Geometrie am Computer Werkstattposten

Größe: px
Ab Seite anzeigen:

Download "Geometrie am Computer Werkstattposten"

Transkript

1 2 Höhen im Dreieck Erleben, wie Höhenschnittpunkt aus dem Innern des Dreiecks über eine Ecke ins Gebiet ausserhalb des Dreiecks want. Flächenberechnungen im Dreieck. 1. Konstruiere die Höhen in einem spitzwinkligen Dreieck. (Werkzeug: Dreieck) 2. Veräne die Dreiecksform (an einer Ecke ziehen, dann an einer anen) 3. Notiere die Beobachtungen. 4. Zeichne die Winkelbogen ein und miss die Winkel (Höhenfusspunkte) 5. Miss die Seiten und Höhen 6. Berechne die Fläche auf alle drei Arten mit dem Taschenrechner und vergleichemit Fläche des PC s (Polygon). Besones Wenn beim Veränn des Dreiecks nicht mehr ein Höhenschnittpunkt vorhanden ist, o Höhen nicht mehr senkrecht stehen, liegt ein sfehler vor. Beim Figuren-Veränn kommt aus, ob richtig konstruiert wurde. für den normalen Matheunterricht Sek Liestal Hugo Buser

2 20 Pythagoras Pythagoras mit den 3 Quadraten richtig konstruieren. Durch Veränn des Dreiecks erleben, wie sich die Quadratgrössen änn. Beweis des Pythagoras bei einer und vielen Dreiecken. 1. Konstruiere ein rechtwinkliges Dreieck. (aus 3 Seiten, kein Polygon!!) 2. Konstruiere die Katheten- und Hypotenusenquadrate. 3. Lege Polygone über die Quadrate und mach alle Geraden und Kreise unsichtbar. 4. Berechne die Flächen Quadrate. 5. Kontrolliere deine : Dreieck veränn. Bleiben alle rechten Winkel tatsächlich 90 Grad. 6. Quadrate berechnen am PC und mit dem Taschenrechner die Summenformel überprüfen bei mindestens 5 verschiedenen Dreiecken. (ziehen an den Ecken, Dreieckform veränn). Besones Bei vielen SchülerInnen und Schülern fällt mindestens ein Quadrat aus dem Lot. weil falsch konstruiert wurde. Jede durch Ziehen an den Ecken überprüfen.!! für den normalen Matheunterricht Sek Liestal Hugo Buser

3 3 Flächenscherung / gleichbleibende Fläche Anschaulicher Beweis des Prinzips von Cavalieri erleben durch Veränn eines Dreiecks, wobei 3. Punkt sich auf eiener Parallelen bewegt. Beweis Flächenberechnung im Dreieck durch Handeln erfahren. Besones 1. Lade die Figur Dreiecksfläche scheren 2. Packe das Dreieck am Punkt B (auf Parallelen) und schiebe Punkt B entlang Parallelen. 3. Beobachte dabei die Länge Seite b, die Höhe b und die Fläche des Dreiecks. Notiere deine Beobachtungen. 4. Verschiebe Punkt P nach oben o unten. Beobachte die Höhe b und die Fläche des Dreiecks. Verschiebe wie Punkt B 5. Veräne doie Lage von Punkt C. Beobachte die b und die Fläche. 6. Lass die wieholen (Menu bearbeiten) 7. Konstruiere diese Flächenscherung nun selbst. (Neues Dokument). Gib ihm den Namen: Flächenscherung Nicole. Cabri-géomètre soll nicht nur für en genutzt werden, sonn auch für Analysen von fertigen Kontruktionen: Entdeckendes Lernen! Die SchülerInnen und Schüler sollen selber etwas herausfinden. Erfinde nun selber eine Lektion für den Beweis Flächenscherung beim Parallelogramm! für den normalen Matheunterricht Sek Liestal Hugo Buser

4 6 Tangenten an einen Kreis -Spiel mit Figur und entdecken, wie sich die Punkte A und B bewegen, wenn an Punkt P gezogen wird. -Nachkonstruieren. Anwendung des Thaleskreises - Tangenten an 2 Kreise (nächster Werkstatt-Posten) 1. Lade die Figur Tangenten an einen Kreis 2. Ziehe an Punkt P, veräne die Figur. 3. Ziehe an Punkt K, veräne die Kreisgrösse. 4. Beantworte die Frage: Wie bewegen sich die Punkte A und B, wenn bei P gezogen wird? - Kennst du den Zusammenhang? Mach den Thaleskreis durch M, A und P sichtbar. 5. Konstruiere in einer neuen Konstr. die Tangenten an einen Kreis. 6. Konstruiere die Tangenten an 2 Kreise. (Nächster Werkstattposten). Besones für den normalen Matheunterricht Sek Liestal Hugo Buser

5 7 Tangenten an 2 Kreise -Entwe: Figur vorgeben und spielerisch innere und äussere Tangenten an 2 Kreise erleben (Winkelhalbierende mit Kreiszentren / Radius senkrecht auf Tangente / Parallelen (bei gleichen Radien) etc.) o: -Figur selber so konstruieren, dass sie durch Veränn richtig bleibt. Fall 1: Spielen: Veräne durch Ziehen an Punkten des linken Kreises die Figur so, dass die Tangenten: - zu Parallelen werden - zu inneren Tangenten werden - zu Tangenten an einen Kreis werden Beobachte dabei den Verlauf Tangenten, die Winkel, die Radien. Veräne die Lage Kreiszentren: Näher o weiter auseinan. Suche nach weiteren Entdeckungen. Fall 2: Diese selber erstellen. (Schwierige Aufgabe) Besones Durch Sichtbarmachen resp. Unsichtbarmachen von konstruierten Geraden und Kreisen können weitere Details spielerisch erkannt werden. Warum bleibt die nur richtig, wenn am linken, nicht aber am rechten Kreis die inneren Tagenten erstellt werdem? für den normalen Matheunterricht Sek Liestal Hugo Buser

6 15 Billard Entdecken Kontruktion (Bandenwinkel) des Weges über 2 und über 3 Banden = Anwendung Kongruenzabbildungen Kugel 1 trifft Kugel 2 1. Lade Billard 1 2. Packe K1 (Kugel 1) und setze sie an verschiedene ane Orte. Beobachte den Bandenwinkel, wie er sich veränt, wo er sich befindet. 3. Entdecke die durch Rückblende und Sichtbarmachen Konstruktonslinien. 4. Konstruiere nun den Weg Kugel von K1 zu K2 a) über 2 Banden b) über 3 Banden Besones Anspruchsvolle Denksportaufgabe für den normalen Matheunterricht Sek Liestal Hugo Buser

7 16 Billard über zwei o drei Banden Präsentation Lösung aus Werkstattposten 15 Nachkonstruieren, so dass K1 und K2 veränt werden dürfen und die Bandenwinkel bleiben korrekt. Bezug zur Optik (Physik) herstellen 1. Nachkonstruieren 2. Spielen 3. Winkel eintragen, messen lassen!! 4. Spielen und kontrollieren, ob die Winkel immer stimmen. Besones Schwierige Aufgabe Zuerst soll die Aufgabe über eine Bande gelöst werden. für den normalen Matheunterricht Sek Liestal Hugo Buser

8 12 Punktspiegelung Durch Veränn Originalfigur kann die Wirkung in Punktspiegelung Figur direkt abgelesen werden. Direktes Erlebnis, was eine Punkt-Spiegelung ist. 1. Konstruiere ein Polygon. Wähle ein Punktspiegelzentrum. 2. Konstruiere die Punktspiegelung deiner Figur. 3. Veräne das Original und verfolge die Wirkung. Kontrolliere, ob deine stimmt. 4. Fülle die Polygone mit verschiedenen Farben. Besones (aus: PG 3. Klasse / Kapitel E: Kongruenzabbildungen) für den normalen Matheunterricht Sek Liestal Hugo Buser

9 5 Thaleskreis - Heranführung an den Satz des Thales - Erleben, wie Peripheriewinkel über einer Sehne, die durch den Kreismittelpunkt führt immer 90 beträgt (Satz des Thales) 1. Lade die Datei Thaleskreis spielen. 2. Verschiebe mit Maus den Punkt Y. Beobachte Punkt P. Was stellst Du fest? Was vermutest Du? 3. Wähle Spur ein. Auf welcher Linie bewegt sich Punkt P? 4. Durch Zeichnung auffrischen kannst du die Linie ausradieren. 5. Notiere Deine Beobachung. Besones für den normalen Matheunterricht Sek Liestal Hugo Buser

10 4 Unbekannter Punkt im Dreieck Identität des Punktes M herausfinden - vervollständigen 1. Starte die Datei Unbekannter Punkt im Dreieck Veräne die Lage Punkte A, B, C und versuche herauszufinden, um welchen Punkt es sich bei M handelt. - Was stellst du fest? - Wie veränt sich die Lage von M? - Welche Eigenschaften hat M in Bezug auf das Dreieck? - Um was für einen Punkt handelt es sich bei M? 3. Konstruiere in einem neuen Dreieck diesen Punkt M. 4. Starte die Datei Unbekannter Punkt im Dreieck 2. Spiele die Punkte 1 bis 3 auch mit diesem Punkt durch Besones für den normalen Matheunterricht Sek Liestal Hugo Buser

11 10 Das Dreieck und seine Ankreise - Ankreise des Dreiecks PQR - Entdeckung: Wie findet man die Zentren Ankreise? 1. Öffne die Datei Ankreise Dreieck und untersuche die Zeichnung durch Verschieben Punkte A, B, C. Wie findest du die Kreiszentren E1, E2, E3? 2. Nach Entdeckung: Öffne ein neues Dokument und konstruiere nach. Besones für den normalen Matheunterricht Sek Liestal Hugo Buser

12 9 Peripheriewinkel und Zentriwinkel Den Lehrsatz über Peripheriewinkel und Zentriwinkel gewinnen. 1. Öffne die Datei Peripherie-Zentriwinkel 2. Veräne die Lage des Punktes C. 3. Notiere deine Beobachtungen. 4. Veräne die Lage des Punktes B. (grösserer, kleinerer Kreis) mehrmals. 5. Notiere deine Beobachtungen. 6. Formuliere einen Lehrsatz über Peripheriewinkel (bei Punkt C) und Zentriwinkel (bei Punkt M). 7. Lass Punkt C durch Animation laufen. 8. Konstruiere in einem neuen Dokument dieses Bild nach. Besones Bemerkung: Dies ist noch kein Beweis. für den normalen Matheunterricht Sek Liestal Hugo Buser

13 23 Fluchtpunkt-Perspektive Beobachten von Veränungen, wenn a) die Fluchtpunkte seitlich verschoben werden b) die Fluchtpunktlinie in Höhe verstellt wird. 1. Lade Fluchtpunkt-Perspective 2. Veräne die Lage Fluchtpunkte F1 und F2 3. Veräne die Lage des Punktes H. 4. Notiere die Beobachtungen. 5. Konstruiere ein eigenes Bild in Fluchtpunkt-Perspective mit höherem Schwierigkeitsgrad. kein Qua, sonn eine aufwändigere Figur. Besones So anschaulich kann ohne Computer die Fluchtpunkt-Perspektive nicht gezeigt werden. für den normalen Matheunterricht Sek Liestal Hugo Buser

14 17 Magisches Viereck - Entdecken Zusammenhänge über die 4 Winkel. - Entdecken Bahnen 4 Eckpunkte - Entdecken optimalen Figurenform: Welche Viereckform hat die grösstmögliche Fläche? 1. Lade die Figur Magisches Viereck 1. Ziehe an den 4 Eckpunkten des Vierecks. 2. Beobachte dabei die Bahnen Eckpunkte. 3. Beobachte dabei die Grösse Winkel. 4. Finde das Gesetz über die 4 Winkel heraus. Notiere! 5. Veräne die Figur so, dass die maximal grösste Fläche entsteht. Wie sieht dieses aus? 6. Erst wenn Punkt 5 gelöst ist, darfst du die ganze sichtbar machen Besones Wenn du die Ecke über die Nachbarecke hinaus bewegst, kannst du weitere spannende Entdeckungen machen. Beobachte die Grösse des Winkels an Ecke, die du bewegst (vor und nach dem Ueberqueren Ecke!). (: Ortsbogen) für den normalen Matheunterricht Sek Liestal Hugo Buser

15 11 : Achsenspiegelung Direkte Verfolgung am Bildschirm, wie sich das Spiegelbild veränt, wenn sich das Original änt. Herausfinden Papierkonstruktion. Besones 1. Lade das Dokument Spiegeln ohne Bild. Es sieht so aus wie oben auf. 2. Konstruiere das Spiegelbild an Achse rechts. Spiegle alle Punkte an Achse und mit Geradenspiegelung und verbinde sie mit dem Werkzeug Polygon. 3. Fülle die Polygone mit verschiedenen Farben. 4. Ziehe am Originalbild (links Spiegelachse) an einer Ecke und verfolge, was mit dem Spiegelbild passiert. 5. Ziehe an anen Ecken, veräne die Figur, beobachte. 6. Konstruiere am PC ohne Verwendung des Menus Geradenspiegelung. (d.h. so wie du auf Papier konstruieren müsstest). (aus: PG 3. Klasse / Kapitel E: Kongruenzabbildungen) für den normalen Matheunterricht Sek Liestal Hugo Buser

16 14 Drehung um bestimmten Winkel Ein Drehung am Computer erleben, wie Drehwinkel beliebig veränt werden kann. (Dynamik). Eine Drehung nachkonstruieren. 1. Lade das Dokument Drehung Dreieck Ziehe am Punkt Z. Das Dreieck ABC wird um den Winkel Alpha gedreht. 3. Klicke Animation ; ziehe am Punkt Q leicht o stark. Notiere die Beobachtungen (Stop = Mausklick). 4. Wähle Spur ein Punkte des drehenden Dreiecks. (Durch Zeichnung auffrischen kannst du die Spuren löschen) Form Spuren? 5. Konstruiere selber eine Drehung: Drehe ein Dreieck um ein selber gewähltes Drehzentrum mit einem festen o beweglichen Winkel. Besones (aus: PG 3. Klasse / Kapitel E: Kongruenzabbildungen) Mit Animation kannst du die Dynamik Geometrie erleben. Versuche weitere Ideen Animation. Beachte den Drehsinn!! für den normalen Matheunterricht Sek Liestal Hugo Buser

17 8 Ortsbogen -Ortsbogen erleben -Bahn aufzeichnen lassen -Nachkonstruieren 1. Lade das Dokument Ortsbogen-Spur. 2. Ziehe an Ecke C. Beobachte und notiere. Winkel bei C? 3. Wähle Spur ein. Ziehe bei C; die Spur wird rot aufgezeichnet. 4. Durch Zeichnung auffrischen kannst du die Spur wie löschen. 5. Veräne AB. (Strecke AB länger o kürzer). Beobachte, notiere. 6. Wie wurde konstruiert? Versuch hinter das Geheimnis zu kommen. 7. Konstruiere nach in einem neuen Dokument. Besones Die Ecke C soll auch unterhalb Strecke AB zu liegen kommen. Verwende auch Animation für den Punkt C. für den normalen Matheunterricht Sek Liestal Hugo Buser

18 22 Höhensatz des Euklid - des Höhensatzes von Euklid mit Berechnung Flächen. -Grössenveränung Flächen. -Umwandlung von einem Rechteck in ein flächengleiches Quadrat. 1. Konstruiere den Höhensatz nach. Beginne mit dem Rechteck p*q. 2. Veräne die Breite und die Länge des Rechtecks. Kontrolliere, ob das Höhenquadrat immer die gleiche Fläche wie dein Rechteck hat. Besones für den normalen Matheunterricht Sek Liestal Hugo Buser

19 21 Kathetensatz von Euklid - des Kathetensatzes von Euklid mit Berechnung Flächen. -Grössenveränung Flächen. -Umwandlung von einem Rechteck in ein flächengleiches Quadrat. 1. Konstruiere den Kathetensatz nach. Beginne mit dem Rechteck p*c 2. Veräne die Breite und die Länge des Rechtecks. Kontrolliere, ob das Kathetenquadrat immer die gleiche Fläche wie dein Rechteck hat. Besones für den normalen Matheunterricht Sek Liestal Hugo Buser

20 25 Zentrische Streckung 1 Ein 12-Eck soll zentrische gestreckt werden können Das Streckzentrum liegt im Schwerpunkt des regelmässigen 12-Ecks. 1. Lade die Figur Zentrische Streckung 12-Eck 2. Ziehe an Punkt A. Beobachte. Notiere. 3. Konstruiere eine Zentrische Streckung nach. Wähle ein 8-Eck. 4. Lass durch Spur ein aller Polygon-Eckpunkte dir die Streckung beweisen. Besones für den normalen Matheunterricht Sek Liestal Hugo Buser

21 26 Zentrische Streckung 2 Zentrische Streckung eines Kreises erleben, wenn Streckzentrum ausserhalb Figur liegt. 1. Lade die Figur Zent.Streckung, Kreis 2. Strecke den Kreis durch Ziehen von M o durch Veränn von g, h 3. Konstruiere die Figur nach. Besones Der 2. Strahlensatz könnte berechnet werden durch 2 Stellungen und dem Vergleich Strecke PM : Radius des Kreises. für den normalen Matheunterricht Sek Liestal Hugo Buser

1.4 Steigung und Steigungsdreieck einer linearen Funktion

1.4 Steigung und Steigungsdreieck einer linearen Funktion Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-250-3 Mathe mit GeoGebra 7/8 Dreiecke, Vierecke, Lineare Funktionen und Statistik Arbeitsheft mit CD RS-MA-GEGE2 1.4 Steigung und Steigungsdreieck einer

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Rechtwinklige Dreiecke

Rechtwinklige Dreiecke Rechtwinklige Dreiecke 1. a) Verschiebe die Ecke C 1, bis du den grünen Winkel bei C 1 auf 90 schätzt. b) Verschiebe die Ecken C 2 bis C 9 ebenso, bis du die Winkel auf 90 schätzt. c) Kontrolliere deine

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

Kompetenzbereich. Kompetenz

Kompetenzbereich. Kompetenz Faltkunst Du vertiefst dein Verständnis für Achsenspiegelungen und achsensymmetrische Figuren, indem du vom einfachen Scherenschnitt bis zur anspruchsvollen Origamifigur vieles mit Papier umsetzt. Die

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

1.1 Geradenspiegelungen

1.1 Geradenspiegelungen 1.1 Geradenspiegelungen 1.1.1 Eigenschaften Definition 1.1 Eine Abbildung der Ebene ist eine Vorschrift, die jedem Punkt P der Ebene einen Bildpunkt P zuordnet. Beispiel 1.1 Zentrische Streckung mit Zentrum

Mehr

GEOGEBRA DAS WICHTIGSTE IN KÜRZE

GEOGEBRA DAS WICHTIGSTE IN KÜRZE GEOGEBRA DAS WICHTIGSTE IN KÜRZE 1. DAS STARTFENSTER Wenn Sie GeoGebra aufstarten, erscheint standardmässig dieses Startfenster. Sie können das Fenster mit oder ohne Gitternetz und Koordinatensystem anzeigen

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Einführung in Geonext

Einführung in Geonext Einführung in Geonext von Konrad Brunner Downloadquelle: Regionale Lehrerfortbildung Neue Unterrichtsmethoden im Mathematikunterricht Termin: Ort: 27.03.2003 von 09.30 Uhr bis 16.00 Uhr Städtische Rudolf-Diesel-Realschule,

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

Ähnlichkeit von Figuren

Ähnlichkeit von Figuren Ähnlichkeit von Figuren Beispiele: In dem Bild von Escher sind alle Fische einander ähnlich, d.h. sie besitzen dieselbe Form. Alle DIN-Format-Papiere sind einander ähnlich. Es handelt sich um Rechtecke,

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen Gruppe A: Verschiebungen Eine Abbildung heißt Verschiebung v r, wenn für jeden Punkt P und seinen Bildpunkt P jeweils gilt: r OP' = OP + v. Eine Figur heißt verschiebungssymmetrisch, wenn sie durch eine

Mehr

Kurze Einführung in die Arbeit mit dem Programm EUKLID ( Ac / 2008 )

Kurze Einführung in die Arbeit mit dem Programm EUKLID ( Ac / 2008 ) Kurze Einführung in die Arbeit mit dem Programm EUKLID ( Ac / 2008 ) Starte die Anwendung Euklid DynaGeo mit einem Doppelklick auf das betreffende Symbol. Zunächst erscheint der Hauptbildschirm, der folgendes

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte) SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Die Punktespiegelung 1

Die Punktespiegelung 1 Die Punktespiegelung 1 1. Was geschieht, wenn du das Zentrum Z verschiebst? Formuliere deine Beobachtungen: a) Wenn das Zentrum auf eine Ecke der Originalfigur zu liegen kommt, dann b) Wenn das Zentrum

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag):

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag): Seite 10 1 a) Konstruktionsbericht (Vorschlag): 1. Alle Eckpunkte mit Z verbinden 2. Die Strecke ZC halbieren (das entspricht der Streckung mit k 0.5) C 3. Parallelverschieben CB // durch C B 4. AB //

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Achsenspiegelung, Punktspiegelung Translation, Rotation

Achsenspiegelung, Punktspiegelung Translation, Rotation Mathplan 7.11 Geometrie : Kongruenzabbildungen: chsenspiegelung, Punktspiegelung Translation, Rotation Name: Translation Hilfsmittel : Zeitvorschlag: Lernkontrolle Geometrie Sachrechnen 1 3 Wochen von:

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

Eine Hilfe, wenn du mal nicht mehr weiterweisst...

Eine Hilfe, wenn du mal nicht mehr weiterweisst... Geometrie 6. Klasse Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Das 1 Das Viereck 2 Der Kreis 2 Die Winkel 3 Parallele Geraden zeichnen 4 Eine Senkrechte zeichnen 4 Die Spiegelsymmetrie

Mehr

Lösungen Geometrie-Dossier Kreis 2 - Kreiskonstruktionen. Diese Aufgabe entspricht genau der Grundkonstruktion 2 (Genaueres kannst du dort nachlesen).

Lösungen Geometrie-Dossier Kreis 2 - Kreiskonstruktionen. Diese Aufgabe entspricht genau der Grundkonstruktion 2 (Genaueres kannst du dort nachlesen). Seiten 12-19 Aufgaben Kreiskonstruktionen (Achtung, Lösungen z.t. verkleinert gezeichnet) 1. 1. Mittelsenkrechte von PQ (Der Kreismittelpunkt muss auf der Mittelsenkrechten von zwei Kreispunkten liegen)

Mehr

Mathe mit GeoGebra 9/10. Funktionen, Pythagoras, Ähnlichkeiten. Arbeitsheft mit CD. Werner Zeyen 1. Auflage, 2013 ISBN:

Mathe mit GeoGebra 9/10. Funktionen, Pythagoras, Ähnlichkeiten. Arbeitsheft mit CD. Werner Zeyen 1. Auflage, 2013 ISBN: Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-238-1 Mathe mit GeoGebra 9/10 Funktionen, Pythagoras, Ähnlichkeiten Arbeitsheft mit CD RS-MA-GEGE3 2 Quadratische Funktionen 2.1 In der Umwelt häufig anzutreffen:

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Symmetrien und Winkel

Symmetrien und Winkel Eigenschaften der Achsenspiegelung Alle Punkte werden an der Symmetrieachse gespiegelt. Die Verbindungslinien stehen senkrecht zur Symmetrieachse. Original- und Bildpunkte haben je den gleichen Abstand

Mehr

Kreistangente. Tangente an Graph. Winkel(markierung)

Kreistangente. Tangente an Graph. Winkel(markierung) Kreistangente Skizziere auf der Kreislinie ein T. Der erste Teilstrich deutet die Lage der Tangente an. Der letzte Teilstrich verläuft senkrecht dazu. sketchometry erzeugt einen Gleiter und eine Tangete

Mehr

/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras

/  Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Einführung in die Dynamische Geometrie-Software GeoGebra

Einführung in die Dynamische Geometrie-Software GeoGebra Einführung in die Dynamische Geometrie-Software GeoGebra Aufgabe In der Lernumgebung 5 des mathbuch 1 geht es um Messen und Zeichnen. Für die Aufgabe 7 im Buch steht zwar bereits eine fertige Geogebra-Anwendung

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht.

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Vorlesung 2 : Do. 10.04.08 Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Einführung in GeoGebra: Zunächst eine kleine Einführung in die Benutzeroberfläche

Mehr

Download. Mathe an Stationen. Mathe an Stationen SPEZIAL Geometrische Abbildungen. Gemischte Übungen. Jan-Christoph Frühauf

Download. Mathe an Stationen. Mathe an Stationen SPEZIAL Geometrische Abbildungen. Gemischte Übungen. Jan-Christoph Frühauf Download Jan-Christoph Frühauf Mathe an Stationen SPEZIAL Geometrische Abbildungen Downloadauszug aus dem Originaltitel: SPEZIAL Sekundarstufe I Jan-Christoph Frühauf Mathe an Stationen Geometrische Abbildungen

Mehr

Funktionale Abhängigkeiten am Dreieck

Funktionale Abhängigkeiten am Dreieck M. Bostelmann, [email protected] DynaGeo: Funktionale Abhängigkeiten 1/5 Funktionale Abhängigkeiten am Dreieck 1. Machen Sie das Koordinatensystem sichtbar [Messen&Rechnen ] und erzeugen Sie folgende

Mehr

LÖSUNG ELEMTARGEOMETRIE AUFGABE 1 P''' P'' -1 1

LÖSUNG ELEMTARGEOMETRIE AUFGABE 1 P''' P'' -1 1 LÖSUNG ELEMTRGEOMETRIE UFGE 1 GHS/LT, THEM I, UFGE ; RL/LT, THEM I, UFGE ; SOPÄD/NEU, THEM I, UFGE ; GHS/NEU, THEM I, UFGE ; RL/NEU, THEM I, UFGE UFGE Entsprechend bbildung 1 wird der Punkt der Reihe nach

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Wochenplan Geometrie. Das komplette Material finden Sie hier: School-Scout.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Wochenplan Geometrie. Das komplette Material finden Sie hier: School-Scout. Unterrichtsmaterialien in digitaler und in gedruckter Form uszug aus: Das komplette Material Sie hier: SchoolScout.de Vorwort Mithilfe der Geometrie sollen die Schüler Raumvorstellungen entwickeln, geometrische

Mehr

π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit).

π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). Das geometrische π π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). nach Hans-Werner Meixner und Coautor Christian Meixner Als Basis für die Ausführungen zur geometrischen

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website und klicken Sie auf der Startseite auf Download.

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website  und klicken Sie auf der Startseite auf Download. 1. Was ist GeoGebra? GeoGebra ist eine dynamische Mathematiksoftware, die für Schülerinnen und Schüler aller Altersklassen geeignet ist und auf allen gängigen Betriebssystemen läuft. Sie verbindet Geometrie,

Mehr

Cube Du setzt dich mit Volumen und Oberfläche von Würfeln und Quadern auseinander und trainierst gleichzeitig dein Vorstellungsvermögen.

Cube Du setzt dich mit Volumen und Oberfläche von Würfeln und Quadern auseinander und trainierst gleichzeitig dein Vorstellungsvermögen. Cube Du setzt dich mit Volumen und Oberfläche von Würfeln und Quadern auseinander und trainierst gleichzeitig dein Vorstellungsvermögen. bereich verstehen und verwenden die Begriffe Koordinaten, Ansicht,

Mehr

Demo-Text für Inversion (Spiegelung am Kreis) Ein Spezialthema INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für   Inversion (Spiegelung am Kreis) Ein Spezialthema INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Inversion (Spiegelung am Kreis) Ein Spezialthema Teil 1 Grundlagen Text Nr. 1400 Stand: 4. Februar 016 FIEDICH W. BUCKEL INTENETBIBLIOTHEK FÜ SCHULMATHEMATIK 1400 Inversion 1 Vorwort Die Inversion, die

Mehr

GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen. Verlauf Material LEK Glossar Lösungen

GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen. Verlauf Material LEK Glossar Lösungen Reihe 19 S 1 Verlauf Material LEK Glossar Lösungen GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen Marcel Schmengler, Emmelshausen Klasse: 7 bis 10 Dauer: Die Materialien sind in der Regel

Mehr

Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen)

Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen) Klasse 7 Mathematik Vorbereitung zur Klassenarbeit Nr. 4 im Mai 2019 Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen) Checkliste Was ich alles können soll Ich kenne den Begriff

Mehr

Ähnlichkeit. GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Ähnlichkeit. GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Ähnlichkeit GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 6. März 2016 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

Jgst. 11/I 2.Klausur

Jgst. 11/I 2.Klausur Jgst. 11/I 2.Klausur 10.12.2010 A1. Gegeben sind die vier Punkte A(2/2), B(3/6), C(7/5) und D(6/1). Berechne die Gleichung des größten Kreises, den man in das Viereck, das aus diesen Punkten gebildet wird,

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag):

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag): Seite 10 1 a) Konstruktionsbericht (Vorschlag): 2. Die Strecke ZC halbieren (das entspricht der Streckung mit k = 0.5) C 3. Parallelverschieben CB // durch C B 4. AB // durch B A 5. AE // durch A E 6.

Mehr

Kapitel 3 Mathematik. Kapitel 3.6 Geometrie Satz des Pythagoras

Kapitel 3 Mathematik. Kapitel 3.6 Geometrie Satz des Pythagoras TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87

Mehr

Was kann ich? 1 Geometrie. Vierecke (Teil 1)

Was kann ich? 1 Geometrie. Vierecke (Teil 1) Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne

Mehr

Punktspiegelung und Rotation um 180 mit GEONExT

Punktspiegelung und Rotation um 180 mit GEONExT Steckbrief Lernbereich Mathematik - Geometrie Grobziel Eigene Arbeit dokumentieren, Vorgehensweisen diskutieren, Lösungen überprüfen. Abbildungen; Figuren parallel verschieben, spiegeln und drehen. Punktspiegelung

Mehr

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Geometrische Abbildungen

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Geometrische Abbildungen Inhaltsverzeichnis Grundwissen Geometrische Abbildungen Achsensymmetrie 1 Achsensymmetrie erkennen 2 Symmetrieachsen finden (1) 3 Symmetrieachsen finden (2) 4 Symmetrieachsen finden (3) 5 Achsensymmetrische

Mehr

6. Ähnlichkeitsabbildungen

6. Ähnlichkeitsabbildungen 3 6. Ähnlichkeitsabbildungen Ein gegebenes Vieleck ABCDE ist durch Hintereinanderausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen

Mehr

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse.

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse. Item 2 Schreibe so viele Verallgemeinerungen (Sätze, Definitionen, Eigenschaften, Folgerungen) wie du kannst auf, die mit rechtwinkligen Dreiecken zu tun haben. Ein Beispiel: In einem rechtwinkligen Dreieck

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Geometrie Symmetrie und Spiegelung PRÜFUNG 03 Name: Klasse: Datum: : Note: Ausgabe: 7. März 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004 Klausur zum Modul im SS 004 und Klausur zur Einführung in die Geometrie im SS 004 PO neu PO alt Name, Vorname... Matr.Nr.... Semester-nzahl im SS 004:... Studiengang G/H/R... Tutor/in:... ufg.1 ufg, ufg.3

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Einführung in GeoGebra Geometrie

Einführung in GeoGebra Geometrie ICT an der KZN Einführung in GeoGebra Geometrie Ähnlichkeit Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2017 Inhaltsverzeichnis 1 Einleitung und Zielsetzung 2 2 freeware

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

Arbeiten mit dem Geometrieprogramm GeoGebra

Arbeiten mit dem Geometrieprogramm GeoGebra Fachdidaktik Modul 1, WS 2012/13 Didaktik der Geometrie III: Konstruieren Planarbeit Arbeiten mit dem Geometrieprogramm GeoGebra I. Erstes Erkunden der Programmoberfläche: Grund- und Standardkonstruktionen

Mehr

Geometrie Satz des Pythagoras

Geometrie Satz des Pythagoras TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe:

Mehr

Übersicht zu den Textinhalten

Übersicht zu den Textinhalten Abbildungen Übersicht zu den Textinhalten Zum Thema Abbildungen gibt es mehrere Texte. Hier wird aufgelistet, wo man was findet. Datei Nr. 11050 Stand 3. Oktober 2013 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1 Aufgabe: Bestimme die Flächeninhalte A 1, A 2 und A 3. Trage die Ergebnisse in die nachfolgende Tabelle ein. A 1 A 2 A 3 des Winkels Fläche A 1 Fläche A 2 Fläche A 3 1. Dreieck (Ausgangsdreieck) Vergleiche

Mehr

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke

Mehr

Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1

Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1 Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1 Aufgabe 1 Zeichne in Geogebra ein beliebiges Dreieck und konstruiere den Umkreismittelpunkt U, den Schwerpunkt S und den Höhenschnittpunkt

Mehr

Sehnenlänge. Aufgabenstellung

Sehnenlänge. Aufgabenstellung Sehnenlänge 1. Drehe die Gerade a um den Punkt A und beachte den grünen Text: a) Wann ist die Gerade eine Sekante, wann ist sie eine Tangente? Wann ist sie weder das eine noch das andere? b) Wie viele

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen : Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden

Mehr

Tutorial zum Umgang mit Scratch

Tutorial zum Umgang mit Scratch Tutorial zum Umgang mit Scratch In diesem Tutorial sollst du die grundlegenden Funktionen von Scratch ausprobieren und kennen lernen Danach solltest du gut mit dem Programm umgehen können und eigene Programme

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

= = cm. = = 4.66 cm. = cm. Anschliessend: A = r 2 π = π = π =

= = cm. = = 4.66 cm. = cm. Anschliessend: A = r 2 π = π = π = Seiten 5 / 6 ufgaben Kreis 1 1 a) u Kreis r 15 30 cm ( 94.5 cm) Kreis r 15 5 cm ( 706.86 cm ) b) u Kreis r d 5.6 cm ( 17.59 cm) Kreis r.8 7.84 cm ( 4.63 cm ) c) u Kreis r 99 198 cm ( 6.04 cm) Kreis r 99

Mehr

DEMO für Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

DEMO für  Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Abbildungen Verkettung von Kongruenzabbildungen Für Interessenten. Datei Nr. 11059 Stand: 3. Oktober 2013 DEMO für FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 11059 Verkettung von Kongruenzabbildungen

Mehr

Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P)

Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P) SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2013 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr