäle Modellvorstellung eines spannungsgesteuerten Ionenkanals Abb. aus : B. Hille : Ionic channels of excitable membranes. 2. Aufl., Sinauer, Sunderland, Massachusetts 1992, S. 66.

8 Ionenkanäle Allgemeine Strukturprinzipien Na + - und Ca 2+ -Kanäle

9 Ionenkanäle Allgemeine Strukturprinzipien Modell des Na + -Kanals Abbildung aus : R. Greger : Membranpotential. In : R. Klinke, S. Silbernagl : Lehrbuch der Physiologie, 2. Aufl., Georg Thieme Verlag, Stuttgart, New York 1996, S. 54.

10 Ionenkanäle Allgemeine Strukturprinzipien Modell des Na + -Kanals Abbildung aus : R. Greger : Membranpotential. In : R. Klinke, S. Silbernagl : Lehrbuch der Physiologie, 2. Aufl., Georg Thieme Verlag, Stuttgart - New York 1996, S. 55.

11 Ionenkanäle Allgemeine Strukturprinzipien K + -Kanäle Abb. aus : D.J.Snyders : Structure and function of cardiac potassium channels. Cardiovasc. Res. 42, (1999).

12 Ionenkanäle Röntgenstrukturanalyse

13 Ionenkanäle Nobelpreis für die Röntgenstrukturaufklärung eines Ionenkanals Sculpture by Julian Voss-Andreae based on potassium channel KcsA

14 Ionenkanäle Die einfachsten Ionenkanäle: Einwärts-Gleichrichter Kaliumkanäle (Kir-Kanäle)

15 Ionenkanäle Permeation des K + -Ions durch den K + -Kanal

16 Ionenkanäle Vereinfachtes elektrisches Modell einer Zellmembran Modellvorstellung Schaltbild Abb. aus : B. Hille : Ionic channels of excitable membranes. 2. Aufl., Sinauer, Sunderland, Massachusetts 1992, S.16.

17 Ionenkanäle Vereinfachtes elektrisches Modell einer Zellmembran Modellvorstellung Schaltbild Abb. aus : B. Hille : Ionic channels of excitable membranes. 2. Aufl., Sinauer, Sunderland, Massachusetts 1992, S.16. Die treibende Kraft eines Ions wird bestimmt durch das Membranpotential und sein Gleichgewichtspotential. Es gilt : I K = g K (E M E K )

18 Ionenkanäle Strom-Spannungsbeziehungen Abb. aus : B. Hille : Ionic channels of excitable membranes. 2. Aufl., Sinauer, Sunderland, Massachusetts 1992, S.17.

19 Transportprozesse über Biomembranen Übersicht

20 Carrier / Transporter Einfache Carrier Valinomycin Carrier komplexieren Ionen und diffundieren mit diesen über die Zellmembran

21 Carrier / Transporter Übersicht

22 Carrier / Transporter Uniporter Uniporter transportieren Substanzen entlang eines Konzentrationsgradienten. Sie beschleunigen (katalysieren) den Durchtritt durch die Zellmembran. Beispiel: Glukose-Transporter (GLT1-GLT12)

23 Carrier / Transporter Beispiel für einen Uniporter: GLUT1 Der Glukosetransport erfolgt in vier Schritten: 1.) Hochaffine Bindung an die extrazelluläre Bindungsstelle 2.) Konformationsänderung des Transporters 3.) Dissoziation von Glukose in das Cytosol 4.) Konformationsänderung des Transporters

24 Carrier / Transporter Transporter folgen einer Michaelis-Menten Kinetik Einfache Diffusion Carrier-vermittelter Transport [X] J x = J max K m + [X]

25 Carrier / Transporter Glukosetransporter - Übersicht

26 Carrier / Transporter Glukosetransporter - Pathophysiologie Die Glukoseaufnahme aus dem Blut wird durch GLUT 1 vermittelt. Kinder, die mit einer Mutation in GLUT1 geboren werden, zeigen erhebliche Störungen in der Gehirnentwicklung.

27 Carrier / Transporter Der Glukosetransport im Darm kann nicht durch einen Uniporter vermittelt werden!

28 Carrier / Transporter Symporter/Cotransporter Beim Symporter ist der Transport mehrerer Substanzen gekoppelt. Der elektrochemische Gradient einer Substanz wird genutzt, um eine andere Substanz gegen einen Gradienten zu transportieren (sekundär aktiver Transport). Beispiel: Na + -Glukose-Symporter (SGLT)

29 Carrier / Transporter Beispiel für einen Symporter: SGLT Ein Glukosemolekül wird gleichzeitig mit 2 Natriumionen und ungefähr 260 Wassermolekülen transportiert.

30 Carrier / Transporter Symporter/Cotransporter Die meisten Symporter sind Natrium-Cotransporter.

31 Carrier / Transporter Symporter/Cotransporter Extrazelluläre Konzentration [mmol/l] Intrazelluläre Konzentration [mmol/l] Gleichgewichts -potential [mv] Na K Ca Cl H + ph 7.4 ph

32 Carrier / Transporter Antiporter/Austauscher Beim Antiporter ist der gegenläufige Transport mehrerer Substanzen gekoppelt. Der elektrochemische Gradient einer Substanz wird genutzt, um eine andere Substanz in Gegenrichtung gegen einen Gradienten zu transportieren (sekundär aktiver Transport). Beispiel: Na + -H + -Austauscher Na + /Ca 2+ -Austauscher Cl - /HCO3 - -Austauscher

33 Transportprozesse über Biomembranen Übersicht

34 Carrier / Transporter Primär aktive Transporter / Pumpen Pumpen nutzen die bei durch Spaltung von ATP gewonnene Freie Energie, um Substanzen gegen einen elektrochemischen Gradienten zu transportieren (primär aktiver Transport). Beispiel: Na + -K + -ATPase Ca 2+ -ATPase

35 Carrier / Transporter Beispiel für eine Pumpe. Die Na + /K + -ATPase [Na + ] = 145 mm [K + ] = 4 mm [Na + ] = 15 mm [K + ] = 120 mm Die Na + /K + -ATPase wird in (nahezu) allen menschlichen Zellen exprimiert. Etwa 25% des in Zellen gebildeten ATPs wird durch die Na + /K + -ATPase verbraucht. In Neuronen sind es bis zu 70%.

36 Carrier / Transporter Pumpzyklus der Na + /K + -ATPase

37 Transportprozesse über Biomembranen Zusammenfassung

38 Transportprozesse über Biomembranen Zusammenfassung: Proteinvermittelte Transportmechanismen Kennzeichen des proteinvermittelten Transports: Der Transport ist spezifisch. Der Transport ist schneller als die freie Diffusion. Der Transport über Carrier/Transporter zeigt eine Sättigungskinetik. Der Transport kann durch Hemmstoffe inhibiert werden.

39 Vom Molekül zur Zelle Claude Bernard :... wenn man einen lebenden Organismus auseinandernimmt, indem man seine verschiedenen Teile isoliert, tut man das zur Erleichterung der experimentellen Analyse und keineswegs, um sie getrennt zu verstehen. In der Tat, will man einer physiologischen Eigenschaft ihren Wert und ihre Bedeutung zumessen, muß man sie immer auf das Ganze beziehen und darf endgültige Schlußfolgerungen nur im Zusammenhang mit ihren Wirkungen aus das Ganze ziehen...

40 Transportprozesse über Biomembranen Zusammenspiel der Transportmechanismen

41 Elektrophysiologische Messtechniken Messung von Membranpotentialen

42 Elektrophysiologische Messtechniken Messung von Membranpotentialen Abb. aus : J. Dudel : Informationsübermittlung durch elektrische Erregung. In : R.F. Schmidt, G. Thews : Physiologie des Menschen, 26. Aufl., Springer, Berlin - Heidelberg - New York 1995, S. 20

43 Elektrophysiologie Das Ruhemembranpotential Das Ruhemembranpotential wird wesentlich durch den transmembranären K + -Gradienten bestimmt. Abbildung aus : R. Greger : Membranpotential. In : R. Klinke, S. Silbernagl : Lehrbuch der Physiologie, 2. Aufl., Thieme Verlag, Stuttgart - New York 1996, S. 49.

44 Elektrophysiologie Abhängigkeit des Ruhemembranpotentials von der extrazellulären Kalium-Konzentration Abbildung aus : R. Greger : Membranpotential. In : R. Klinke, S. Silbernagl : Lehrbuch der Physiologie, 2. Aufl., Thieme Verlag, Stuttgart - New York 1996, S. 49.

45 Elektrophysiologie Wie berechnet sich das Membranpotential einer Zelle? Abbildung aus : R. Greger : Membranpotential. In : R. Klinke, S. Silbernagl : Lehrbuch der Physiologie, 2. Aufl., Thieme Verlag, Stuttgart - New York 1996, S. 49.

46 Elektrophysiologie Wie berechnet sich das Membranpotential einer Zelle? Berücksichtigt man die fraktionellen Leitfähigkeiten, so ergibt sich für das Membranpotential : E f f x K G G E x M K f Na E Na f Cl E Die fraktionelle Leitfähigkeit f x des Ions x entspricht hierbei dem Quotienten aus der Leitfähigkeit der Membran für das Ion x und der Gesamtleitfähigkeit (G M ) : Durch Umformen erhält man die Goldmann-Hodgkin-Katz-Gleichung : Cl E RT F ln p p K K K a p Na a p Cl Na Cl i K i p Na i p Cl a Na Cl

47 Elektrophysiologie Wie berechnet sich das Membranpotential einer Zelle? Beispiel: In Ruhe gilt : p K + >> p Na + + p Cl - Die Goldmann-Hodgkin-Katz-Gleichung vereinfacht sich damit zu: E RT F ln p p K K K a p Na a p Cl Na Cl i K i p Na i p Cl a Na Cl

48 Elektrophysiologie E K und E Na bestimmen den dynamischen Spannungsbereich der Biologie E m = P K * E K + P Na * E Na P K >> P Na P Na = P K P Na >> P K E K = E Na = 60 mv Beispiel: P Na = P K E m = 0.5 * E K * E Na E m = - 45 mv + 30 mv E m = - 15 mv

49 Elektrophysiologie Das Ruhemembranpotential Einwärts-gleichrichtende Kalium-Kanäle (inward rectifier, Kir) stabilisieren das Ruhemembranpotential. Abb. aus : A.M. Katz : Physiology of the Heart. Raven Press. New York 1992, S. 453

50 Elektrophysiologische Messtechniken Auslösung von Aktionspotentialen Man kann eine erregbare Zelle depolarisieren, indem man einen positiven Strom injiziert. Ist der Strom stark genug, so daß das Membranpotential einen Schwellenwert überschreitet, wird ein Aktionspotential ausgelöst.

51 Elektrophysiologie Das Aktionspotential Abb. aus : J. Dudel : Informationsvermittlung durch elektrische Erregung. In : R.F. Schmidt, G. Thews : Physiologie des Menschen, 26. Auflage, Springer, Berlin - Heidelberg - New York 1995, S. 23.

52 Elektrophysiologische Messtechniken Die Spannungsklemme (voltage clamp)

53 Elektrophysiologische Messtechniken Voltage clamp Techniken Das Riesenaxon des Tintenfischs war das ideale Präparat zur Untersuchung von Ionenströmen Alan Lloyd Andrew Fielding Hodgkin Huxley Nobelpreis für Medizin 1963 The squid (Loligo) A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117, (1952)

54 Elektrophysiologische Messtechniken Voltage clamp Techniken Abb. aus : B. Hille : Ionic channels of excitable membranes. 2. Aufl., Sinauer, Sunderland / Massachusetts 1992, S.17.

55 Elektrophysiologische Messtechniken Die Spannungsklemme (voltage clamp) Strom Strom Klemmspannung Klemmspannung Abb. aus : S.L. Wolfe : Molecular and cellular biology. Wadsworth, Belmont 1993, S. 217.

56 Elektrophysiologische Messtechniken Ionenstromanalyse am Tintenfischaxon Na + K +

57 Elektrophysiologische Messtechniken Ionenstromanalyse am Tintenfischaxon Block der Natriumkanäle Lokalanästhetikum Nav Kanal

58 Elektrophysiologische Messtechniken Ionenstromanalyse am Tintenfischaxon Block der Natriumkanäle durch Pharmaka und Toxine Na + K +

59 Elektrophysiologische Messtechniken Ionenstromanalyse am Tintenfischaxon Block der Natriumkanäle durch Pharmaka und Toxine Na + K +

60 Elektrophysiologie Das Aktionspotential Abbildung aus : J. Dudel : Informationsvermittlung durch elektrische Erregung. In : R.F. Schmidt, G. Thews : Physiologie des Menschen, 26. Auflage, Springer, Berlin - Heidelberg - New York 1995, S. 26

61 Elektrophysiologie Die Inaktivierung der Natriumkanäle ist eine Voraussetzung für die Repolarisation I IV III geschlossen (C) offen (O) inaktiviert (I)

62 Elektrophysiologie Die Refraktärzeit

63 Elektrophysiologische Messtechniken Voltage clamp Techniken Abb. aus : B. Hille : Ionic channels of excitable membranes. 2. Aufl., Sinauer, Sunderland / Massachusetts 1992, S.17.

64 Elektrophysiologische Messtechniken Messung von Einzelkanalströmen Abb. aus : J. Dudel : Informationsvermittlung durch elektrische Erregung. In : R.F. Schmidt, G. Thews : Physiologie des Menschen, 26. Auflage, Springer, Berlin - Heidelberg - New York 1995, S. 29

65 Elektrophysiologie Zusammenfassung: Phasen des Aktionspotentials Folgende Phasen lassen sich unterscheiden: 1. Initiationsphase (Überwindung des Schwellenpotentials): Durch einen Kationeneinstrom (Na + ), der größer ist als der Kaliumausstrom durch Kaliumkanäle (Kir) wird die Membran depolarisiert. 2. Depolarisation (Aufstrich und Overshoot): Mit dem Überschreiten des Schwellenpotentials (von etwa -60 mv) werden spannungsabhängige Nav-Kanäle aktiviert. Der Natriumeinstrom sorgt für eine weitere Depolarisation, wobei in der Regel Werte zwischen 0 und 40 mv erreicht werden (Overshoot). 3. Repolarisation: Die Na v -Kanäle inaktivieren und der Natriumeinstrom endet. Spannungsabhängige Kaliumkanäle öffnen und der Kaliumauswärtsstrom leitet die Repolarisation ein.

66 Physiologie Vorlesungsthemen Membranphysiologie Erregungsleitung, synaptische Übertragung Muskelphysiologie Vegetatives Nervensystem Herzmechanik, Herzerregung Kreislauf, Kreislaufregulation Atmung, Atmungsregulation

Aufbau der Zellmembran Zusammensetzung

Aufbau der Zellmembran Zusammensetzung Membranphysiologie Die Zelle Aufbau der Zellmembran Zusammensetzung Der Anteil an Proteinen, Lipiden und Kohlehydraten variiert in biologischen Membranen sehr stark: Membran Anteil an der Trockenmasse

Mehr

Intra- und extrazelluläre Ionenkonzentrationen

Intra- und extrazelluläre Ionenkonzentrationen Neurophysiologie Neurophysiologie Intra- und extrazelluläre Ionenkonzentrationen intrazellulär extrazellulär Na + 8-30 145 K + 100-155155 5 Ca 2+ 0.0001 2 Cl - 4-30 120 HCO 3-8-15 25 große Anionen 100-150

Mehr

BK07_Vorlesung Physiologie 29. Oktober 2012

BK07_Vorlesung Physiologie 29. Oktober 2012 BK07_Vorlesung Physiologie 29. Oktober 2012 1 Schema des Membrantransports Silverthorn: Physiologie 2 Membranproteine Silverthorn: Physiologie Transportproteine Ionenkanäle Ionenpumpen Membranproteine,

Mehr

Neuronale Signalverarbeitung

Neuronale Signalverarbeitung neuronale Signalverarbeitung Institut für Angewandte Mathematik WWU Münster Abschlusspräsentation am 08.07.2008 Übersicht Aufbau einer Nervenzelle Funktionsprinzip einer Nervenzelle Empfang einer Erregung

Mehr

1 Bau von Nervenzellen

1 Bau von Nervenzellen Neurophysiologie 1 Bau von Nervenzellen Die funktionelle Einheit des Nervensystems bezeichnet man als Nervenzelle. Dendrit Zellkörper = Soma Zelllkern Axon Ranvier scher Schnürring Schwann sche Hüllzelle

Mehr

Herzleistung. Pumpleistung Liter/Tag 400 millionen Liter. Erkrankungen: Herzfrequenz: 100 Jahre lang

Herzleistung. Pumpleistung Liter/Tag 400 millionen Liter. Erkrankungen: Herzfrequenz: 100 Jahre lang Herzleistung Pumpleistung 5l/min *5 bei Belastung 7500 Liter/Tag 400 millionen Liter Volumen: 1km*40m*10m 10m Erkrankungen: 30% aller Todesfälle Herzfrequenz: Schlägt 100 000 mal/tag 100 Jahre lang Regulation

Mehr

Einführung. Wer? Wie? Was? Wieso? Weshalb? Warum?

Einführung. Wer? Wie? Was? Wieso? Weshalb? Warum? Einführung Wer? Wie? Was? Wieso? Weshalb? Warum? Einführung Wer? Wie? Was? Wieso? Weshalb? Warum? Einführung Institut für Physiologie I (Neurophysiologie) Prof. Dr. Hans-Georg Schaible PD Dr. Andrea Ebersberger

Mehr

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1 Bitte schreiben Sie Ihre Antworten direkt auf das Übungsblatt. Falls Sie mehr Platz brauchen verweisen Sie auf Zusatzblätter. Vergessen Sie Ihren Namen nicht! Abgabe der Übung bis spätestens 21. 04. 08-16:30

Mehr

Nanostrukturphysik II Michael Penth

Nanostrukturphysik II Michael Penth 16.07.13 Nanostrukturphysik II Michael Penth Ladungstransport essentiell für Funktionalität jeder Zelle [b] [a] [j] de.academic.ru esys.org giantshoulders.wordpress.com [f] 2 Mechanismen des Ionentransports

Mehr

winter-0506/tierphysiologie/

winter-0506/tierphysiologie/ Die Liste der Teilnehmer der beiden Kurse für Studenten der Bioinformatik finden Sie auf unserer web site: http://www.neurobiologie.fu-berlin.de/menu/lectures-courses/ winter-0506/tierphysiologie/ Das

Mehr

dm A A = D --- (c 1 -c 2 ) = D --- δ c dt d d D: Diffusionskonstante, A: Betrachtete Fläche, d: Strecke c: Konzentration

dm A A = D --- (c 1 -c 2 ) = D --- δ c dt d d D: Diffusionskonstante, A: Betrachtete Fläche, d: Strecke c: Konzentration Diffusion ist die Bewegung von Teilchen aufgrund der brownschen Molekularbewegung in einem Lösungsmittel. Die Teilchen bewegen sich netto in Richtung der niedrigeren Konzentration. Ficksches Diffusionsgesetz:

Mehr

Grundlagen neuronaler Erregung. -Membranpotenzial -Ionenkanäle -Aktionspotenzial - Erregungsleitung

Grundlagen neuronaler Erregung. -Membranpotenzial -Ionenkanäle -Aktionspotenzial - Erregungsleitung Grundlagen neuronaler Erregung -Membranpotenzial -Ionenkanäle -Aktionspotenzial - Erregungsleitung Membranpotenzial / Ruhepotenzial Einstich in die Zelle extrazelluläre intrazelluläre Elektrode Extrazelluläres

Mehr

Vorlesung Neurophysiologie

Vorlesung Neurophysiologie Vorlesung Neurophysiologie Detlev Schild Abt. Neurophysiologie und zelluläre Biophysik [email protected] Vorlesung Neurophysiologie Detlev Schild Abt. Neurophysiologie und zelluläre Biophysik [email protected]

Mehr

Biomembranen Transportmechanismen

Biomembranen Transportmechanismen Transportmechanismen Barrierewirkung der Membran: freie Diffusion von Stoffen wird unterbunden durch Lipidbilayer selektiver Stofftransport über spezielle Membranproteine = Translokatoren Semipermeabilität

Mehr

Zellulärer Abbau von Proteinen in Aminosäuren:! Proteine werden in Zellen durch Proteasom-Komplexe in! einzelne Aminosäuren abgebaut.!

Zellulärer Abbau von Proteinen in Aminosäuren:! Proteine werden in Zellen durch Proteasom-Komplexe in! einzelne Aminosäuren abgebaut.! Zellulärer Abbau von Proteinen in Aminosäuren: Proteine werden in Zellen durch Proteasom-Komplexe in einzelne Aminosäuren abgebaut. Abbau von Aminosäuren: Uebersicht über den Aminosäureabbau Als erster

Mehr

In der Membran sind Ionenkanäle eingebaut leiten Ionen sehr schnell (10 9 Ionen / s)

In der Membran sind Ionenkanäle eingebaut leiten Ionen sehr schnell (10 9 Ionen / s) Mechanismen in der Zellmembran Abb 7.1 Kandel Neurowissenschaften Die Ionenkanäle gestatten den Durchtritt von Ionen in die Zelle. Die Membran (Doppelschicht von Phosholipiden) ist hydrophob und die Ionen

Mehr

Zellbiologie! Privatdozent Dr. T. Kähne! Institut für Experimentelle Innere Medizin! Medizinische Fakultät

Zellbiologie! Privatdozent Dr. T. Kähne! Institut für Experimentelle Innere Medizin! Medizinische Fakultät Zellbiologie! Privatdozent Dr. T. Kähne! Institut für Experimentelle Innere Medizin! Medizinische Fakultät Grundlagen Lipid-Doppelschicht als Barriere für polare Moleküle! Abgrenzung für biochemische

Mehr

Membranpotential bei Neuronen

Membranpotential bei Neuronen Membranpotential bei Neuronen J. Almer 1 Ludwig-Thoma-Gymnasium 9. Juli 2012 J. Almer (Ludwig-Thoma-Gymnasium ) 9. Juli 2012 1 / 17 Gliederung 1 Aufbau der Neuronmembran 2 Ruhepotential bei Neuronen Diffusion

Mehr

Gruppenpuzzle: Stofftransport durch die Biomembran

Gruppenpuzzle: Stofftransport durch die Biomembran 1 Bild anfertigen Text 1+2 2 Bild anfertigen Text 3+4 3 Text schreiben Bild 1+2 4 Text schreiben Bild 3+4 Arbeitsaufträge: 1 Versuchen Sie, die zwei beschriebenen Transportvorgänge in geeigneter Weise

Mehr

Messung des Ruhepotentials einer Nervenzelle

Messung des Ruhepotentials einer Nervenzelle Messung des Ruhepotentials einer Nervenzelle 1 Extrazellulär Entstehung des Ruhepotentials K+ 4mM Na+ 120 mm Gegenion: Cl- K + kanal offen Na + -kanal zu Na + -K + Pumpe intrazellulär K+ 120 mm Na+ 5 mm

Mehr

Funktion der Sinnesrezeptoren, Aktionspotenzial.

Funktion der Sinnesrezeptoren, Aktionspotenzial. Funktion der Sinnesrezeptoren, Aktionspotenzial. den 17 November 2016 Dr. Emőke Bódis Prüfungsfrage Ionenkanäle. Die Funktion und Klassifizierung der Sinnesrezeptoren. Die Phasen des Aktionspotenzials.

Mehr

Biophysik der Zelle Erregung der Nervenmembran Aktionspotential, Huxley-Hodgkins Gleichung, spannungsabhängige Ionenkanäle

Biophysik der Zelle Erregung der Nervenmembran Aktionspotential, Huxley-Hodgkins Gleichung, spannungsabhängige Ionenkanäle 01.07. Erregung der Nervenmembran Aktionspotential, Huxley-Hodgkins Gleichung, spannungsabhängige Ionenkanäle Biophysik der Zelle aussen C m g K g Na g Cl V m V0,K + - V0,Na + - V0,Cl + - innen (a) 1 w.

Mehr

Einleitung: Der Versuchstag befasst sich mit der Simulation von Aktionspotentialen mittels des Hodgkin-Huxley- Modells.

Einleitung: Der Versuchstag befasst sich mit der Simulation von Aktionspotentialen mittels des Hodgkin-Huxley- Modells. Einleitung: Der Versuchstag befasst sich mit der Simulation von Aktionspotentialen mittels des Hodgkin-Huxley- Modells. Viele Einzelheiten über die elektrische Aktivität von Nerven resultierten aus Experimenten

Mehr

Passive und aktive elektrische Membraneigenschaften

Passive und aktive elektrische Membraneigenschaften Aktionspotential Passive und aktive elektrische Membraneigenschaften V m (mv) 20 Overshoot Aktionspotential (Spike) V m Membran potential 0-20 -40 Anstiegsphase (Depolarisation) aktive Antwort t (ms) Repolarisation

Mehr

Aktionspotentiale im Herzgewebe

Aktionspotentiale im Herzgewebe Vortrag im Seminar Hydrodynamik des Blutes Aktionspotentiale im Herzgewebe Justin Grewe 6. Juli 2014 [email protected] 1 Einführung Das Gewebe im Herzen kombiniert die Eigenschaften von Nerven

Mehr

Die Zelle. Membranen: Struktur und Funktion

Die Zelle. Membranen: Struktur und Funktion Die Zelle Membranen: Struktur und Funktion 8.4 Die Fluidität von Membranen. 8.6 Die Feinstruktur der Plasmamembran einer Tierzelle (Querschnitt). (Zum Aufbau der extrazellulären Matrix siehe auch Abbildung

Mehr

Diffusion. Prüfungsfrage

Diffusion. Prüfungsfrage Prüfungsfrage Diffusion Die Diffusion. Erstes Fick sches Gesetz. Der Diffusionskoeffizient. Die Stokes-Einstein Beziehung. Diffusion durch die Zellmembrane: passive, aktive und erleichterte Diffusion Lehrbuch

Mehr

Prof. Dr. Stefan Schuster Lehrstuhl für Tierphysiologie

Prof. Dr. Stefan Schuster Lehrstuhl für Tierphysiologie Prof. Dr. Stefan Schuster Lehrstuhl für Tierphysiologie Tierphysiologie = Wie Tiere funktionieren Welche Anpassungen. Leistungen, Moleküle etc sie einsetzen um zu leben und möglichst am Leben zu beiben

Mehr

Unterschied zwischen aktiver und passiver Signalleitung:

Unterschied zwischen aktiver und passiver Signalleitung: Unterschied zwischen aktiver und passiver Signalleitung: Passiv: Ein kurzer Stromimpuls wird ohne Zutun der Zellmembran weitergeleitet Nachteil: Signalstärke nimmt schnell ab Aktiv: Die Zellmembran leitet

Mehr

Übertragung zwischen einzelnen Nervenzellen: Synapsen

Übertragung zwischen einzelnen Nervenzellen: Synapsen Übertragung zwischen einzelnen Nervenzellen: Synapsen Kontaktpunkt zwischen zwei Nervenzellen oder zwischen Nervenzelle und Zielzelle (z.b. Muskelfaser) Synapse besteht aus präsynaptischen Anteil (sendendes

Mehr

abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung

abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung Bau Nervenzelle Neuron (Nervenzelle) Dentrit Zellkörper Axon Synapse Gliazelle (Isolierung) Bau Nervenzelle Bau Nervenzelle Neurobiologie

Mehr

STOFFTRANSPORT DURCH BIOMEM- BRANEN

STOFFTRANSPORT DURCH BIOMEM- BRANEN DIE BIOMEMBRAN Vorkommen Plasmalemma Grenzt Cytoplasma nach außen ab Tonoplast Grenzt Vakuole vom Cytoplasma ab Zellkernmembran Mitochondrienmembran Plastidenmembran ER Kompartimente Durch Zellmembran

Mehr

Einige Grundbegriffe der Elektrostatik. Elementarladung: e = C

Einige Grundbegriffe der Elektrostatik. Elementarladung: e = C Einige Grundbegriffe der Elektrostatik Es gibt + und - Ladungen ziehen sich an Einheit der Ladung 1C Elementarladung: e = 1.6.10-19 C 1 Abb 14.7 Biologische Physik 2 Parallel- und Serienschaltung von Kondensatoren/Widerständen

Mehr

Vorlesung Einführung in die Biopsychologie. Kapitel 4: Nervenleitung und synaptische Übertragung

Vorlesung Einführung in die Biopsychologie. Kapitel 4: Nervenleitung und synaptische Übertragung Vorlesung Einführung in die Biopsychologie Kapitel 4: Nervenleitung und synaptische Übertragung Prof. Dr. Udo Rudolph SoSe 2018 Technische Universität Chemnitz Grundlage bisher: Dieser Teil nun: Struktur

Mehr

Physiologische Grundlagen. Inhalt

Physiologische Grundlagen. Inhalt Physiologische Grundlagen Inhalt Das Ruhemembranpotential - RMP Das Aktionspotential - AP Die Alles - oder - Nichts - Regel Die Klassifizierung der Nervenfasern Das Ruhemembranpotential der Zelle RMP Zwischen

Mehr

Aktionspotential - Variante 3: Simulationsprogramm -

Aktionspotential - Variante 3: Simulationsprogramm - Abb. 1: Gemeiner Kalmar (Loligo vulgaris) Aktionspotential - Variante 3: Simulationsprogramm - Um die Funktion von Neuronen zu erforschen, führten Hodgkin, Huxley und Katz in den 40er und 50er Jahren des

Mehr

Modelle zur Beschreibung von Schwellwertphänomenen in Nervenmembranen Fitzhugh-Nagumo-Gleichungen

Modelle zur Beschreibung von Schwellwertphänomenen in Nervenmembranen Fitzhugh-Nagumo-Gleichungen Modelle zur Beschreibung von Schwellwertphänomenen in Nervenmembranen Fitzhugh-Nagumo-Gleichungen Katrin Schmietendorf Vortrag im Rahmen der Veranstaltung Numerische Methoden für Dynamische Systeme SoSe

Mehr

Elektrolythaushalt + Säure-Basen-Haushalt

Elektrolythaushalt + Säure-Basen-Haushalt Elektrolythaushalt + Säure-Basen-Haushalt Überblick Elektrolythaushalt Natrium Kalium Calcium Magnesium Phosphat Säure-Basen-Haushalt Der Elektrolythaushalt Normwerte im Blut: Natrium 135-145 mmol/l Kalium

Mehr

Das Ruhemembranpotential eines Neurons

Das Ruhemembranpotential eines Neurons Das Ruhemembranpotential eines Neurons Genaueres zu den 4 Faktoren: Faktor 1: Die so genannte Brown sche Molekularbewegung sorgt dafür, dass sich Ionen (so wie alle Materie!) ständig zufällig bewegen!

Mehr

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen Erregungsübertragung an Synapsen 1. Einleitung 2. Schnelle synaptische Übertragung 3. Schnelle synaptische Hemmung chemische 4. Desaktivierung der synaptischen Übertragung Synapsen 5. Rezeptoren 6. Langsame

Mehr

Vorlesung #2. Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung. Alexander Gottschalk, JuProf. Universität Frankfurt

Vorlesung #2. Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung. Alexander Gottschalk, JuProf. Universität Frankfurt Vorlesung #2 Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung Alexander Gottschalk, JuProf Universität Frankfurt SS 2010 Elektrische Eigenschaften von Neuronen Elektrische Eigenschaften

Mehr

Übungsfragen, Neuro 1

Übungsfragen, Neuro 1 Übungsfragen, Neuro 1 Grundlagen der Biologie Iib FS 2012 Auf der jeweils folgenden Folie ist die Lösung markiert. Die meisten Neurone des menschlichen Gehirns sind 1. Sensorische Neurone 2. Motorische

Mehr

Herz / Kreislauf Einführung

Herz / Kreislauf Einführung Herz / Kreislauf I Herz / Kreislauf Einführung Herz / Kreislauf Anatomische Grundlagen: Thorax Vena jugularis Brustkorb Thorax Herz Cor Atrium Vorhof Kammer Ventrikel Lunge Pulmo Zwerchfell Diaphragma

Mehr

Ionenkanäle Ionenpumpen Membranruhepotential. username: tierphys Kennwort: tierphys09

Ionenkanäle Ionenpumpen Membranruhepotential. username: tierphys Kennwort: tierphys09 Ionenkanäle Ionenpumpen Membranruhepotential username: tierphys Kennwort: tierphys09 Tutorium: Ragna-Maja v. Berlepsch Dienstag 16:15-18:15 Uhr Raum 2298 Prüfungsfragen VL 1: - Welche generellenfunktionen

Mehr

Na + -Konzentrationen und Gleichgewichtspotenzial. K + -Konzentrationen und Gleichgewichtspotenzial. Ca 2+ -Konzentrationen. Cl - -Konzentrationen

Na + -Konzentrationen und Gleichgewichtspotenzial. K + -Konzentrationen und Gleichgewichtspotenzial. Ca 2+ -Konzentrationen. Cl - -Konzentrationen Na + -Konzentrationen und Gleichgewichtspotenzial K + -Konzentrationen und Gleichgewichtspotenzial Ca 2+ -Konzentrationen Cl - -Konzentrationen Ficksches Diffusionsgesetz Na + /K + -ATPase Na + /Ca 2+

Mehr

Das Ruhemembran-Potenzial RMP

Das Ruhemembran-Potenzial RMP Erregbarkeit der Axon Das Ruhemembran-Potenzial RMP - + Nervenzellen sind von einer elektrisch isolierenden Zellwand umgeben. Dadurch werden Intrazellularraum und Extrazellularraum voneinander getrennt.

Mehr

Chemisches Potential und Nernstgleichung Carsten Stick

Chemisches Potential und Nernstgleichung Carsten Stick Chemisches Potential und Nernstgleichung Carsten Stick Definition der mechanischen Arbeit: Kraft mal Weg W = F! ds W = Arbeit oder Energie; F = Kraft; s = Weg Diese Definition lässt sich auch auf die Kompression

Mehr

Dynamische Systeme in der Biologie: Beispiel Neurobiologie

Dynamische Systeme in der Biologie: Beispiel Neurobiologie Dynamische Systeme in der Biologie: Beispiel Neurobiologie Caroline Geisler [email protected] April 18, 2018 Elektrische Ersatzschaltkreise und Messmethoden Wiederholung: Membranpotential Exkursion in die

Mehr

Vorlesung Neurobiologie SS10

Vorlesung Neurobiologie SS10 Vorlesung Neurobiologie SS10 1 Das Neuron, Invertebraten NS Ko 13.4 10h 2 Vertebraten NS Ko 16.4 8h 3 Membranpotential, Aktionspotential, Ko 20.4 10h Erregungsleitung 4 Sehen 1: Optik, Transduktion Ko

Mehr

Peter Walla. Die Hauptstrukturen des Gehirns

Peter Walla. Die Hauptstrukturen des Gehirns Die Hauptstrukturen des Gehirns Die Hauptstrukturen des Gehirns Biologische Psychologie I Kapitel 4 Nervenleitung und synaptische Übertragung Nervenleitung und synaptische Übertragung Wie werden Nervensignale

Mehr

Ruhemebranpotenzial. den 17 November Dr. Emőke Bódis

Ruhemebranpotenzial. den 17 November Dr. Emőke Bódis Ruhemebranpotenzial den 17 November 2016 Dr. Emőke Bódis Prüfungsfrage Die Struktur und die Eigenschaften der Zellmembran. Das Ruhemembranpotenzial. Bernstein Kalium Hypothese, Nernst- Gleichung, Donnan-

Mehr

Membran- und Donnanpotentiale. (Zusammenfassung)

Membran- und Donnanpotentiale. (Zusammenfassung) Membranund Donnanpotentiale (Zusammenfassung) Inhaltsverzeichnis 1. Elektrochemische Membranen...Seite 2 2. Diffusionspotentiale...Seite 2 3. Donnanpotentiale...Seite 3 4. Zusammenhang der dargestellten

Mehr

Passive Transportvorgänge

Passive Transportvorgänge Passive Transportvorgänge Diffusion und Osmose sind passive Transportprozesse. Denn die Zelle muss keine Energie aufwenden, um den Transport der Stoffe zu ermöglichen. Diffusion Einzelsubstanzen sind bestrebt,

Mehr

1. Zellphysiologie. Ganz so weit müssen wir zwar nicht zurück, dennoch solltet ihr euch zu Beginn eurer Reise. Übrigens:

1. Zellphysiologie. Ganz so weit müssen wir zwar nicht zurück, dennoch solltet ihr euch zu Beginn eurer Reise. Übrigens: 1. Zellphysiologie 1 Sheldon: Penny: Sheldon: Was ist Physik? Physik wird von dem altgriechischen Wort»Physika«abgeleitet.»Physika«bedeutet»die Wissenschaft von den natürlichen Dingen«. Und genau dort

Mehr

BMT301. Grundlagen der Medizinischen Messtechnik. Ergänzende Folien EF2. Prof. Dr. rer. nat. Dr. rer. med. Daniel J. Strauss

BMT301. Grundlagen der Medizinischen Messtechnik. Ergänzende Folien EF2. Prof. Dr. rer. nat. Dr. rer. med. Daniel J. Strauss BMT301 Grundlagen der Medizinischen Messtechnik Prof. Dr. rer. nat. Dr. rer. med. Daniel J. Strauss Ergänzende Folien EF2 die Hauptbestandteile einer Nervenzelle Aufbau einer Zellmembran Dicke einer Zellmembran:

Mehr

Membranen und Potentiale

Membranen und Potentiale Membranen und Potentiale 1. Einleitung 2. Zellmembran 3. Ionenkanäle 4. Ruhepotential 5. Aktionspotential 6. Methode: Patch-Clamp-Technik Quelle: Thompson Kap. 3, (Pinel Kap. 3) 2. ZELLMEMBRAN Abbildung

Mehr

Stofftransport durch die Biomembran

Stofftransport durch die Biomembran Partnerarbeit: Transport durch die Zellmembran (I) Lesen Sie die Texte sorgfältig durch. Fertigen Sie eine Übersicht in Form eines Zweigdiagramms, verwenden Sie hierbei folgende Begriffe: passiver Transport,

Mehr

Heute werden nochmals Skripten für den Kurs verkauft (5,- ). Alle brauchen ein Skript!!

Heute werden nochmals Skripten für den Kurs verkauft (5,- ). Alle brauchen ein Skript!! Abbildungen der Vorlesung finden Sie unter: http://www.neurobiologie.fu-berlin.de/menu/lectures-courses/ winter-0506/23%20113%20tierphysiologie/themenliste23113.html Heute werden nochmals Skripten für

Mehr

NIERENPHYSIOLOGIE, HOMÖOSTASE DER EXTRAZELLULÄREN FLÜSSIGKEITSRÄUME

NIERENPHYSIOLOGIE, HOMÖOSTASE DER EXTRAZELLULÄREN FLÜSSIGKEITSRÄUME NIERENPHYSIOLOGIE, HOMÖOSTASE DER EXTRAZELLULÄREN FLÜSSIGKEITSRÄUME (2) Dr. Attila Nagy 2017 Das Tubulussystem (Lernziele: 54-57) Das Tubulussystem besteht aus mehreren, morphologisch und funktionell unterschiedlichen

Mehr

Cholesterolmoleküle. Membranproteine können Zellen. miteinander verknüpfen. tragen Kohlenhydratketten. Manche Lipide (Glykolipide)

Cholesterolmoleküle. Membranproteine können Zellen. miteinander verknüpfen. tragen Kohlenhydratketten. Manche Lipide (Glykolipide) Zellinnenraum Manche Lipide (Glykolipide) tragen Kohlenhydratketten. Membranproteine können Zellen miteinander verknüpfen. Manche Proteine (Glykoproteine) tragen Kohlenhydratketten. Cholesterolmoleküle

Mehr

Kapitel 12 Membrantransport

Kapitel 12 Membrantransport Kapitel 12 Membrantransport Jeder Membrantyp hat seine eigene Selektion von Transportproteinen, die nur bestimmte Stoffe reinlassen und so die Zusammensetzung des von der Membran umschlossenen Kompartimentes

Mehr

Grundstrukturen des Nervensystems beim Menschen

Grundstrukturen des Nervensystems beim Menschen Grundstrukturen des Nervensystems beim Menschen Die kleinste, funktionelle und strukturelle Einheit des Nervensystems ist die Nervenzelle = Neuron Das menschl. Gehirn besteht aus ca. 100 Mrd Neuronen (theor.

Mehr

VORANSICHT II/A1. Transportmechanismen an Biomembranen. Der Beitrag im Überblick. Transportmechanismen an Biomembranen Reihe 5 S 1

VORANSICHT II/A1. Transportmechanismen an Biomembranen. Der Beitrag im Überblick. Transportmechanismen an Biomembranen Reihe 5 S 1 Reihe 5 S 1 Verlauf Material Transportmechanismen an Biomembranen Judith Goecke, Trier Bei akutem Durchfall sind oft schnell verfügbare Hausmittel gefragt. Dabei schwören viele auf Salzstangen und Cola.

Mehr

Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010

Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010 Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010 ----------------------------------------------------------------------------------------------------- Wie definiert man elektrische

Mehr

Herz und Kreislauf Teil 3

Herz und Kreislauf Teil 3 24. TOGGENBURGER ANÄSTHESIE REPETITORIUM Herz und Kreislauf Teil 3 Zellphysiologie Medikamente Salome Machaidze Miodrag Filipovic [email protected] Anästhesiologie & Intensivmedizin Unter Verwendung

Mehr

Biologie für Mediziner

Biologie für Mediziner Biologie für Mediziner - Zellbiologie 1 - Prof. Dr. Reiner Peters Institut für Medizinische Physik und Biophysik/CeNTech Robert-Koch-Strasse 31 Tel. 0251-835 6933, [email protected] Dr. Martin Kahms

Mehr

Biopsychologie als Neurowissenschaft Evolutionäre Grundlagen Genetische Grundlagen Mikroanatomie des NS

Biopsychologie als Neurowissenschaft Evolutionäre Grundlagen Genetische Grundlagen Mikroanatomie des NS 1 1 25.10.06 Biopsychologie als Neurowissenschaft 2 8.11.06 Evolutionäre Grundlagen 3 15.11.06 Genetische Grundlagen 4 22.11.06 Mikroanatomie des NS 5 29.11.06 Makroanatomie des NS: 6 06.12.06 Erregungsleitung

Mehr

Physiologie für veterinärmedizinisch-technische Assistenten. B. Rudelt

Physiologie für veterinärmedizinisch-technische Assistenten. B. Rudelt Physiologie für veterinärmedizinisch-technische Assistenten B. Rudelt 3 Zelluläre Kommunikation 15 3 Zelluläre Kommunikation Funktion und Leistung einer Zelle beruhen auf einem Netzwerk biochemischer Prozesse.

Mehr

Aktionspotential - Variante 1: vom Text zum Fließdiagramm -

Aktionspotential - Variante 1: vom Text zum Fließdiagramm - Aktionspotential - Variante 1: vom Text zum Fließdiagramm - Über das Axon leiten Nervenzellen Informationen verschlüsselt in Form von elektrischen Impulsen weiter, den Aktionspotentialen. Dabei verändern

Mehr

Signale und Signalwege in Zellen

Signale und Signalwege in Zellen Signale und Signalwege in Zellen Zellen müssen Signale empfangen, auf sie reagieren und Signale zu anderen Zellen senden können Signalübertragungsprozesse sind biochemische (und z.t. elektrische) Prozesse

Mehr

BK07_Vorlesung Physiologie. 05. November 2012

BK07_Vorlesung Physiologie. 05. November 2012 BK07_Vorlesung Physiologie 05. November 2012 Stichpunkte zur Vorlesung 1 Aktionspotenziale = Spikes Im erregbaren Gewebe werden Informationen in Form von Aktions-potenzialen (Spikes) übertragen Aktionspotenziale

Mehr

Erregbarkeit von Zellen. Ein Vortrag von Anne Rath

Erregbarkeit von Zellen. Ein Vortrag von Anne Rath Erregbarkeit von Zellen Ein Vortrag von Anne Rath Gliederung(1) 1.Das Hodgkin-Huxley Modell 1.1 Spannungs- und Zeitabhängigkeit der Leitfähigkeit 1.1.1 Die Kalium-Leitfähigkeit 1.1.2 Die Natrium-Leitfähigkeit

Mehr

Membranphysiologie. 2. Stunde: Ionale Zusammensetzung von Intra- und Extrazellulärflüssigkeit, und Diffusion

Membranphysiologie. 2. Stunde: Ionale Zusammensetzung von Intra- und Extrazellulärflüssigkeit, und Diffusion Membranphysiologie 1. Stunde: Lipiden und Membranen 2. Stunde: Ionale Zusammensetzung von Intra- und Extrazellulärflüssigkeit, und Diffusion 3. Stunde: Strom, Spannung, Elektrochemisch Triebkraft, und

Mehr

Natriumkanäle: Neue Zielscheiben für Schmerzmittel. Förderpreis für Schmerzforschung an Münchner Forscher verliehen

Natriumkanäle: Neue Zielscheiben für Schmerzmittel. Förderpreis für Schmerzforschung an Münchner Forscher verliehen Natriumkanäle: Neue Zielscheiben für Schmerzmittel Förderpreis für Schmerzforschung an Münchner Forscher verliehen Berlin (8. Oktober 2008) - Eine über 40 Jahre alte Theorie zur Funktion von Schmerzrezeptoren

Mehr

Abbildungen Schandry, 2006 Quelle: www.ich-bin-einradfahrer.de Abbildungen Schandry, 2006 Informationsvermittlung im Körper Pioniere der Neurowissenschaften: Santiago Ramón y Cajal (1852-1934) Camillo

Mehr

M 3. Informationsübermittlung im Körper. D i e N e r v e n z e l l e a l s B a s i s e i n h e i t. im Überblick

M 3. Informationsübermittlung im Körper. D i e N e r v e n z e l l e a l s B a s i s e i n h e i t. im Überblick M 3 Informationsübermittlung im Körper D i e N e r v e n z e l l e a l s B a s i s e i n h e i t im Überblick Beabeablog 2010 N e r v e n z e l l e n ( = Neurone ) sind auf die Weiterleitung von Informationen

Mehr

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop Reizleitung in Nervenzellen Nervenzelle unter einem Rasterelektronenmikroskop Gliederung: 1. Aufbau von Nervenzellen 2. Das Ruhepotential 3. Das Aktionspotential 4. Das Membranpotential 5. Reizweiterleitung

Mehr

Ionenkanäle der Zellmembran. Seminar Differenzialgleichungen in der Biomedizin SoSe09 Karoline Jäger

Ionenkanäle der Zellmembran. Seminar Differenzialgleichungen in der Biomedizin SoSe09 Karoline Jäger Ionenkanäle der Zellmembran Seminar Differenzialgleichungen in der Biomedizin SoSe09 Karoline Jäger Inhaltsverzeichnis 1. Strom-Spannung Beziehung 2. Unabhängigkeit, Sättigung, Ussing Fluss Rate 3. Elektrodiffusions

Mehr

Tyrosinkinase- Rezeptoren

Tyrosinkinase- Rezeptoren Tyrosinkinase- Rezeptoren für bestimmte Hormone gibt es integrale Membranproteine als Rezeptoren Aufbau und Signaltransduktionsweg unterscheiden sich von denen der G- Protein- gekoppelten Rezeptoren Polypeptide

Mehr

1. Teil Stoffwechselphysiologie

1. Teil Stoffwechselphysiologie A TIERPHYSIOLOGISCHES PRAKTIKUM Martin-Luther-King-Platz KLAUSUR WS 2011/12 D-20146 Hamburg Name:... Matrikel Nr... (Ausweis vorlegen) 0.02.2012 1. Teil Stoffwechselphysiologie Fachbereich Biologie Biozentrum

Mehr

Einfache Modelle der Neurodynamik.

Einfache Modelle der Neurodynamik. Vorlesung Einfache Modelle der Neurodynamik. Anregbarkeit und canards. Wintersemester 2015/16 12.01.2016 M. Zaks Aufbau eines Neurons: Gesamtbild 2 / 16 neuron Aufbau eines Neurons: Axon und Dendriten

Mehr

(9.00 Uhr, Hörsaal Pflanzenphysiol. Königin-Luise-Str )

(9.00 Uhr, Hörsaal Pflanzenphysiol. Königin-Luise-Str ) Klausurtermine: Für das Modul Verhaltens- und Neurobiologie (Mono- und Kombibachelor) 27.2.2008 (9.00 Uhr, Hörsaal Pflanzenphysiol. Königin-Luise-Str. 12-16) Wiederholungsklausur 26.3.2008 (9.00, Ort wie

Mehr

Membranen. U. Albrecht

Membranen. U. Albrecht Membranen Struktur einer Plasmamembran Moleküle gegeneinander beweglich -> flüssiger Charakter Fluidität abhängig von 1) Lipidzusammensetzung (gesättigt/ungesättigt) 2) Umgebungstemperatur Biologische

Mehr

Physio I. Neurophysiologie. Fachschaft Zahnmedizin Münster

Physio I. Neurophysiologie. Fachschaft Zahnmedizin Münster Physio I Neurophysiologie Fachschaft Zahnmedizin Münster 1te Auflage 2016 II Zusammenfassung: Physiologie I Inhalt Zusammenfassung: Physiologie I... I Inhalt... III DIE ZELLE... 1 Plasmamembran... 1 Membranproteine...

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Transportproteine. Das komplette Material finden Sie hier: School-Scout.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Transportproteine. Das komplette Material finden Sie hier: School-Scout. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das komplette Material finden Sie hier: School-Scout.de S 1 Philipp Zilles, Herborn Niveau: Dauer: Sek. II 3 Unterrichtsstunden Kompetenzen:

Mehr

Vom Ionenkanal zur Krankheit. PD Dr. Bernd Grünewald Institut für Biologie Neurobiologie

Vom Ionenkanal zur Krankheit. PD Dr. Bernd Grünewald Institut für Biologie Neurobiologie Vom Ionenkanal zur Krankheit PD Dr. Bernd Grünewald Institut für Biologie Neurobiologie www.ionenkanal.de Vom Ionenkanal zur Krankheit 1. Wie funktionieren Ionenkanäle? 2. Was sind Ionenkanalkrankheiten?

Mehr

Beide bei Thieme ebook

Beide bei Thieme ebook Beide bei Thieme ebook Neurophysiologie 1) Funktionelle Anatomie 2) Entstehung nervaler Potentiale 3) Erregungsfortleitung 4) Synaptische Übertragung 5) Transmitter und Reflexe 6) Vegetatives Nervensystem

Mehr

Eine typische Zelle hat ein Volumen von m 3 und eine Oberfläche von m 2

Eine typische Zelle hat ein Volumen von m 3 und eine Oberfläche von m 2 ÜBUNGSBEISPIELE Beispiel 1. Wieviele Ladungen sind für das Ruhepotentialpotential von -70 mv nötig?? Zusatzinfo: Membrankondensator 0.01F/m 2 Wieviele K Ionen sind dies pro m 2?? Eine typische Zelle hat

Mehr

Pflanzenphysiologie 2: Funktionen des Sposses

Pflanzenphysiologie 2: Funktionen des Sposses Pflanzenphysiologie 2: Funktionen des Sposses Mechanismen des Membrantransports Aufbau des vaskulären Systems: Phloem und Xylem Funktionen des Phloems Copyright Hinweis: NATURE Vol 455 11 September 2008

Mehr

Physiologievorlesung: Teil Neurophysiologie

Physiologievorlesung: Teil Neurophysiologie Physiologievorlesung: Teil Neurophysiologie 1 Das Folgende stellt eine Inhaltsangabe mit Stichpunkten zur Orientierung dar. (Korrekturen bitte an [email protected] senden. Danke!) Der gesamte zu beherrschende

Mehr

Membranphysiologie. 2. Stunde: Ionale Zusammensetzung von Intra- und Extrazellulärflüssigkeit und Diffusion

Membranphysiologie. 2. Stunde: Ionale Zusammensetzung von Intra- und Extrazellulärflüssigkeit und Diffusion Membranphysiologie 1. Stunde: Lipide und Membranen 2. Stunde: Ionale Zusammensetzung von Intra- und Extrazellulärflüssigkeit und Diffusion 3. Stunde: Strom, Spannung, elektrochemische Triebkraft und Untersuchungsmethoden

Mehr

Membranphysiologie. 2. Stunde: Ionale Zusammensetzung von Intra- und Extrazellulärflüssigkeit und Diffusion

Membranphysiologie. 2. Stunde: Ionale Zusammensetzung von Intra- und Extrazellulärflüssigkeit und Diffusion Membranphysiologie 1. Stunde: Lipide und Membranen 2. Stunde: Ionale Zusammensetzung von Intra- und Extrazellulärflüssigkeit und Diffusion 3. Stunde: Strom, Spannung, elektrochemische Triebkraft und Untersuchungsmethoden

Mehr

Gelöste Teilchen diffundieren von Orten höherer Konzentration zu Orten geringerer Konzentration

Gelöste Teilchen diffundieren von Orten höherer Konzentration zu Orten geringerer Konzentration 1 Transportprozesse: Wassertransport: Mit weinigen ausnahmen ist die Zellmembran frei durchlässig für Wasser. Membrantransport erfolgt zum größten Teil über Wasserkanäle (Aquaporine) sowie über Transportproteine

Mehr

Prinzip der tubulären Transportprozesse. Vergleich von physiologischen und pathologischen Bedingungen

Prinzip der tubulären Transportprozesse. Vergleich von physiologischen und pathologischen Bedingungen Prinzip der tubulären Transportprozesse Vergleich von physiologischen und pathologischen Bedingungen Gliederung Physiologisch: Resorption (am Beispiel von Cl) Sekretion (am Beispiel von und H ) Pathologisch:

Mehr

Neuro- und Sinnesphysiologie

Neuro- und Sinnesphysiologie Robert F. Schmidt (Hrsg) Hans-Georg Schaible (Hrsg) Neuro- und Sinnesphysiologie Mit Beiträgen von N. Birbaumer, V. Braitenberg, H. Brinkmeier, J. Dudel, U. Eysel, H.O. Handwerker, H. Hatt, M. liiert,

Mehr