0 8 Brechung und Totalreflexion
|
|
|
- Benedikt Brahms
- vor 9 Jahren
- Abrufe
Transkript
1 0 8 Brechung und Totalreflexion 1. Aufgabenstellung 1.1 Bestimmen Sie den Brechungsindex n vorgegebener Modellkörper für die Wellenlänge nm eines He-Ne-Lasers gegen Luft n2 1 anhand der Messung von Einfalls- und Ausfallswinkel sowie durch die Bestimmung des Grenzwinkels der Totalreflexion. 1.2 Bestimmen Sie den Brechungsindex n D und die ABBE sche Zahl vorgegebener transparenter Flüssigkeiten und Festkörper mit Hilfe des ABBE- Refraktometers. 2. Stichworte zur Vorbereitung: HUYGENS-FRESNEL sches Prinzip, Brechungsindex, Totalreflexion, Dispersion, ABBE sche Zahl, ABBE-Refraktometer Literatur: A. Recknagel Physik Optik, 7. Auflage, Kap. 1, Technik Verlag 1977 M. Krötzsch Physikalisches Praktikum, Kap. 3.0., 3.1., Teubner Verlag 1984 Bergmann - Schäfer Lehrbuch der Experimentalphysik, Band 3 Optik, Kap. I.5, I.6, W. de Gruyter 1987 E. Grimsehl Lehrbuch der Physik, Band 3, Optik, Kap. 2.2., Teubner Verlag 1988 E. Hering, R. Martin, Physik für Ingenieure M. Stohrer Kap Springer Verlag 1997 Seitenumbruch
2 Allgemeine Hinweise zur Versuchsdurchführung: Arbeitsschutzhinweis für Experimente mit Laser-Lichtquellen : 1. Blicken Sie niemals direkt in den Laserstrahl. 2. Hantieren Sie nicht mit stark reflektierenden Gegenständen, wie Uhren, Ringen etc., in Strahlnähe zur Vermeidung unkontrollierter abgelenkter Strahlen. Die Ihnen gestellte experimentelle Aufgabe umfasst zwei Teilversuche, die Untersuchung der Brechung an großen Modellkörpern mit halbkreisförmiger Grundfläche mit einer Laserlichtquelle, Messungen an Flüssigkeiten und Gläsern mit dem ABBE-Refraktometer. 3.1 Demonstrationsversuch Für ein anschauliches Experiment der Brechung gegen Luft sind Modellkörper mit einer halbkreisförmigen Grundfläche besonders geeignet. Bei genauer Justage ist gewährleistet, dass über die gekrümmte Begrenzungsfläche ein- bzw. ausfallende Strahlen die Grenzfläche lotrecht und damit ohne zusätzliche Brechung passieren (Abb. 1). Abb. 1: Strahlenverlauf durch den Modellkörper (Der Strahlenversatz ist zur Verdeutlichung stark überhöht dargestellt.) Bei der Ermittlung des Grenzwinkels erweist es sich als nachteilig, dass der gebrochene Strahl durch Oberflächenrauhigkeiten entlang der ebenen Grenzfläche stark gestreut wird. Fügt man einen zweiten identischen Modellkörper in der in Abb.1 gezeigten Weise hinzu, so kann für den somit gebildeten kreisrunden Modellkörper
3 mit minimalem Luftspalt ein geradliniger Strahlendurchgang für alle beobachtet werden, der mit Überschreiten des Grenzwinkels abrupt abbricht. Für die Untersuchung an Flüssigkeiten können Küvetten mit halbkreisförmiger Grundfläche eingesetzt werden, wobei der Mittelpunkt des Krümmungsradius mittig auf der inneren Küvettenwandfläche liegt. g Abb. 2 : Versuchsaufbau Der Laser und der Probentisch sind mittels Reiter auf einer optischen Bank montiert. Der Probentisch nimmt den untersuchten Modellkörper auf, ist drehbar gelagert und mit einer Skalenteilung versehen, so dass der aktuelle Drehwinkel mittels Nonius abgelesen werden kann. Durch Justage zu Beginn des Versuches ist sicherzustellen, dass der Laserstrahl exakt die Drehachse des Tisches schneidet. Der Modellkörper kann mittels einer 2-Koordinaten-Verschiebung auf dem Drehtisch positioniert werden. Zentrisch zur Drehachse ist ein Schirm angeordnet mit dessen Hilfe die Winkelposition abgelenkter Strahlen vermessen und mittels Nonius relativ zum Drehwinkel des Tisches bestimmt werden kann. 1. Justieren Sie den Laser mittels der 4 Stellschrauben an seiner Befestigung parallel zur optischen Bank so, dass der Laserstrahl ca. 5 mm über dem Probentisch und exakt durch die Drehachse des Tisches verläuft. Als Justierhilfe dient eine senkrecht auf einem Fuß stehende Glaskapillare. Die Kapillare wird zunächst so auf der Drehachse positioniert, dass der Laserspot auf der Kapillarenwand invariant zu einer beliebigen Drehung des Tisches ist (Achten Sie als Hilfestellung auf das Streulicht an der Wand). Danach erfolgt die Einstellung am Laser für einen Strahlverlauf durch die Kapillarenmitte. Achten Sie ebenfalls durch Verschiebung des Tischreiters auf der optischen Bank auf eine parallele Höheneinstellung. Die einzelnen Positionierschritte sind ggf. sukzessive zu wiederholen. 2. Befestigen Sie den zu untersuchenden Modellkörper mittels Haftstreifen auf
4 dem Drehtisch und positionieren Sie ihn mit Hilfe der 2-Koordinaten- Verschiebung. Die Drehachse muss auf der ebenen Wandfläche in der Mitte der Längsabmessung liegen (Hinweis: Für Flüssigkeitsküvetten erfolgt die Justage auf die Küvetteninnenseite). Das ist erreicht, wenn der Probekörper mit der ebenen Begrenzung parallel zum Laserstrahl orientiert, diesen auf seiner gesamten Länge zur Hälfte schneidet (Überprüfen Sie die entsprechende Einstellung bei einer Drehung um exakt 180 ). Bei einer Drehung des Tisches um 90 bzw. 270 ist zu kontrollieren, ob der Strahldurchgang entlang der Symmetrieachse des Probekörpers erfolgt. Wenn dies erreicht ist, entspricht die Winkelposition des den Körper durchlaufenden Strahls auf dem Schirm der Position des Laserstrahls ohne Probekörper. Der an der dem Laser zugewandten vorderen Fläche reflektierte schwache Spot fällt dabei exakt in die Lichtaustrittsblende des Lasers zurück. Verschiebungen in beide Koordinatenrichtungen sind jeweils wechselseitig zu kontrollieren. Notieren Sie zum Abschluss die Winkelpositionen von Tisch und Schirm als Bezugswerte für Ihre späteren Messungen. 3. Bestimmen Sie, beginnend mit einem Einfallswinkel von 10, in 5 -Schritten Einfalls- und Brechungswinkel für den Modellkörper. 4. Bestimmen Sie den Grenzwinkel der Totalreflexion wie unter 2.1 beschrieben. Als Auskoppelkörper, der ohne die Justierung zu verletzen unmittelbar hinter den Probekörper gelegt wird, dient ein zweiter Modellkörper mit halbkreisförmiger Grundfläche bzw. ein speziell verkürzter Körper bei der Untersuchung an Flüssigkeitsküvetten (Kompensation der Wandstärke der Küvette). 5. Wiederholen Sie die Punkte mit einem zweiten Modellkörper (Küvette). Stellen Sie die Messwerte für Einfalls- und Brechungswinkel graphisch in der Form sin dar und ermitteln Sie den Brechungsindex n. Berechnen Sie den Brechungsindex n ausgehend von dem ermittelten Grenzwinkel der Totalreflexion. g Vergleichen Sie beide Ergebnisse und führen Sie eine Größtfehlerberechnung durch. 3.2 ABBE-Refraktometer Das ABBE-Refraktometer Abb. 3 dient in erster Linie zur Untersuchung von Flüssigkeiten. Ein Doppelprisma aus schwerem Flintglas (1) nimmt die Flüssigkeit in Form einer dünnen planparallelen Schicht zwischen Beleuchtungsprisma (2) und Messprisma (3) auf. Licht einer Fremdquelle mit kontinuierlichem Spektrum, gerichtet von einem Spiegel (9), tritt durch die rauhe Oberfläche des Beleuchtungsprismas diffus in die Flüssigkeitsschicht ein und maximal unter dem Grenzwinkel der Totalreflexion in das Messprisma über. Die austretenden Strahlen werden im Fokus
5 des Beobachtungsfernrohrs (5) abgebildet. 6 4 Schematisch ist der Strahlengang in Abb. 4 7 gezeigt. Das Doppelprisma ist starr mit einem 5 Teilkreis mit Triebknopf (8) gekoppelt. Durch 3 Drehung kann die Hell-Dunkel Grenze der Totalreflexion auf das Fadenkreuz des Fernrohrs einge- 1 2 stellt werden. Der Teilkreis wird über ein Mikroskop (6) abgelesen und ist unmittelbar in Einhei- 8 9 ten des Brechungsindex n D kalibriert. Dem Fernrohr ist ein Farbkompensator (4) nach geschaltet. Dieser besteht aus zwei Amici- Abb. 3: ABBE-Refraktometer Prismen, die mittels Trieb (7) gegensinnig verdreht werden können. Die Prismenkombination ist für die Na-D-Linie geradsichtig und weist bei Drehung eine veränderliche Dispersion auf, wodurch die Dispersion der untersuchten Flüssigkeitsschicht kompensiert wird und eine farblose Hell-Dunkel-Grenze für den Beobachter entsteht. Der Drehwinkel kann abgelesen werden und dient mittels Tabelle zur Berechnung der mittleren Dispersion n n. F C g (3) (2) Abb. 4 : Strahlengang im ABBE-Refraktometer Mit dem ABBE-Refraktometer können ebenfalls kleine Festkörperproben untersucht werden. Dabei wird eine ebene Probenfläche mit einigen Tropfen Monobromnaphthalin (n D = 1.657) als optischem Kontaktvermittler auf das Messprisma aufgesetzt. Eine höher brechende dünne Zwischenschicht beeinflusst die Messung nicht. Durchführung der Messungen: 1. Beschicken Sie die Messapparatur, indem das Doppelprisma geöffnet und soweit geneigt wird, bis die blanke Fläche des Messprismas waagerecht liegt. Mit einem Glasstab gibt man 2 Tropfen der zu untersuchenden Flüssigkeit auf die Fläche, ohne sie zu berühren. Das Beleuchtungsprisma wird vorsichtig
6 angeklappt und das Doppelprisma geschlossen (Luftblasen unbedingt vermeiden). Danach kann das Gerät in die Beobachtungsstellung aufgerichtet werden. Bei der Untersuchung von Festkörperproben wird mit einem Tropfen Monobromnaphthalin der zu untersuchende Körper mit der waagerecht stehenden blanken Fläche des Messprismas in optischen Kontakt gebracht. Das Beleuchtungsprisma bleibt aufgeklappt. 2. Leuchten Sie die Probe durch Einstellung des Beleuchtungsspiegels aus. Als Lichtquelle dient eine Tischleuchte, deren Licht auf die Eintrittsöffnung des Beleuchtungsprismas zu richten ist. Für die Untersuchung von Fest-körperproben ist das Refraktometer erhöht zu stellen. Die Beleuchtung erfolgt in dem Fall über die Lichteintrittsöffnung des Messprismas, deren Verschluss vorher abzunehmen ist. 3. Stellen Sie die Hell-Dunkel-Grenze auf die Mitte des Fadenkreuzes im Beobachtungsfernrohr bei gleichzeitiger Kompensation des Farbsaumes ein. 4. Lesen Sie den Wert für n D am Teilkreis (Genauigkeit - 3 Nachkommastellen) und den der Farbkompensatorteilung z (eine Nachkommastelle) ab und bestimmen die mittlere Dispersion nf nc A B anhand der am Versuchsplatz ausliegenden Dispersionstafel. Alle Einstellungen sind mindestens 3 mal vorzunehmen. Da optische Konstanten temperaturabhängig sind, ist die Raumtemperatur im Messprotokoll zu vermerken. 5. Entfernen Sie die jeweilige Probe und reinigen Sie die Prismenflächen mit Ethanol. 6. Wiederholen Sie Pkt für insgesamt 3 Flüssigkeiten und eine Festkörperprobe nach Auswahl des betreuenden Assistenten. Geben Sie für die untersuchten Flüssigkeits- und Festkörperproben den Brechungsindex n D und die ABBE sche Zahl tabellarisch an
Physikalisches Praktikum 3
Datum: 0.10.04 Physikalisches Praktikum 3 Versuch: Betreuer: Goniometer und Prisma Dr. Enenkel Aufgaben: 1. Ein Goniometer ist zu justieren.. Der Brechungsindex n eines gegebenen Prismas ist für 4 markante
PROTOKOLL ZUM VERSUCH REFRAKTOMETRIE. Inhaltsverzeichnis
PROTOKOLL ZUM VERSUCH REFRAKTOMETRIE CHRIS BÜNGER Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgabe 1 1.3. Das Abbé-Refraktometer 1 2. Versuchsdurchführung 3 2.1. Bestimmung der Brechungsindizes
PRISMEN - SPEKTRALAPPARAT
Grundpraktikum der Physik Versuch Nr. 20 PRISMEN - SPEKTRALAPPARAT Versuchsziel: Bestimmung der Winkeldispersionskurve und des Auflösungsvermögens von Prismen. brechende Kante Ablenkwinkel einfallendes
PHY. Brechzahlbestimmung und Prismenspektroskop Versuch: 17. Brechzahlbestimmung und Prismenspektroskop
Testat Brechzahlbestimmung und Prismenspektroskop Versuch: 17 Mo Di Mi Do Fr Datum: Abgabe: Fachrichtung Sem. Brechzahlbestimmung und Prismenspektroskop 1. Aufgabenstellung 1.1. Für eine vorgegebene Wellenlänge
Protokoll zum Physikalischen Praktikum Versuch 11 - Refraktometrie
Protokoll zum Physikalischen Praktikum Versuch 11 - Refraktometrie Experimentator: Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 09.11.2004 Inhaltsverzeichnis 1 Ziel des Versuches 1 2 Vorüberlegungen
Versuch Nr. 22. Fresnelformeln
Grundpraktikum der Physik Versuch Nr. 22 Fresnelformeln Versuchsziel: Die Fresnelformeln beschreiben, in welcher Weise sich ein polarisierter oder unpolarisierter Lichtstrahl verhält, wenn er auf die Grenzfläche
Dispersion von Prismen (O2)
Dispersion von Prismen (O) Ziel des Versuches Für drei Prismen aus verschiedenen Glassorten soll durch die Methode der Minimalablenkung die Dispersion, d. h. die Abhängigkeit der Brechungsindizes von der
Theoretische Grundlagen
Theoretische Grundlagen Brechung Die Brechung von Licht an der Grenzfläche zweier Medien ist Phänomen mit vielfältigen Anwendungen innerhalb der Optik, welche von der Konstruktion von Linsen bis zur Spektroskopie
Die Lichtbrechung am gleichseitigen Prisma bei Totalreflexion an der zweiten Grenzfläche (Verfasser: Prof. Dr. Klaus Dräger)
Die Lichtbrechung am gleichseitigen Prisma bei Totalreflexion an der zweiten Grenzfläche (Verfasser: Prof. Dr. Klaus Dräger) Roger Bacon : de multiplicatone specierum Klassenstufe Oberthemen Unterthemen
3 Brechung und Totalreflexion
3 Brechung und Totalreflexion 3.1 Lichtbrechung Lichtstrahlen am Übergang von Luft zu Wasser In der Luft breitet sich ein Lichtstrahl geradlinig aus. Trifft der Lichtstrahl nun auf eine Wasseroberfläche,
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD Optik Brechungszahl eines Prismas Durchgeführt am 17.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer II Inhaltsverzeichnis 1
4 Brechung und Totalreflexion
4 Brechung und Totalreflexion 4.1 Lichtbrechung Experiment: Brechung mit halbkreisförmigem Glaskörper Experiment: Brechung mit halbkreisförmigem Glaskörper (detailliertere Auswertung) 37 Lichtstrahlen
Brechung beim Übergang Luft zu Glas (Artikelnr.: P )
Lehrer-/Dozentenblatt Gedruckt: 30.03.207 6:3:8 P064300 Brechung beim Übergang Luft zu Glas (Artikelnr.: P064300) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema:
OW_01_02 Optik und Wellen GK/LK Beugung und Dispersion. Grundbegriffe der Strahlenoptik
OW_0_0 Optik und Wellen GK/LK Beugung und Dispersion Unterrichtliche Voraussetzungen: Grundbegriffe der Strahlenoptik Literaturangaben: Optik: Versuchsanleitung der Fa. Leybold; Hürth 986 Verfasser: Peter
1. Versuchsbeschreibung
PROTOKOLL ZUM VERSUCH: JUSTIERUNG EINES GONIOMETERS UND PRISMA CHRIS BÜNGER Betreuer: Dr. Enenkel 1.1. Ziel: 1. Versuchsbeschreibung Erarbeiten der Grundlagen einer optischen Justage Erarbeitung des Begris
Experimente Lehrerinformation
Lehrerinformation 1/9 Arbeitsauftrag Durchführung der gem. Anleitung Ziel Erleben der Theorie in der Praxis Material en Material gemäss Beschreibung der. Sozialform Plenum und je nach Experiment in GA
1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen
Klausur Klasse 2 Licht als Wellen (Teil ) 26..205 (90 min) Name:... Hilfsmittel: alles verboten. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Lichtstrahls durch eine Glasplatte, bei dem Reflexion
Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation
Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation Es gibt zwei Möglichkeiten, ein Objekt zu sehen: (1) Wir sehen das vom Objekt emittierte Licht direkt (eine Glühlampe, eine Flamme,
Laboranten Labormethodik und Physikalische Grundlagen
0.09.06 Brechung Trifft Licht auf die Grenzfläche zweier Stoffe, zweier Medien, so wird es zum Teil reflektiert, zum Teil verändert es an der Grenze beider Stoffe seine Richtung, es wird gebrochen. Senkrecht
Bestimmung der Brechzahl von Glas (Artikelnr.: P )
Lehrer-/Dozentenblatt Bestimmung der Brechzahl von Glas (Artikelnr.: P064400) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Optik Unterthema: Reflexion und Brechung
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #21 30/11/2010 Vladimir Dyakonov [email protected] Brechungsgesetz Das Fermat sches Prinzip: Das Licht nimmt den Weg auf dem es die geringste Zeit
Versuch Polarisiertes Licht
Versuch Polarisiertes Licht Vorbereitung: Eigenschaften und Erzeugung von polarisiertem Licht, Gesetz von Malus, Fresnelsche Formeln, Brewstersches Gesetz, Doppelbrechung, Optische Aktivität, Funktionsweise
Versuch 4.1b: Interferenzrefraktor von Jamin
PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE Technische Universität Darmstadt Abteilung A: Institut für Angewandte Physik Versuch 4.1b: Interferenzrefraktor von Jamin Vorbereitung: Interferenzen gleicher
Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012
Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012 1. Kurzaufgaben (7 Punkte) a) Welche der folgenden Aussagen ist richtig? Kreuzen Sie diese an (es ist genau eine Aussage richtig). A: Der Brechungswinkel
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.6: Beugung am Gitter Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1 Bestimmung des Gitters mit der kleinsten Gitterkonstanten
O 6 Prismenspektrometer
Physikalisches Grundpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig O 6 Prismenspektrometer Aufgaben 1 Ermitteln Sie den brechenden Winkel ε eines Prismas! 2 Messen Sie die Dispersionskurve
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I Name: Brechungsindexbestimmung mit dem Prismen- Spektralapparat Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat:
Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer
Aufgaben 9 Interferenz Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.
Brechung des Lichts Arbeitsblatt
Brechung des Lichts Arbeitsblatt Bei den dargestellten Strahlenverläufen sind einige so nicht möglich. Zur Erklärung kannst du deine Kenntnisse über Brechung sowie über optisch dichtere bzw. optisch dünnere
2. Klassenarbeit Thema: Optik
2. Klassenarbeit Thema: Optik Physik 9d Name: e-mail: 0. Für saubere und übersichtliche Darstellung, klar ersichtliche Rechenwege, Antworten in ganzen Sätzen und Zeichnungen mit spitzem Bleistift erhältst
Brechung beim Übergang von Glas zu Luft (Artikelnr.: P )
Lehrer-/Dozentenblatt Brechung beim Übergang von Glas zu Luft (Artikelnr.: P1064700) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Optik Unterthema: Reflexion
Physikklausur Nr.4 Stufe
Physikklausur Nr.4 Stufe 12 08.05.2009 Aufgabe 1 6/3/5/4 Punkte Licht einer Kaliumlampe mit den Spektrallinien 588nm und 766nm wird auf einen Doppelspalt des Spaltmittenabstands 0,1mm gerichtet. a.) Geben
Versuch O08: Polarisation des Lichtes
Versuch O08: Polarisation des Lichtes 5. März 2014 I Lernziele Wellenoptik Longitudinal- und Transversalwellen Elektromagnetische Wellen II Physikalische Grundlagen Nachweismethode Elektromagnetische Wellen
Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG)
Datei Aufweitung.docx Titel Aufweitung eines Lichtbündels Aufweitung eines Lichtbündels Ein parallel begrenztes Lichtbündel eines Lasers soll durch zwei Bikonvexlinsen mit den Brennweiten ' ' f 10 mm und
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.2: Wellenlängenbestimmung mit dem Gitter- und Prismenspektrometer Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1
Physikalisches Grundpraktikum Technische Universität Chemnitz
Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A3 - Atomspektren - BALMER-Serie» Martin Wolf Betreuer: DP Emmrich Mitarbeiter: Martin Helfrich
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 5.6: Bestimmung der Balmerserie Gruppe 2, Mittwoch: Patrick Lipinski, Sebastian Schneider Patrick Lipinski, Sebastian Schneider Seite 1 / 5 1.
Gitter. Schriftliche VORbereitung:
D06a In diesem Versuch untersuchen Sie die physikalischen Eigenschaften eines optischen s. Zu diesen za hlen insbesondere die konstante und das Auflo sungsvermo gen. Schriftliche VORbereitung: Wie entsteht
4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht.
4 Optische Linsen 4.1 Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus Glas oder transparentem Kunststoff hergestellt ist. Die Linse ist von zwei Kugelflächen begrenzt (Kugelflächen
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I O20 Name: Brechungsindexbestimmung mit dem Prismenspektrometer Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat:
D05 Emissionsspektren
D05 Emissionsspektren Ziele In diesem Versuch werden Sie verschiedene Lichtquellen mit einem Prismenspektrometer untersuchen. Wie sehen die Spektren von Glühlampe, Neonröhre, Leuchtdiode oder Laserpointer
Lichtbeugung Ultraschall an Schallwellen
O 7 Lichtbeugung Ultraschall an challwellen. Aufgabenstellung - Bestimmen ie die challgeschwindigkeit in vorgegebenen Flüssigkeiten a) mit Hilfe des DEBYE-EAR-Effekts b) durch Zentralprojektion (Zusatzaufgabe)
LASER-OPTIK-KIT "SNELLIUS Ein Versuchsaufbau zum Erlernen der Optik im Zeitalter der Photonik in Gymnasien, Schülerlaboren und physikalischen Praktika
LASER-OPTIK-KIT "SNELLIUS Ein Versuchsaufbau zum Erlernen der Optik im Zeitalter der Photonik in Gymnasien, Schülerlaboren und physikalischen Praktika Alle gleichzeitig stattfindenden Phänomene werden
Optik. Was ist ein Modell? Strahlenoptik. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl
Modelle in der Physik Optik Strahlenoptik vereinfachte Darstellungen der Wirklichkeit dienen der besseren Veranschaulichung Wesentliches wird hervorgehoben Unwesentliches wird vernachlässigt Was ist ein
Lichtreflexion. Physikalisches Grundpraktikum IV. Name: Daniel Schick Betreuer: Dr. Hoppe Versuch ausgeführt: Protokoll erstellt:
Physikalisches Grundpraktikum IV Universität Rostock :: Institut für Physik 5 Lichtreflexion Name: Daniel Schick Betreuer: Dr. Hoppe Versuch ausgeführt: 2.4.5 Protokoll erstellt: 22.4.5 1 Ziele: Auseinandersetzen
Optik Licht als elektromagnetische Welle
Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor
Bestimmung der Brechzahl von Glas wartikelnr.: P )
Lehrer-/Dozentenblatt Gedruckt: 30.03.207 6:3:28 P064400 Bestimmung der Brechzahl von Glas wartikelnr.: P064400) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema:
Geometrische Optik Best.-Nr. MD02342
Geometrische Optik Best.-Nr. MD02342 Lichtquelle 6V - 11W Beschreibung Metallgehäuse mit magnetischem Boden und verstellbarem Fokus. Auf der Vorderseite befinden sich 5 Öffnungen, die einzeln durch Magnetplättchen
INHALTSVERZEICHNIS PHYSIK-VERSUCHE MIT HINTERGRUNDWISSEN
INHALTSVERZEICHNIS PHYSIK-VERSUCHE MIT HINTERGRUNDWISSEN C Die Zaubermünze / Lichtbrechung Ein silbernes Ei / Totalreflexion Hintergrundwissen Optik - Lichtbrechung - Totalreflexion - PHYSIK / LICHTBRECHUNG
Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt
-II.1- Geometrische Optik Optik: Teilgebiet der, das sich mit der Untersuchung des Lichtes beschäftigt 1 Ausbreitung des Lichtes Das sich ausbreitende Licht stellt einen Transport von Energie dar. Man
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Optik II: Reflexion und Brechung des Lichts
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Optik II: Reflexion und Brechung des Lichts Das komplette Material finden Sie hier: School-Scout.de Schriftliche Übung Name: Reflexion
reflektierter Lichtstrahl
KLASSE: DATUM: NAMEN: I. GRUNDLAGEN Wenn ein Lichtstrahl von Luft in ein transparentes Material übergeht (z. B Glas, Plexiglas, Wasser), so stellt man fest, dass der Strahl an der Grenzfläche zwischen
I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus.
KLASSE: DATUM: NAMEN: I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus. Wenn ein Lichtstrahl auf eine glatte oder
HTW Chur Photonics, Optik 1, T. Borer Aufgaben /17. Totalreflexion
Aufgaben 3 Reflexion und Brechung Totalreflexion Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt
Praktikum Optische Technologien Anleitung zum Versuch Dicke Linsen
Fachbereich Energietechnik Lehrgebiet für Lasertechnik und Optische Technologien Prof. Dr. F.-M. Rateike Praktikum Optische Technologien Anleitung zum Versuch Dicke Linsen August 204 Praktikum Optische
IO2. Modul Optik. Refraktion und Reflexion
IO2 Modul Optik Refraktion und Reflexion In der geometrischen Optik sind die Phänomene der Reflexion sowie der Refraktion (Brechung) von enormer Bedeutung. Beide haben auch vielfältige technische Anwendungen.
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (8 Punkte) Ein
Mechanik - Die schiefe Ebene -
Mechanik - Die schiefe Ebene - Aufgabe: Auf der schiefen Ebene befindet sich ein Körper mit der Masse von m = 0,800 kg. Die schiefe Ebene hat die konstante Länge l = 1,00 m. Die Höhe kann von 10 cm bis
Labor für Technische Akustik
Labor für Technische Akustik Kraus Abbildung 1: Experimenteller Aufbau zur optischen Ermittlung der Schallgeschwindigkeit. 1. Versuchsziel In einer mit einer Flüssigkeit gefüllten Küvette ist eine stehende
Pilotprojekt der Lehrmittelkommission Neue optische Experimente für die Physikausbildung im Zeitalter der Photonic
Pilotprojekt der Lehrmittelkommission Neue optische Experimente für die Physikausbildung im Zeitalter der Photonic 8. Workshop der Lehrmittelkommission Universität Rostock Institut für Physik Dr. Peter
O9a Interferenzen gleicher Dicke
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O9a Interferenzen gleicher Dicke Aufgaben 1. Bestimmen Sie den Krümmungsradius einer konvexen Linsenfläche durch Ausmessen Newtonscher
Versuch Nr. 18 BEUGUNG
Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der
Abbildung 2. Hinweis: Verwendet für alle schriftlichen Bearbeitungen die beiliegenden Blätter!
Kaum beginnt es zu regnen, beginnt auch der Scheibenwischer mit seiner Arbeit, und das ganz automatisch, als wüsste er, dass es regnet. Viele Fahrzeuge sind inzwischen mit Regensensoren ausgestattet, um
Versuche zur Dispersion
Versuche zur Dispersion. August 006 1 Grundlagen 1.1 Historische Angaben Das Brechungsgesetz wurde zuerst von WILLIBROD SNELL VAN ROYEN (SNELLIUS) 161 entdeckt und von RENE DESCARTES (CARTESIUS) 163 in
Geometrische Optik Brechungs- und Reflexionsgesetz
Geometrische Optik Brechungs- und Reflexionsgesetz 1) In einem Gefäß mit Wasser (n = 4/3) befindet sich unter der Wasseroberfläche ein ebener, unter 45 o geneigter Spiegel. Unter welchem Winkel muß ein
Illustrierende Aufgaben zum LehrplanPLUS. Refraktometer
Refraktometer Stand: 15.01.2018 Jahrgangsstufen FOS/BOS 10 Fach Übergreifende Bildungs- und Erziehungsziele Benötigtes Material Physik Technische Bildung Zugang zum Internet für Recherchen Kompetenzerwartungen
Brechungsindexbestimmung mit dem Prismen- Spektralapparat O20. Matrikelnummer: Versuchsziel und Versuchsmethode:
O20 Name: Brechungsindexbestimmung mit dem Prismen- Spektralapparat Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem
Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1
Lichtbrechung / Lichtbeugung
Lichtbrechung / Lichtbeugung 1. Aufgaben 1. Über die Beugung an einem Gitter sind die Wellenlängen ausgewählter Spektrallinien von Quecksilberdampf zu bestimmen. 2. Für ein Prisma ist die Dispersionskurve
Physikalisches Praktikum
Physikalisches Praktikum Versuch 17: Lichtbeugung Universität der Bundeswehr München Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 Versuch 17: Lichtbeugung Im Modell
Versuch 33 Prismenspektrometer
Versuch 33 Prismenspektrometer II Literatur W. Walcher, Praktikum der Physik, B.G.Teubner Stuttgart, Standardwerke der Physik: Gerthsen, Bergmann-Schäfer, Tipler. Justierschraube für Spaltbreite Kollimator
5. Die gelbe Doppellinie der Na-Spektrallampe ist mit dem Gitter (1. und 2. Ordnung) zu messen und mit dem Prisma zu beobachten.
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum O Gitter/Prisma Geräte, bei denen man von der spektralen Zerlegung des Lichts (durch Gitter bzw. Prismen) Gebrauch macht, heißen (Gitter-
Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.
Versuche P1-31,40,41 Vorbereitung Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.2010 1 1 Vorwort Für den Versuch der geometrischen Optik gibt es eine Fülle
Physikalisches Praktikum Prof. Dr. Peterseim / Dipl.-Ing. M. Gilbert
Physikalisches Praktikum Prof. Dr. Peterseim / Dipl.-Ing. M. Gilbert.08.008 Monochromatische Lichtquellen - Prismenspektrometer Versuch Nr. O 03 (Pr_EX_O03_Prismenspektrometer) Praktikum: FB 0 Plätze:
Gebrauchsanweisung Martin Henschke, Fresnel-Spiegel Art.-Nr.:
Gerätebau - Physikalische Lehrmittel Dr. Martin Henschke Gerätebau Dieselstr. 8, D-50374 Erftstadt www.henschke-geraetebau.de Gebrauchsanweisung Martin Henschke, 2006-05-16 Fresnel-Spiegel Art.-Nr.: 650272
NG Brechzahl von Glas
NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes
Praktikum Optische Technologien Anleitung zum Versuch Polarisiertes Licht
Fachbereich Energietechnik Lehrgebiet für Lasertechnik und Optische Technologien Prof. Dr. F.-M. Rateike Praktikum Optische Technologien Anleitung zum Versuch Polarisiertes Licht August 14 Praktikum Optische
Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik
Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Aufgabe 1: Zeigen Sie mit Hilfe des Fermatschen Prinzips, dass aus der Minimierung des optischen
PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe
1.9.08 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: O 2 - Linsensysteme Literatur Eichler, Krohnfeld, Sahm: Das neue physikalische Grundpraktikum, Kap. Linsen, aus dem Netz der Universität http://dx.doi.org/10.1007/3-540-29968-8_33
Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres
Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Historisches und Grundlagen: Generell wird zwischen zwei unterschiedlichen Typen von Fernrohren unterschieden. Auf der einen Seite gibt es das
Praktikum Optische Technologien Anleitung zum Versuch Brennweitenbestimmung
Fachbereich Energietechnik Lehrgebiet für Lasertechnik und Optische Technologien Prof. Dr. F.-M. Rateike Praktikum Optische Technologien Anleitung zum Versuch Brennweitenbestimmung August 204 Brennweitenbestimmung
Optische Bank für Schüler, Komplettset
Optische Bank für Schüler, Komplettset Übersicht Mit der optischen Bank als Komplettset können Schüler selbständig Grundlagenversuche zur Strahlenoptik durchführen. Alle Komponenten, inklusive der dreigeteilten
OPTIK Versuchsanleitung einfach schnell sicher
OPTIK Versuchsanleitung einfach schnell sicher DL720-1C OPTIK Lichtausbreitung O 1 Licht breitet sich geradlinig aus O 2 Punktförmige Lichtquellen erzeugen Schlagschatten O 3 Ausgedehnte Lichtquellen erzeugen
Examensaufgaben - STRAHLENOPTIK
Examensaufgaben - STRAHLENOPTIK Aufgabe 1 Ein Prisma mit einem brechenden Winkel von 60 hat eine Brechzahl n=1,5. Berechne den kleinsten Einfallswinkel, für welchen noch ein Strahl auf der anderen Seite
Examensaufgaben - STRAHLENOPTIK
Examensaufgaben - STRAHLENOPTIK Aufgabe 1 Ein Prisma mit einem brechenden Winkel von 60 hat eine Brechzahl n=1,5. Berechne den kleinsten Einfallswinkel, für welchen noch ein Strahl auf der anderen Seite
Umlenkprisma (Artikelnr.: P )
Lehrer-/Dozentenblatt Umlenkprisma (Artikelnr.: P1065100) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Optik Unterthema: Reflexion und Brechung Experiment: Umlenkprisma
Physikalisches Praktikum 4. Semester
Torsten Leddig 11.Mai 2005 Mathias Arbeiter Betreuer: Dr.Enenkel Physikalisches Praktikum 4. Semester - Lichtreflexion - 1 Ziel Auseinandersetzung mit den Theorien der Lichtreflexion Experimentelle Anwendung
Einführungsexperiment mit Hellraumprojektor. Spiegel zuklappen. Behälter mit Wasser gefüllt. zuklappen. Schwarzes Papier als Abdeckung.
Einführungsexperiment mit Hellraumprojektor Spiegel zuklappen Behälter mit Wasser gefüllt zuklappen Schwarzes Papier als Abdeckung zuklappen schmaler Lichtstreifen ergibt bessere Ergebnisse Tipps: Je höher
Physikalisches Praktikum 3. Semester
Torsten Leddig 30.November 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Newtonsche Ringe - 1 1 Newtonsche Ringe: Aufgaben: Bestimmen Sie den Krümmungsradius R sowie den
Überlagerung monochromatischer Wellen/Interferenz
Überlagerung monochromatischer Wellen/Interferenz Zwei ebene monochromatische Wellen mit gleicher Frequenz, gleicher Polarisation, überlagern sich mit einem sehr kleinen Relativwinkel ε auf einem Schirm
Wellencharakter von Licht, Reflexion, Brechung, Totalreflexion
Übung 24 Optik Wellencharakter von Licht, Reflexion, Brechung, Totalreflexion Lernziele - verstehen, dass das Licht Wellencharakter besitzt. - verstehen, wie beim Fresnel'schen Spiegelversuch die beobachteten
20. Sächsische Physikolympiade 1. Stufe Klassenstufe 6
20. Sächsische Physikolympiade 1. Stufe Klassenstufe 6 Aufgabe 200611 Rund um die Optik a) Physli experimentiert mit Spiegeln. Bei der auf dem Arbeitsblatt dargestellten Versuchsanordnung sendet er einen
Physik HS 2011 / 2012
Übungsblatt 9 1. Welche der nachfolgenden Grafiken stellt / stellen korrekt dar, wie sich der Brechungswinkel in Abhängigkeit vom Einfallswinkel verhält, wenn ein Lichtstrahl von Wasser nach Luft übergeht?
1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter
1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen
Versuch GO1 Abbildungen durch Linsen und Abbildungsfehler
BERGISCHE UNIVERSITÄT WUPPERTAL Versuch GO Abbildungen durch Linsen und Abbildungsfehler I. Vorkenntnisse 0.06 Das Snellius sche Brechungsgesetz, die Dispersion des Brechungsindex von Glas, Linsen- und
