50 Matrixnormen und Eigenwertabschätzungen
|
|
|
- Moritz Pfaff
- vor 9 Jahren
- Abrufe
Transkript
1 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt z B ene Rolle be Konvergenzbetrachtungen zu teratven Algorthmen En wchtges Hlfsmttel für solche Abschätzungen snd Matrxnormen 502 Defnton: Matrxnorm Unter ener Matrxnorm versteht man ene Funkton : IR n n folgenden Egenschaften: IR mt a) A 0 für alle A IR n n (Nchtnegatvtät) A = 0 genau dann, wenn A = 0 (Nchtdegenererthet) b) λa = λ A für alle λ IR, A IR n n c) A + B A + B für alle A, B IR n n (Dreecksunglechung) d) A B A B für alle A, B IR n n (Submultplkatvtät) 503 Bespele Es se A IR n n a) Gesamtnorm: A G := n max a j,j b) Zelensummennorm: A Z := max c) Spaltensummennorm: A S := max j 177 a j a j =1
2 ( n ) 1/2 d) Frobenusnorm: A F := a 2 j, e) Spektralnorm: A 2 := λ max (A T A), wobe λ max (A T A) der größte Egenwert von A T A st Falls A symmetrsch st, glt A 2 = max λ λ Egenwert von A Da Matrzen und Vektoren oft gemensam auftreten, sollten Matrx- und Vektornormen zuenander passend gewählt werden 504 Defnton: Verträglchket von Normen Ene Matrxnorm M heßt verträglch (kompatbel) mt ener Vektornorm V, falls für alle A IR n n und x IR n glt Ax V A M x V 505 Bespele Zu den p-normen ( n x p) 1/p, 1 p <, =1 x p := max x, p = =1,,n als Vektornormen bestehen folgende Verträglchketen von Matrxnormen: a) A G und A S snd kompatbel zur Betragssummennorm x 1 b) A G, A F und A 2 snd kompatbel zur eukldschen Norm x 2 c) A G und A Z snd kompatbel zur Maxmumsnorm x 178
3 Bewes: Wr zegen nur bespelhaft de Verträglchket von A G und x Ax = max a j x j max a j x j max max a kl max x m k,l m = n max a kl max x m k,l m = A G x (Dreecksunglechungen) Zu ener gegebenen Vektornorm V exsteren oftmals vele kompatble Matrxnormen M Es gbt jedoch ene Matrxnorm, für de de Abschätzung Ax V A M x V am schärfsten st und de daher n der Praxs häufg verwendet wrd 506 Defnton: Zugeordnete Matrxnorm De zu ener gegebenen Vektornorm = V defnerte Zahl A := max x 0 Ax V x V = max x V =1 Ax V heßt der Vektornorm V zugeordnete Matrxnorm Bemerkung: Man kann zegen, dass de zugeordnete Matrxnorm alle Egenschaften der Defntonen 502 und 504 bestzt und de klenste aller Matrxnormen mt deser Verträglchket st 179
4 507 Bespele Vektornorm Betragssummennorm x 1 zugeordnete Matrxnorm Spaltensummennorm A S eukldsche Norm x 2 Spektralnorm A 2 Maxmumsnorm x Zelensummennorm A Z Matrxnormen snd nützlch zur Abschätzung von Egenwerten 508 Satz: Egenwertabschätzung mt Matrxnormen Ist λ en Egenwert von A IR n n und A ene belebge, zu ener Vektornorm kompatble Matrxnorm, so glt λ A Bewes: Es se v en Egenvektor zu λ Dann folgt λ v = λv = Av A v Da v 0, glt v 0 Also st λ A 509 Bespel 1 0,1 0,1 Für A = 0 2 0,4 erhält man 0,2 0 3 A G = 3 max a j = 3 3 = 9,j A Z = max1,2 ; 2,4 ; 3,2 = 3,2 A S = max1,2 ; 2,1 ; 3,5 = 3,5 A F = ,1 2 + ( 0,1) ,4 2 + ( 0,2) = 14,22 3,77 180
5 A Z lefert de schärfste Abschätzung: λ A Z = 3,2 Tatsächlch glt λ 1 3,0060 ; λ 2 2,0078 ; λ 3 0,9862 Offenbar erlaubt Satz 508 nur de Abschätzung des betragsmäßg größten Egenwertes Gbt es auch Abschätzungen für alle Egenwerte? 5010 Satz von Gerschgorn Gegeben se ene Matrx A = (a j ) IR n n a) De Verengung der Kresscheben K := µ C enthält alle Egenwerte der Matrx A µ a j a j b) Jede Zusammenhangskomponente aus m solchen Kresen enthält genau m Egenwerte (mt hren Velfachheten gezählt) Bewes: Sehe z B Stoer/Bulrsch: Enführung n de numersche Mathematk II Sprnger, Berln 5011 Bespel 1 0,1 0,1 Für A = 0 2 0,4 fndet man 0,2 0 3 K 1 = µ C µ 1 0,2 181
6 K 2 = µ C µ 2 0,4 K 3 = µ C µ 3 0,2 Im µ K 1 K 2 K 3 λ λ 1 λ 3 Re µ Sämtlche Egenwerte legen n K 1 K 2 K 3 Da K 1, K 2, K 3 sch gegensetg ncht überlappen, legt nach (b) n jeder der Kresscheben genau en Egenwert Ferner st A nverterbar, da 0 außerhalb von K 1 K 2 K 3 legt und somt ken Egenwert sen kann (vgl 456) 5012 Defnton und Korollar: Inverterbarket strkt dagonaldomnanter Matrzen Ene Matrx A = (a j ) IR n n heßt strkt dagonaldomnant, wenn für alle = 1,, n glt a > a j j Jede strkt dagonaldomnante Matrx A st nverterbar Bewes: Für ene solche Matrx A legt 0 außerhalb der Gerschgorn-Kresscheben, st also nach dem Satz von Gerschgorn ken Egenwert von A Bemerkung: Ganz analog lässt sch schleßen, dass ene symmetrsche Matrx A = (a j ) IR n n mt postven Dagonalenträgen a, de strkt dagonaldomnant st, postv defnt st 182
4. Musterlösung. Problem 1: Kreuzende Schnitte **
Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,
Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,
Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket
Lineare Optimierung Dualität
Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen
3. Lineare Algebra (Teil 2)
Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw
1 Mehrdimensionale Analysis
1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus
4.6 Das Pumping-Lemma für reguläre Sprachen:
Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma
Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition
Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden
6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)
6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden
6. Übung zur Linearen Algebra II
Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der
Konkave und Konvexe Funktionen
Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage
Diskrete Mathematik 1 WS 2008/09
Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /
Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan
Lneare Algebra IIa - 04 orlesung - Pro Dr Danel Roggenkamp & Sen Balnojan 93 Untäre ektorräume hermtesche Form au enem C ektorraum sesqulnear (ant-lnear m ersten lnear m zweten Argument (, w (w, (, 2 R
5.3.3 Relaxationsverfahren: das SOR-Verfahren
53 Iteratve Lösungsverfahren für lneare Glechungssysteme 533 Relaxatonsverfahren: das SOR-Verfahren Das vorangehende Bespel zegt, dass Jacob- sowe Gauß-Sedel-Verfahren sehr langsam konvergeren Für de Modellmatrx
Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel
ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore
Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)
Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope
Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.
Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle
1.1 Das Prinzip von No Arbitrage
Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No
18. Dynamisches Programmieren
8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus
Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -
Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole
Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen
Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)
2 Matrizen (A + B) + C = A + (B + C) (A + B)C = AC + BC. Seien A R m n und B = (b (1)... b (p) ) R n p zwei Matrizen. Dann gilt
Lneare Algebra Wel Gao September Gauss sches Elmnatonsverfahren a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mnx n = b m Das LGS mt m Glechungen und n Unbekannten n ene erweterte
9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.
Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.
Elemente der Mathematik - Sommer 2016
Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s
Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme
Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert [email protected] Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce
Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung
am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall
Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum
Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten
Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen
Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen
Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):
LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete
Die Transzendenz der Eulerschen Zahl e
De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen
Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2
ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung
Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA
Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p
12 UMPU Tests ( UMP unbiased )
89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum
( a ) z + ( 1 b ) z = ( 1 c ) z.
Hans Walser, [2000509a] Fermat mt negatven Exponenten Anregung: T. G., B. Vgl. [Morgan 200] Ausgangsrage Gesucht snd Lösungen a,b,c! der Glechung: a z + b z = c z, z! 2 Bespele und Gegenbespele a) Für
f s, x(s) ds max f s, x(s) f s, y(s) ds exp L s t0 L t t 0 ) ds
8 1 Fxpunktsätze 2. Nach Defnton von M glt xt p 0 X b für alle t [t 0 c, t 0 + c], d.h. xt Q für alle t [t 0 c, t 0 + c]. Also lefern 1.18 1 und de Egenschaften des Integrals cf. Folgerung??.?? T p0 x
1 Definition und Grundbegriffe
1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:
Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression
Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5
2 Zufallsvariable und Verteilungen
Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem
9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.
Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.
1 Finanzmathematik. 1.1 Das Modell. Sei Xt
1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd
Algorithmik kontinuierlicher Systeme SVD und PCA: Singulärwertzerlegung und Hauptkomponentenanalyse
lgorthmk kontnuerlcher Systeme SVD und PC: Sngulärwertzerlegung und Hauptkomponentenanalyse SS 7 Motaton SVD Sngular Value Decomposton PC Prncpal Component nalyss Behandlung sngulärer Matrzen über- / unterbestmmte
Netzwerkstrukturen. Entfernung in Kilometer:
Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.
Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen
Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und
z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!
Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf
2.6 Struktursatz und Anwendungen
2.6. STRUKTURSTZ UND NWENDUNGEN 79 2.6 Struktursatz und nwendungen Lernzele 4. Normalformen für Präsentatonen endlch erzeugter Moduln über Eukldschen erechen nwendungen auf ratonale Normalformen für Vektorraumendomorphsmen
d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb
S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von
Erwartungswert, Varianz, Standardabweichung
RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend
Standardnormalverteilung / z-transformation
Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ
Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).
44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften
8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0
8. MARKOVKETTEN 17 8. Marovetten Abbldung 8.1: Reduzble und perodsche Marovette 8.1. Homogene Marovetten n dsreter Zet En Prozess {X n : n IIN} hesst homogene Marovette (n dsreter Zet) mt (abzählbarem)
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)
FORMELSAMMLUNG STATISTIK (I)
Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen
Computerunterstützte Gesichtserkennung = Eigenface - Methode = Thomas Weise Betreuer: PD Dr. Oliver Ernst
Matheatsches Senar 00 Nuerk Coputerunterstützte Geschtserkennung = Egenface - Methode = hoas Wese Betreuer: PD Dr. Olver Ernst Glederung:. Enletung/Allgeenes. HauptKoponentenAnalyse 3. Egenface Methode.
Course Dec 15, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Rationale
Dec 15, 2016 ASC, room A 238, phone 089-21804210, emal [email protected] Patrc Böhl, ASC, room A205, phone 089-21804640, emal [email protected]. Dsusson der Besetzungszahldarstellungen
Online Algorithmen. k-server randomisiert Teil II
Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden
6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines
6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.
Lösungen der Aufgaben zu Kapitel 2
Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n
binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:
Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,
