1 Mehrdimensionale Analysis
|
|
|
- Gretel Wagner
- vor 9 Jahren
- Abrufe
Transkript
1 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus r st V = 4 3 πr3 (warum?, also m Erde = 4 3 πr3 Erde ρ Erde Oberflächegesten hat ene mttlere Dchte von 2, 7t/m 3, der mttlere Erdradus st 6371m Damt ergäbe sch Gesamtmasse der Erde zu 2, t Das tatsächlche Gesamtgewcht der Erde beträgt aber 5, t Daraus ann man schleßen, daß der Erdern ene sehr vel höhere Dchte hat, als das Oberflächengesten Defnton: En Ausdruc der Form a 1,, n x 1 1 x n 1,, n mt 1,, n { N 0 d}, a 1,, n R heßt en Polynom n den n Unbestmmten x 1,, x n Durch en solches Polynom wrd mttels Ensetzen von λ 1,, λ n ene Funton R n R defnert Der (Total-grad enes solchen Polynoms st das Maxmum aller n, mt a 1,, n = 0 Kurzschrebwese mt Multndzes: N n a x Dabe st a := a 1,, n und x := x 1 1 x n Zwe Polynome a x und b x snd genau dann glech, wenn a = b für alle glt Multplaton und Addton snd gemäß der üblchen Rechenregeln defnert Bespel: Das Polynom 2z 3 x 2 y + 5x 2 z + x st en Polynom n dre Unbestmmten vom Grad 6 Bemerung: Aus dem Dstrbutvgesetz folgt das allgemene Dstrbutvgesetz: (a 1 + a 2 (b 1 + b 2 = a 1 b 1 + a 1 b 2 + a 2 b 1 + a 2 b 2 a j b j = a b j,j Bespel: Se f (x, y =,l a l x y l en Polynom n zwe Unbestmmten Se a = Dann glt: f (x, y = a l ((x a + a ((y b + b l ( a b R 2
2 = a l,l =0 = a l,l,j ( a (x a l j=0 ( ( l ( l b l j (y b j j a b l j (x a (y b j = +l b j (x a (y b j +j=0 Wr betrachten nur de folgenden Summanden für + j = 0, 1, 2 = j = 0 :,l a l a b l = f (a, b = 1, j = 0 :,l a l! ( 1!1! a 1 (x ab l =,l a 1 b l (x a =: f x (a, b(x a = 0, j = 1 :,l a l a lb l 1 (y b := f y (a, b(y b = 2, j = 0 :,l a l! ( 2!2! a 2 (x a 2 b l =,l a l ( 1 2 a 2 b l (x a 2 =: 1 2 f xx(a, b(x a 2 = 0, j = 2 :,l a l l(l 1 2 a b l 2 (y b 2 =: 1 2 f yy(a, b(y b 2 = 1, j = 1 : l a l la 1 b l 1 (x a(y b =: f xy (a, b(x a(y b Herbe bezechnen zb f x de Abletung nach x (y wrd we ene Konstante behandelt und f xy de Abletung nach y und dann de Abletung nach x Damt önnen wr f (x, y schreben als: f (x, y = f (a, b + ( f x (a, b, f y (a, b ( x a y b ( 1 fxx (a, b f (x a, y b xy (a, b 2 f xy (a, b f yy (a, b ( x a y b + Schreben wr noch f (a, b := ( f x (a, b, f y (a, b und D 2 f (a, b := ( ( x a (ene symmetrsche Matrx, sowe x := und a := y b + +l b j (x a (y b j +j>2 ( fxx (a, b f xy (a, b f xy (a, b f yy (a, b, so lautet des: f ( x = f ( a + f ( a ( x a (x a t D 2 f ( a( x a + Rest Ernnerung: Für en unvarates Polynom galt: f (x = f (a + f (a(x a f (a(x a 2 + d =3 ( d (x a d Das oben gesagte glt analog für Polynome n belebg velen Unbestmmte x 1,, x n Das gbt Anlaß zu den folgenden Defntonen
3 Defnton: Für f ( x = a x, N n st f ( x := x a x 1 1 x 1 x n de partelle Abletung von f nach der ten Varable Der Zelenvetor ( f f f ( a := ( a,, ( a x 1 x n st der Gradent von f De Ausdrüce x x l ( a := snd de zweten partellen Abletungen von f De symmetrsche n n Matrx heßte Hessematrx von f D 2 f ( a = x ( f ( a x ( 2 f ( a x x l,l=1n Bespel: Se f (x = x 2 Dann st f = 2 x t und D 2 f ( x = 2 E n Ist v R n, so st st de Abbldung f ( x = a + v t x = a + v 1 x v n x n en Polynom vom (Total-grad 1 Snd A M n, v R n, so st de Abbldung f : R n R en Polynom vom (Total-grad 2 f ( x = a + v t x + x t A x = a + n n v x + a j x x j =1,j=1 Bemerung: Ist f en Polynom n n Unbestmmten und e en Enhetsvetor, so beschrebt g(t = a + t e de Gerade durch den Punt a R n n Rchtung e Dann st f ( a + t e = f ( a + f (a(t e + Terme höheren Grades Defnton: Der Ausdruc D e f ( a = ( f f ( a,, ( a e x 1 x n heßt Rchtungsbletung von f m Punt a n Rchtung e Bemerung Da e en Enhetsvetor st, glt cos ( f ( a, e = D e f ( a Daher zegt der Gradent n Rchtung des stärsten Anstegs von f
4 F 1 ( x Bemerung: Ist F : R n R m, F( x =, mt Polynomen F 1,, F m, so glt de F m ( x obge Darstellung omponentenwese Es st also: F( x = F 1 ( a + F 1 ( a ( x a ( x at D 2 F 1 ( a( x a + Rest 1 F m ( a + F m ( a ( x a ( x at D 2 F m ( a( x a + Rest m Läßt man nun auch noch de Terme zweter Ordnung weg, so erhält man: F( x F( a + F 1 ( a F m ( a ( x a Defnton: De m n Matrx D f ( a := F 1 ( a F m ( a = F 1 x 1 ( a F m x 1 ( a F 1 x n ( a F m x n ( a heßt Jacobmatrx von f Insbesondere glt für m = 1: D f ( a = f ( a Bespel: Es se f (x, y = x 2 + y 2 Dann glt für a = 0: f (x, y = f (0, 0 + f (0, 0 x (x, a x 2 (0, 0 x y (0, 0 x y (0, 0 2 f y 2 (0, 0 ( x y Es st f (x, y = (2x, 2y und D 2 f (x, y = ( f (x, y = 1 2 (x, y ( was trvalerwese rchtg st Ist f : R R, so glt Also lautet der obge Ausdruc ( x y = x 2 + y 2 f ( x f ( a + f ( a + ( x a t D 2 f ( a( x a Da D 2 f ( a ene symmetrsche Matrx st, gbt es ene orthogonale Matrx P, mt D 2 f ( a = λ 1 P t P, mt = Snd alle λ 0, so defneren wr := λ1 λn λ n
5 Dann glt: f ( x f ( a + f ( a( x a + ( x a t P t t P( x a Der letzte Summand st aber P( x a 2 0 Man ann zegen: Ist x a len, snd alle λ > 0 und glt f ( a = 0 t, so glt f ( x f ( a Also hat n desem Falle de Funton f en (strtes loales Mnmum n a Rechenregeln: Snd f, g : R n R m Abbldungen, deren Koeffzentenabbldungen Polynome snd, so glt: D( f + g( a = D f ( a + Dg( a Ist h : R m R p, so glt de Kettenregel: D(λ f ( a = λd f ( a D(h f ( a = Dh( f ( a D f ( a Grund: Übung Bespel: En wchtger Spezalfall der Kettenregel st f : R R m, g : R m R Dann st (g f (t = g( f 1 (t,, g m (t und somt (g f (t = g( f (t f (t = m g j=1 x j ( f (t f j (t Bemerung: Unter den Vetorfuntonen f : R n R n mt polynomalen Koorordnatenfuntonen snd wederum dejengen vom Grad 1 de enfachsten, also mt a = a 1 a n f (x 1,, x n =, x = Tabelle der Abletungen x 1 x n a 1 + a 11 x a 1n x n a n + a n1 x a nn x n a 11 a 1n und A = a n1 a nn = a + A x Funton Name d Funton Abletung Name der Abletung f : R R - D f (a = f (a Abletung f 1 f : R R n Kurve D f (a = Tangentenvetor f n(a f : R n R Salarenfeld D f ( a = f ( a = ( f x ( a, f 1 x n ( a Gradent (Nabla f : R n R n Vetorfeld D f ( a Jacobsche f : R n R m - D f ( a Jacobsche Klassfzerung von lnearen 2D-Vetorfeldern: Für das charaerstsche Polynom ener 2 2 Matrx gbt es de folgenden Möglcheten
6 (de engezechneten Lnen snd Flußlnen, also Kurven, deren Tangente das Vetorfeld m gegebenen Punt snd
7 Nullstellen snd: Bespel bede Nullstellen reell und postv ( bede Nullstellen reell und negatv ( bede Nullstellen reell, von verschedenem Vorzechen ( bede Nullstellen ren magnär ( Ze bede Nullstellen omplex, mt postvem Realtel ( bede Nullstellen omplex, mt negatvem Realtel (
Konkave und Konvexe Funktionen
Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage
3. Lineare Algebra (Teil 2)
Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw
4. Musterlösung. Problem 1: Kreuzende Schnitte **
Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,
Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,
Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket
Elemente der Mathematik - Sommer 2016
Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s
Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.
Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet
1 Definition und Grundbegriffe
1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:
9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.
Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.
Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel
ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore
Die Transzendenz der Eulerschen Zahl e
De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen
Diskrete Mathematik 1 WS 2008/09
Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /
9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.
Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.
50 Matrixnormen und Eigenwertabschätzungen
50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt
2 Zufallsvariable und Verteilungen
Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem
-70- Anhang: -Lineare Regression-
-70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de
6. Modelle mit binären abhängigen Variablen
6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch
Spiele und Codes. Rafael Mechtel
Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,
6. Übung zur Linearen Algebra II
Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der
NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.
PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs
Dynamik starrer Körper
Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt
Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich
Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem
12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2
1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:
Der Satz von COOK (1971)
Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls
Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme
Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert [email protected] Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce
Gruppe. Lineare Block-Codes
Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung
Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -
Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole
Methoden der innerbetrieblichen Leistungsverrechnung
Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den
Weitere NP-vollständige Probleme
Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,
Komplexe Zahlen. Roger Burkhardt 2008
Komplexe Zahlen Roger Burkhardt ([email protected]) 008 Enführung De Unvollkommenhet des Körpers der reellen Zahlen N 1,,,,... snd sowohl { } In der Menge der natürlchen Zahlen Addton we Multplkaton
4.6 Das Pumping-Lemma für reguläre Sprachen:
Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma
binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:
Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,
18. Vorlesung Sommersemester
8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten
Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).
44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften
Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften
Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de
8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0
8. MARKOVKETTEN 17 8. Marovetten Abbldung 8.1: Reduzble und perodsche Marovette 8.1. Homogene Marovetten n dsreter Zet En Prozess {X n : n IIN} hesst homogene Marovette (n dsreter Zet) mt (abzählbarem)
Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen
Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n
Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
Course Dec 15, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Rationale
Dec 15, 2016 ASC, room A 238, phone 089-21804210, emal [email protected] Patrc Böhl, ASC, room A205, phone 089-21804640, emal [email protected]. Dsusson der Besetzungszahldarstellungen
Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007
Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen
Beschreibende Statistik Mittelwert
Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )
Ordnungsstatistiken und Quantile
KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der
Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):
Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.
wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:
Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab
Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 12 Version 1.0 (11.
Mathematk für Ökonomen Kompakter Ensteg für Bachelorstuderende Lösungen der Aufgaben aus Kaptel Verson.. September 5) E. Cramer, U. Kamps, M. Kater, M. Burkschat 5 Cramer, Kamps, Kater, Burkschat Lösungen
Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.
Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle
Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan
Lneare Algebra IIa - 04 orlesung - Pro Dr Danel Roggenkamp & Sen Balnojan 93 Untäre ektorräume hermtesche Form au enem C ektorraum sesqulnear (ant-lnear m ersten lnear m zweten Argument (, w (w, (, 2 R
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)
18. Dynamisches Programmieren
8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus
6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen
196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen
Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade
Der starre Körper Domnk Fauser 1 Grundlagen 1.1 Denton Als enen starren Körper bezechnet man en System von Massepunkten m, deren Abstände zuenander konstant snd: r j = r r j. Mest betrachtet man ene sehr
2 Vektoren. 2.1 Vektorraum 2 VEKTOREN 1
2 VEKTOREN 1 2 Vektoren 2.1 Vektorraum In der Physk unterscheden wr skalare Grössen von vektorellen. En Skalar st ene reelle Messgrösse, mathematsch enfach ene Zahl, phykalsch ene dmensonsbehaftete Zahl.
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)
Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e
Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de
Hydrosystemanalyse: Finite-Elemente-Methode (FEM)
Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf
Grundgedanke der Regressionsanalyse
Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden
Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, [email protected].
Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, [email protected] Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener
Die Zahl i phantastisch, praktisch, anschaulich
Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen
6. Elektrische Wechselgrössen
Grundlagen der Elektrotechnk GE 2 [Buch GE 2: Seten 72-14] Grundbegrffe Wechselgrössen Perodsche Wechselgrössen Lnearer und quadratscher Mttelwert Der Effektvwert Bezugspfele Verallgemenerte Zetfunktonen
z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!
Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf
Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen
Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen
1.1 Das Prinzip von No Arbitrage
Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No
6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)
6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden
5.3.3 Relaxationsverfahren: das SOR-Verfahren
53 Iteratve Lösungsverfahren für lneare Glechungssysteme 533 Relaxatonsverfahren: das SOR-Verfahren Das vorangehende Bespel zegt, dass Jacob- sowe Gauß-Sedel-Verfahren sehr langsam konvergeren Für de Modellmatrx
Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression
Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5
Lineare Regression (1) - Einführung I -
Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:
2 Gleichstromtechnik. 2.1 Der unverzweigte Stromkreis Der Grundstromkreis
27 2 Glechstromtechnk 2.1 Der unverzwegte Stromkres 2.1.1 Der Grundstromkres n unverzwegter Stromkres st de geschlossene Hnterenanderschaltung verschedener Schaltelemente: Spannungsquellen, Wderstände
Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I
Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"
Erwartungswert, Varianz, Standardabweichung
RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend
1 BWL 4 Tutorium V vom 15.05.02
1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)
Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1
Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets
Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der
De Kugel Lösungen 1. Von ener Kugel st der Radus bekannt. Berechne Volumen und Oberfläche der Kugel. r,8 cm 5, cm 18,6 cm 4, cm 5,6 cm 4,8 cm V 0 cm³ 64 cm³ 6 954 cm³ cm³ 76 cm³ 46 cm³ O 181 cm² 5 cm²
