Lösung der Wettbewerbsaufgaben vom 2. Bayreuther Tag der Mathematik Klasse

Größe: px
Ab Seite anzeigen:

Download "Lösung der Wettbewerbsaufgaben vom 2. Bayreuther Tag der Mathematik Klasse"

Transkript

1 Lösung der Wettbewerbsaufgaben vom 2. Bayreuther Tag der Mathematik Klasse Vorbemerkung: Die hier angegebenen Lösungen sind sehr längliche Lösungen, die häufig etwas mehr zeigen, als in der Aufgabenstellung gefordert. Sicherlich gibt es kürzere und elegantere Lösungen. Auch bei den Lösungswegen sind viele Varianten denkbar. Vorschläge für alternative Lösungswege, bessere Erläuterungen, Hinweis auf (Rechtschreib-)Fehler, Unklarheiten oder sonstige Kommentare zu dieser Sammlung von Lösungen nehmen wir sehr gerne auf. Einfach eine an schreiben. Aufgabe 1: Wir prüfen zunächst nach, dass 8 Münzen ausreichen. Vier Beispiele sind [1, 2, 2, 5, 10, 20, 20, 50] [1, 2, 2, 5, 10, 10, 20, 50] [1, 1, 2, 5, 10, 20, 20, 50] und [1, 1, 2, 5, 10, 10, 20, 50]. Es gibt einen einfachen Trick, wie man möglichst schnell überprüfen kann, dass man mit diesen Münzen auch wirklich alle Geldbeträge von 1 bis 99 Cent zurückgeben kann. Betrachten wir hierfür die erste Möglichkeit [1, 2, 2, 5, 10, 20, 20, 50] und wählen von links beginnend, Stück für Stück eine Münze hinzu. Haben wir nur die 1-Cent-Münze, so können wir 0 oder 1 Cent zurückgeben. Also, [1] {0, 1}. Nehmen wir nun eine 2-Cent-Münze hinzu, so können wir 0, 1, 2 oder 3 Cent zurückgeben. In unserer Kurzschreibweise lautet dies: [1, 2] {0, 1, 2, 3}. Fahren wir so fort erhalten wir: [1, 2, 2] {0, 1,..., 5} [1, 2, 2, 5] {0, 1,..., 10} [1, 2, 2, 5, 10] {0, 1,..., 20} [1, 2, 2, 5, 10, 20] {0, 1,..., 40} [1, 2, 2, 5, 10, 20, 20] {0, 1,..., 60} [1, 2, 2, 5, 10, 20, 20, 50] {0, 1,..., 110} 1

2 Wir können also mit den Münzen [1, 2, 2, 5, 10, 20, 20, 50] alle Geldbeträge zwischen 0 und 110 Cent zurückgeben. Für das zweite Beispiel [1, 2, 2, 5, 10, 10, 20, 50] erhalten wir: [1] {0, 1} [1, 2] {0, 1, 2, 3} [1, 2, 2] {0, 1,..., 5} [1, 2, 2, 5] {0, 1,..., 10} [1, 2, 2, 5, 10] {0, 1,..., 20} [1, 2, 2, 5, 10, 10] {0, 1,..., 30} [1, 2, 2, 5, 10, 10, 20] {0, 1,..., 50} [1, 2, 2, 5, 10, 10, 20, 50] {0, 1,..., 100} Wir können also mit den Münzen [1, 2, 2, 5, 10, 10, 20, 50] alle Geldbeträge zwischen 0 und 100 Cent zurückgeben, was etwas schlechter als das vorherige Beispiel ist, für die gegebene Aufgabenstellung aber immer noch ausreichend gut ist. Die anderen zwei Beispiele kann man genauso überprüfen. Wir wollen uns nun überlegen, dass man nicht mit 7 oder noch weniger Münzen auskommen kann und dass die zwei angebenen Beispiele die einzigen Möglichkeiten sind. Wir machen hierzu immer wieder Annahmen, dass wir bestimmte Münzen nicht hätten und zeigen dann, dass wir in diesem Fall mehr als 8 Münzen brauchen würden. Annahme: Wir haben keine 50-Cent-Münze. Um nun 99 Cent zurückgeben zu können bräuchten wir mindestens 8 Münzen: 99 = Da wir auch 1 Cent zurückgeben können müssen, würden wir also insgesamt mindestens 9 Münzen benötigen. Wir kennen aber schon eine Lösung mit 8 Münzen. Also sollten Erna und Fritz auf jeden Fall eine 50 Cent Münze für ihren Kaufladen haben. Haben wir eine 50 Cent-Münze so vereinfacht sich unser Problem. Wir müssen nun mit den anderen Münzen nur noch die Geldbeträge 0, 1,..., 49 zurückgeben können. Hierfür dürfen wir maximal 7 Münzen verwenden. Eine zweite 50-Cent Münze macht also keinen Sinn. Annahme: Wir haben keine 20-Cent-Münze. Um nun 49 Cent zurückgeben zu können bräuchten wir mindestens 7 Münzen: 49 = Da wir auch 1 Cent zurückgeben können müssen, würden wir also insgesamt mindestens 8 Münzen benötigen. Wir kennen aber schon eine Lösung mit 7 Münzen. 2

3 ([1, 2, 2, 5, 10, 20, 20] oder [1, 2, 2, 5, 10, 10, 20]) Also sollten Erna und Fritz auf jeden Fall eine 20 Cent Münze für ihren Kaufladen haben. Also können wir annehmen, dass Erna und Fritz neben der 50 Cent Münze auch noch eine 20 Cent Münze als Wechselgeld haben. Unser Problem vereinfacht sich weiter. Wir müssen nun mit höchstens 6 Münzen die Geldbeträge 0, 1,..., 29 zurückgeben können. Wir betrachten nun zwei Fälle: (a) Wir haben noch eine zweite 20 Cent Münze: Unser Problem vereinfacht sich weiter. Wir müssen nun mit höchstens 5 Münzen die Geldbeträge 0, 1,..., 19 zurückgeben können. Nehmen wir wieder an, dass wir keine 10 Cent Münze hätten, dann bräuchten wir mindestens 5 Münzen, um 19 = Cent zurückgeben zu können. Da wir aber die 1 Cent Münze auf jeden Fall benötigen, würden wir zu viele Münzen benötigen. Also haben wir eine 10 Cent Münze und unser Problem vereinfacht sich weiter. Wir müssen nun mit höchstens 4 Münzen die Geldbeträge 0, 1,..., 9 zurückgeben können. Ohne eine 5 Cent Münze geht dies nicht (9 = ). Also ist eine 5 Cent Münze dabei und wir müssen mit höchstens 3 Münzen die Geldbeträge 0, 1,..., 4 zurückgeben können. Dies geht nur mit den Kombinationen [1, 1, 2] oder [1, 2, 2]. (b) Wir haben keine zweite 20 Cent Münze: Um 29 ohne 10 Cent Münze zurückgeben zu können bräuchten wir mindestens sieben Münzen (29 = ). Also müssen wir eine 10 Cent Münze haben und unser Problem vereinfacht sich. Wir müssen nun mit höchstens 5 Münzen die Geldbeträge 0, 1,..., 19 zurückgeben können. Dieses Problem haben wir aber schon in Fall (a) gelöst. Insgesamt ergeben sich also die vier anfangs genannten Lösungen für 8 Münzen und wir wissen, dass es nicht mit weniger Münzen geht. Aufgabe 2: Nehmen wir ein mal an, dass der Alien b Tentakel habe. Er hat also 3 b + 5 Söhne, 4 b + 3 Töchter und insgesamt 1 b b + 1 b + 1 Kinder. Da sich die Anzahl seiner Kinder aus der Anzahl seiner Söhne und der Anzahl seiner Töchter zusammensetzt, können wir die Gleichung 3b b + 3 = b 2 + b + 1 aufstellen. Diese läßt sich umschreiben zu b 2 6b 7 = 0. 3

4 Die einzigen Lösungen dieser Gleichung sind b = 1 und b = 7. Da es negative Anzahlen von Tentakeln nicht gibt, besitzt der Alien, falls er sich nicht verzählt hat, also genau b = 7 Tentakel. Er hat also 26 Söhne, 31 Töchter, was insgesamt eine sehr stattliche Zahl von 57 Kindern ergibt. Aufgabe 3: Wir unterscheiden folgende vier Fälle, je nach dem, ob a und b gerade oder ungerade sind: 1. Fall a und b gerade: a + b gerade (a + b) 2 gerade daher ist n gerade. a b gerade 2. Fall a und b ungerade: a + b gerade (a + b) 2 gerade daher ist n gerade. a b gerade 3. Fall a gerade, b ungerade: a + b ungerade (a + b) 2 ungerade daher ist n gerade. a b ungerade 4. Fall a ungerade, b gerade: a + b ungerade (a + b) 2 ungerade daher ist n gerade. a b ungerade In allen vier Fällen hat sich ergeben, dass n eine gerade Zahl sein muss. Die Beobachtung trifft also immer zu. Aufgabe 4: Betrachten wir nun zwei beliebige der drei Punkte, z. B. A und B. Sei nun g eine Gerade, die den selben Abstand zu A und B hat. Es gibt nun drei Fälle: (i) A und B liegen auf der Geraden g. (ii) A und B liegen auf der gleichen Seite von g (also entweder beide links davon, oder beide rechts davon). (iii) A und B liegen auf unterschiedlichen Seiten von g. Im Fall (i) besitzen die Punkte A und B einen Abstand 0 von g. Soll nun C den gleichen Abstand von g besitzen, müsste auch C auf der Geraden g liegen. In unserem Fall liegen die drei Punkte aber nicht auf einer Geraden. In (ii) und (iii) fällen wir jeweils das Lot von Punkt A und Punkt B auf Gerade g. Da die zwei Punkte den gleichen Abstand zu g haben, sind die Höhen- (Lotlinien) 4

5 gleich lang. Im Fall (ii) ist die Gerade durch die Punkte A und B also paralell zur Geraden g. Im Fall (iii) schneidet die Gerade g das Geradensegment AB zwischen A und B im Inneren. Sei nun h eine Gerade die zu allen drei Punkten A, B und C den selben Abstand besitzt. Betrachten wir alle drei Paare {A, B}, {A, C} und {B, C} von je zwei dieser drei Punkte, so kann nicht drei mal Fall (iii) auftreten, da eine Gerade höchstens zwei Seiten eines Dreiecks schneiden kann. Fall (ii) kann aber höchstens ein Mal auftreten, da eine Gerade nur zu einer Seite eines Dreiecks paralell sein kann. Es tritt also genau ein Mal Fall (ii) und zwei Mal Fall (iii) auf. Wir konstruieren nun die Geraden h mit der geforderten Eigenschaft. Zunächst wählen wir ein beliebiges Paar von Punkten, z. B. {A, B} und zeichnen eine Gerade h durch die Punkte A und B ein und fällen das Lot von C auf h. Nun verschieben wir h parallel, so dass die Höhe zwischen h und C halbiert wird. Wir erhalten eine Gerade h mit den gewünschten Eigenschaften. Da wir die eben beschriebene Konstruktion mit allen drei Paaren {A, B}, {A, C} und {B, C} von Punkten durchführen können und die entstehenden Geraden paralell zu der entsprechenden Seite sind, erhalten wir genau drei solche Gerade, sie folgende Zeichnung: Wir bemerken, dass es immer drei solche Geraden gibt, falls die drei Punkte nicht kollinear (also alle auf einer Geraden liegen) sind. Liegen dagegen alle drei Punkte auf einer Geraden g, so gibt es unendlich viele Lösungen - allen Paralellen von g (inklusive g selbst). Es schliessen sich eine Reihe von weiteren interessanten Fragen an. Betrachte ein Viereck V mit Eckpunkten A, B, C, D und bezecichne mit n die Anzahl der verschiedenen Geraden, die den selben Abstand zu allen vier Punkten besitzen. Zu welcher Klasse von Vierecken gehört V, wenn n = 1, n = 2 oder n = 3 gilt? Viel Spass beim Knobeln und diskutieren mit eurem Mathelehrer. 5

Lösung der Wettbewerbsaufgaben vom 2. Bayreuther Tag der Mathematik Klasse

Lösung der Wettbewerbsaufgaben vom 2. Bayreuther Tag der Mathematik Klasse Lösung der Wettbewerbsaufgaben vom 2. Bayreuther Tag der Mathematik 9. 10. Klasse Vorbemerkung: Die hier angegebenen Lösungen sind sehr längliche Lösungen, die häufig etwas mehr zeigen, als in der Aufgabenstellung

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2010 9. April 2010 Eine Maximumsaufgabe Eine Firma stellt aus

Mehr

Symmetrie zum Ursprung

Symmetrie zum Ursprung Symmetrie zum Ursprung Um was geht es? Betrachten wir das Schaubild einer ganzrationalen Funktion mit ungeradem Grad, z.b.: f : R R x f x = 2 15 x3 23 15 x Wertetabelle x f(x) -3 1,0-2 2,0-1 1,4 0 0 1-1,4

Mehr

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 6 Lösungen 2. Tag

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 6 Lösungen 2. Tag 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 6 Lösungen 2. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560634 Lösung

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR Bei sehr vielen mathematischen Aufgabenstellungen ist nicht nur die Länge von bestimmten Strecken oder der Umfang interessant, sondern auch die

Mehr

Städtewettbewerb Frühjahr 2009

Städtewettbewerb Frühjahr 2009 Städtewettbewerb Frühjahr 2009 Lösungsvorschläge Hamburg 4. März 2009 [Version 1. April 2009] M Mittelstufe Aufgabe M.1 (3 P.). In ein konvexes 2009-Eck werden sämtliche Diagonalen eingezeichnet. (Diagonalen

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene

Mehr

Beide Geraden haben die Steigung 2, also sind sie parallel zueinander.

Beide Geraden haben die Steigung 2, also sind sie parallel zueinander. Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene

Mehr

Zusammenfassung der Analytischen Geometrie

Zusammenfassung der Analytischen Geometrie Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren

Mehr

50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben

50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben 50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben c 2010 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den Text der

Mehr

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern: Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf

Mehr

Mathematik Klasse 11 Maximilian Ernestus 1

Mathematik Klasse 11 Maximilian Ernestus 1 QUADRATISCHE FUNKTIONEN UND PARABELN Mathematik Klasse 11 Maximilian Ernestus 1 1. Geraden und ihre Gleichungen Zu jeder Geraden lässt sich in einem Koordinatensystem eine Gleichung angeben. Diese Gleichung

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Online - Team Wettbewerb 2013

Online - Team Wettbewerb 2013 1. Aufgabe (Pfannkuchen): a) Je mehr Schnittpunkte unter den Geraden sind, umso mehr Teilflächen sind es. Bei Schnitten sind es 3 Flächen, wenn die Geraden parallel verlaufen, Flächen, wenn sie sich schneiden.

Mehr

Demo für

Demo für Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die

Mehr

Abstände und Zwischenwinkel

Abstände und Zwischenwinkel Abstände und Zwischenwinkel Die folgenden Grundaufgaben wurden von Oliver Riesen, KS Zug, erstellt und von Stefan Gubser, KS Zug, überarbeitet. Aufgabe 1: Bestimme den Abstand der beiden Punkte P( 3 /

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

Abitur 2011 G9 Abitur Mathematik GK Geometrie VI

Abitur 2011 G9 Abitur Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G9 Abitur Mathematik GK Geometrie VI Auf dem Boden des Mittelmeeres wurde ein antiker Marmorkörper entdeckt, der ersten Unterwasseraufnahmen zufolge die

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 01 Blatt 7 0.06.01 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a Um ein rechtwinkliges Dreieck in seiner Gestalt

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

Thema 1: Geraden zeichnen Punkte berechnen. Ein Lese- und Übungsheft. 7 Seiten Einführung und Theorie. 22 Seiten Aufgaben mit Lösungen

Thema 1: Geraden zeichnen Punkte berechnen. Ein Lese- und Übungsheft. 7 Seiten Einführung und Theorie. 22 Seiten Aufgaben mit Lösungen Geradengleichungen Thema : Geraden zeichnen Punkte berechnen Ein Lese- und Übungsheft 7 Seiten Einführung und Theorie Seiten Aufgaben mit Lösungen Datei Nr. 000 Stand. Februar 09 INTERNETBIBLIOTHEK FÜR

Mehr

Waben-Sudoku. Günter Aumann und Klaus Spitzmüller. Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen.

Waben-Sudoku. Günter Aumann und Klaus Spitzmüller. Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen. Waben-Sudoku Günter Aumann und Klaus Spitzmüller Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen. Eine Vorüberlegung Reguläre Vierecke und Sechsecke zeichnen sich vor allen anderen

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (3. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (3. Sek) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2016 Kurzgymnasium (Anschluss 3. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Aufgabe G.1: Definitionen, Begriffsbildungen

Aufgabe G.1: Definitionen, Begriffsbildungen Aufgabe G.1: Definitionen, Begriffsbildungen a) Der Begriff Dreieck sei definiert. Definieren Sie den Begriff Innenwinkel eines Dreiecks. (2 Punkte) b) Definieren Sie den Begriff Inneres eines Winkels

Mehr

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 550821 Lösung

Mehr

Alfons und Bertram spielen mit einer 5-Cent-Münze und einem Würfel. Als zufällig die 5

Alfons und Bertram spielen mit einer 5-Cent-Münze und einem Würfel. Als zufällig die 5 5. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 8 Aufgaben c 005 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg mit

Mehr

Beispiellösungen zu Blatt 43

Beispiellösungen zu Blatt 43 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 43 Finde alle Paare (a, b) von dreistelligen natürlichen Zahlen a und

Mehr

Kursarbeit Nr.1 LK Mathematik NAME :

Kursarbeit Nr.1 LK Mathematik NAME : Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen

Mehr

Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1

Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1 Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1 Aufgabe 1 Zeichne in Geogebra ein beliebiges Dreieck und konstruiere den Umkreismittelpunkt U, den Schwerpunkt S und den Höhenschnittpunkt

Mehr

Kompetenzraster Geometrie

Kompetenzraster Geometrie Mathebox 6 I Themenbereich 3 Kompetenzraster Geometrie Eigenschaften von Vierecken und Dreiecken finden Einfachen Anwendungsaufgaben Vierecken lösen unterscheiden Symmetrieachsen in Vierecken und Dreiecken

Mehr

Klasse 6 Im Kino " Cinemoritz\ gibt es die drei Schalter A, B und C. Noch ist keiner geonet. a) Albert, Britta, Carolin und Dieter gehen kurz nacheina

Klasse 6 Im Kino  Cinemoritz\ gibt es die drei Schalter A, B und C. Noch ist keiner geonet. a) Albert, Britta, Carolin und Dieter gehen kurz nacheina Klasse 5 a) Nimm die Zier 5 jeweils 4mal und bilde Aufgaben, die als Ergebnis die Zahlen 1, 2, 3, 4, 5, 6, 7, 9 und 10 haben. Beachte dabei die Rangfolge der Rechenoperationen und setze Klammern, wenn

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Beispiellösungen zu Blatt 98

Beispiellösungen zu Blatt 98 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 98 Finde vier paarweise verschiedene positive ganze Zahlen a, b, c, d

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüfung Fachhochschulreife 05 Baden-Württemberg Aufgabe 4 Analytische Geometrie Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 05 Ein Papierflieger

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

L a L b L c

L a L b L c 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 10 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551021 Lösung

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag):

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag): Seite 10 1 a) Konstruktionsbericht (Vorschlag): 2. Die Strecke ZC halbieren (das entspricht der Streckung mit k = 0.5) C 3. Parallelverschieben CB // durch C B 4. AB // durch B A 5. AE // durch A E 6.

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Blatt 7 1.06.017 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a) Um ein rechtwinkliges Dreieck in seiner

Mehr

7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Den Mittelpunkt zwischen zwei Punkten kannst du mithilfe der Ortsvektoren und Verbindungsvektoren berechnen.

Den Mittelpunkt zwischen zwei Punkten kannst du mithilfe der Ortsvektoren und Verbindungsvektoren berechnen. Wahlteil B2 Mathe > Abitur (GTR) > 2016 > Wahlteil B2 Aufgaben PLUS Tipps PLUS Lösungen TI PLUS Lösungen Casio PLUS Aufgabe 2.1. a) Darstellung der Pyramide der Schnittfläche im Koordinatensystem Der Aufgabenstellung

Mehr

Verlauf Material LEK Glossar Lösungen. Walter Czech, Krumbach. Haben Sie schon einmal versucht, Ihre Schüler mit einem Spiel zu motivieren?

Verlauf Material LEK Glossar Lösungen. Walter Czech, Krumbach. Haben Sie schon einmal versucht, Ihre Schüler mit einem Spiel zu motivieren? Reihe 7 S 1 Verlauf Material Die vektorielle Geometrie ein Spiel zur Vertiefung Walter Czech, Krumbach Haben Sie schon einmal versucht, Ihre Schüler mit einem Spiel zu motivieren? Wo denken Sie hin! Die

Mehr

Sammlung von umfassenden Aufgaben. Die meisten Aufgaben werden sowohl vektoriell als auch alternativ ohne Verwendung der Vektorrechnung gelöst

Sammlung von umfassenden Aufgaben. Die meisten Aufgaben werden sowohl vektoriell als auch alternativ ohne Verwendung der Vektorrechnung gelöst Analytische Geometrie Kreisaufgaben Sammlung von umfassenden Aufgaben Die meisten Aufgaben werden sowohl vektoriell als auch alternativ ohne Verwendung der Vektorrechnung gelöst Datei Nr. 676 Stand 4.

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Wolfgang Kippels 26. Oktober 2018 Inhaltsverzeichnis 1 Vorwort 3 2 Grundlagen 4 3 Aufgabenstellungen 4 3.1 Aufgabe 1................................... 4 3.2 Aufgabe

Mehr

16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen

16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen 16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen 1 OJM 16. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Basistext Geraden und Ebenen

Basistext Geraden und Ebenen Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird

Mehr

Lizenziert für: Hinweise und Tipps lenken deine Aufmerksamkeit auf die wichtigen Aspekte einer Aufgabe und verhindern, dass du in Rechenfallen tapst.

Lizenziert für: Hinweise und Tipps lenken deine Aufmerksamkeit auf die wichtigen Aspekte einer Aufgabe und verhindern, dass du in Rechenfallen tapst. Lernen mit MatheScout Wer kennt das nicht? Man kommt bei den Mathehausaufgaben nicht weiter und es ist einem völlig schleierhaft, wie die Lösung zustande kommt. Am nächsten Tag erfährt man in der Schule

Mehr

1. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.)

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 9, 10 (Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Aufgabe 1 (5+5+10 Punkte). Wir betrachten sechzehn Punkte

Mehr

20. Essener Mathematikwettbewerb für Grundschulen 2017/2018

20. Essener Mathematikwettbewerb für Grundschulen 2017/2018 20. Essener Mathematikwettbewerb für Grundschulen 2017/2018 Aufgaben der zweiten Runde Klasse 3 Hinweis: Lies jede Aufgabe erst gründlich durch, bevor du mit der Bearbeitung beginnst. Der Lösungsweg mit

Mehr

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit: Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen

Mehr

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1988/1989 Aufgaben und Lösungen

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1988/1989 Aufgaben und Lösungen 28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1988/1989 Aufgaben und Lösungen 1 OJM 28. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Station A * * 1-4 ca. 16 min

Station A * * 1-4 ca. 16 min Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt

Mehr

Name und des Einsenders

Name und  des Einsenders Titel der Einheit Stoffgebiet Name und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Konstruktion von Kegelschnitten Geometrie Andreas Ulovec Andreas.Ulovec@univie.ac.at Verwenden von Dynamischer

Mehr

Geraden in R 2 Lösungsblatt Aufgabe 17.16

Geraden in R 2 Lösungsblatt Aufgabe 17.16 Aufgabenstellung: Berechne den Umkreismittelpunkt und den Umkreisradius des Dreiecks ABC. a. A 2 1, B 8 3, C 5 6 b. A 1 3, B 9 3, C 11 19 c. A 2 3, B 3 3, C 4 5 d. A 5 3, B 7 9, C 1 15 Lösung der Aufgabe:

Mehr

Übungsblatt 3 (Vektorgeometrie)

Übungsblatt 3 (Vektorgeometrie) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik- und Naturwissenschaft Übungsblatt (Vektorgeometrie Roger Burkhardt 08 Mathematik. Aufgabe Gegeben seien die Vektoren

Mehr

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen: Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

Algebra 4.

Algebra 4. Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul

Mehr

Fit in Mathe. Januar Klassenstufe 12 Ebenen

Fit in Mathe. Januar Klassenstufe 12 Ebenen Thema Musterlösungen Ebenen Das Foto zeigt einen Eimerkettenbagger im Braunkohletagebau. Beim Schürfen bewegt sich der Bagger in Richtung des Vektors u und die Eimerkette wird in Richtung des Vektors v

Mehr

Vorbereitungsaufgaben SA1: Symmetrie und Winkelbetrachtungen

Vorbereitungsaufgaben SA1: Symmetrie und Winkelbetrachtungen Aufgabe 1 a) Welche Eigenschaft besitzen alle Punkte auf der Mittelsenkrechten zu zwei gegebenen Punkten A und B? b) In einem Dreieck sind zwei Winkel gleich groß und der dritte Winkel doppelt so groß.

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr

Vektorrechnung Raumgeometrie

Vektorrechnung Raumgeometrie Vektorrechnung Raumgeometrie Sofja Kowalewskaja (*1850, 1891) Hypatia of Alexandria (ca. *360, 415) Maria Gaetana Agnesi (*1718, 1799) Emmy Noether (*1882 1935) Émilie du Châtelet (*1706, 1749) Cathleen

Mehr

Abitur 2010 Mathematik GK Geometrie VI

Abitur 2010 Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.

Mehr

Wie bearbeitet man einen Übungszettel?

Wie bearbeitet man einen Übungszettel? Wie bearbeitet man einen Übungszettel? Tipps: Mathematik lernt man nur durch Selbermachen: Übungsaufgaben müssen selbst bearbeitet werden. Das Nachvollziehen einer Lösung reicht nicht aus. Der Weg ist

Mehr

Lösungen zu den Aufgaben 7. Klasse

Lösungen zu den Aufgaben 7. Klasse Lösungen zu den Aufgaben 7. Klasse Beachte: Einheit bei allen Geometrieaufgaben: 1 Kästchenlänge 1 cm 1. Achsen- und Punktsymmetrie Achsenspiegelung: Punktspiegelung: 1 Lösungen zu den Aufgaben 7. Klasse

Mehr

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51)

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 9, 10 Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Aufgabe 1 (6+4+4+3+3 Punkte). In dieser Aufgabe geht es

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe

Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe PH Heidelberg, Fach Mathematik Klausur zur Akademischen Vorprüfung Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe Wintersemester 12/13 12. Februar 2013 Aufgabe 8: Definieren Nr.

Mehr

Kurze Einführung in die Arbeit mit dem Programm EUKLID ( Ac / 2008 )

Kurze Einführung in die Arbeit mit dem Programm EUKLID ( Ac / 2008 ) Kurze Einführung in die Arbeit mit dem Programm EUKLID ( Ac / 2008 ) Starte die Anwendung Euklid DynaGeo mit einem Doppelklick auf das betreffende Symbol. Zunächst erscheint der Hauptbildschirm, der folgendes

Mehr

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 31. März 016 Aufgabe 1. Man bestimme alle positiven ganzen Zahlen k und n, die die Gleichung erfüllen. k 016 = 3

Mehr

Berechnung der Schnittpunkte durch Gleichsetzung. Bestimmung der Scheitelpunkte von und. Verdeutlichung der Situation durch ein Schaubild.

Berechnung der Schnittpunkte durch Gleichsetzung. Bestimmung der Scheitelpunkte von und. Verdeutlichung der Situation durch ein Schaubild. Lösung W3a/2010 Aufstellung der Geradengleichungen und. Schnittpunktberechnung von durch Gleichsetzung. Aufstellung der Parabelgleichung durch die Punkte und. Umstellung der allgemeinen Parabelgleichung

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

Leitidee Zahl Bruchzahlen darstellen mit gemeinen Brüchen und Dezimalbrüchen addieren, subtrahieren, multiplizieren und dividieren

Leitidee Zahl Bruchzahlen darstellen mit gemeinen Brüchen und Dezimalbrüchen addieren, subtrahieren, multiplizieren und dividieren Mathematik Klasse 7 Inhalt / Thema von Maßstab Band 3 1. Fit nach den Sommerferien Bruchteile von Größen Brüche und Dezimalbrüche addieren, subtrahieren, multiplizieren und dividieren relevante Informationen

Mehr

MATURITÄTSPRÜFUNGEN 2006

MATURITÄTSPRÜFUNGEN 2006 KANTONSSCHULE ROMANSHORN MATURITÄTSPRÜFUNGEN 2006 MATHEMATIK 3 Std. Klasse 4 Ma hcs Hilfsmittel: Taschenrechner Fundamentum Mathematik und Physik oder Formelsammlung DMK Beachten Sie:Jede Aufgabe ist auf

Mehr