Gruppe. Lineare Block-Codes
|
|
|
- Elisabeth Huber
- vor 10 Jahren
- Abrufe
Transkript
1 Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung zur Übertragung von Sprache und Bldern über enen gestörten Kanal wrd aufgezegt. Übungsaufgabe 1 a) Bestmmen Se de Generatormatrx enes systematschen, lnearen (7,4)-Blockcodes, be dem de nformatonstragenden Bts als vorderste (lnksstehende) Bts des Codevektors auftreten. De dre Prüfbts enes Codeworts werden so bestmmt, dass das das 5. Bt des Codeworts als Partätsbt fungert und dabe das 2. und 3. und 4. nformatonstragende Bt auf ene gerade Anzahl von Ensen ergänzt ( y5 = x2 x3 x4 ), das 6. Bt des Codeworts als Partätsbt fungert und dabe das 1. und 3. und 4. nformatonstragende Bt auf ene gerade Anzahl von Ensen ergänzt ( y6 = x1 x3 x4 ), das 7. Bt des Codeworts als Partätsbt fungert und dabe das 1. und 2. und 3. nformatonstragende Bt auf ene gerade Anzahl von Ensen ergänzt( y7 = x1 x2 x3 ). G = b) Bestmmen Se mt Hlfe der Multplkaton Y r = X r G alle zu desem Hammng-Code gehörgen Codevektoren. Informatonsvektor X r Codevektor Y r x 1 x 2 x 3 x 2 y 1 y 2 y 3 y 4 y 5 y 6 y 7 H. Günter Hrsch Verson: pa3 Sete 1 (6)
2 Thema: Lneare Block-Codes Expermentelle Aufgabe 1 Zur Kontrolle der n der vorhergen Aufgabe bestmmten Codevektoren steht unter dem Auswahlmenü zur Kanalcoderung ene Oberfläche mt der Bezechnung Generatormatrx zur Verfügung. Darn können zunächst de Zelen- und de Spaltenanzahl ener Matrx vorgegeben werden. Dmensoneren Se de Werte zur Engabe der zuvor bestmmten Generatormatrx und geben Se anschleßend de bnären Werte zelenwese en. Dabe können Se de 0 und 1 Werte ohne Trennzechen unmttelbar hnterenander engeben. Se können nun nachenander de bnären Werte der nformatonstragenden Vektoren und durch Anklcken des entsprechenden Feldes de Multplkaton ausführen. X r engeben Übungsaufgabe 2 a) We groß st de mnmale Hammngdstanz deses Codes : b) We vele Btfehler lassen sch damt maxmal n enem Codewort erkennen: c) We vele Btfehler lassen sch damt maxmal n enem Codewort korrgeren: Können be Verwendung des Codes zur Fehlerkorrektur auch noch Codewörter, be denen mehr als 1 Btfehler auftreten, erkannt werden: d) We groß st de Wahrschenlchket, dass en 7 Bt langes Codewort be Übertragung über enen symmetrschen Bnärkanal mt ener Btfehlerrate von 1 % enen enfachen Btfehler benhaltet: H. Günter Hrsch Verson: pa3 Sete 2 (6)
3 Thema: Lneare Block-Codes e) We groß st de Wahrschenlchket, dass en 7 Bt langes Codewort be Übertragung über enen symmetrschen Bnärkanal mt ener Btfehlerrate von 1 % enen zwefachen Btfehler benhaltet: Expermentelle Aufgabe 2 Geben Se de zu der zuvor bestmmten Generatormatrx gehörge Prüfmatrx an: H t = Ermtteln Se mt Hlfe der Prüfmatrx n der graphschen Oberfläche Generatormatrx de Syndromvektoren S r für de n der folgenden Tabelle angegebenen Fehlervektoren möglchen enfachen Btfehler nnerhalb enes Codeworts beschreben. Fehlervektor Syndrom S r, de alle e 1 e 2 e 3 e 4 e 5 e 6 e 7 s 1 s 2 s We sehen de Bts enes Syndromvektors aus, wenn Se en zulässges Codewort mt der Prüfmatrx multplzeren: s 1 = s 2 = s 3 = H. Günter Hrsch Verson: pa3 Sete 3 (6)
4 Thema: Lneare Block-Codes Übungsaufgabe 3 a) En empfangenes Codewort, das enen enfachen Btfehler behaltet, kann man als ene Modulo-2 Addton enes zulässgen Codevektors Y r und enes n der vorstehenden Tabelle angegebenen Fehlervektors darstellen. Erzeugen Se sch durch Modulo-2 Addton enen fehlerhaft empfangenen Codevektor, n dem Se zu enem belebgen, zulässgen Codevektor Y r den Fehlervektor adderen, der enen Fehler n der 3. Btstelle benhaltet: Y r b) Welcher Syndromvektor resultert aus ener Multplkaton des zuvor bestmmten Codevektors mt der Prüfmatrx t H : s 1 = s 2 = s 3 = c) Von dem Syndromvektor kann man mt Hlfe der n der vorhergen Aufgabe erstellten Syndromtabelle auf de fehlerhafte Btstelle schleßen. Führen Se de Korrektur n der nachstehenden Tabelle aus, n dem Se den empfangenen Codevektor und den aus der Syndromtabelle ermttelten Fehlervektor adderen: Y r korr d) Erzeugen Se sch durch Modulo-2 Addton enen fehlerhaft empfangenen Codevektor, n dem Se zu enem belebgen, zulässgen Codevektor Y r den Fehlervektor adderen, der enen Fehler n der 3. Btstelle und enen weteren Btfehler n der 6. Btstelle benhaltet: Y r H. Günter Hrsch Verson: pa3 Sete 4 (6)
5 Thema: Lneare Block-Codes e) Welcher Syndromvektor resultert aus ener Multplkaton des zuvor bestmmten Codevektors mt der Prüfmatrx t H : s 1 = s 2 = s 3 = f) Von dem Syndromvektor kann man mt Hlfe der n der vorhergen Aufgabe erstellten Syndromtabelle auf de fehlerhafte Btstelle schleßen. Führen Se de Korrektur n der nachstehenden Tabelle aus, n dem Se den empfangenen Codevektor und den aus der Syndromtabelle ermttelten Fehlervektor adderen: Y r korr Verglechen Se den Vektor Y r korr mt dem Vektor Y r, den Se unter d) gewählt haben. In we velen Btstellen unterscheden sch de beden Vektoren:. We lässt sch dese Anzahl fehlerhafter Btstellen erklären:.... Expermentelle Aufgabe 3 Mt Hlfe der graphschen Oberfläche Kanalcoderung kann der Enfluss ener Übertragung enes Sprach- oder Bldsgnals über enen gestörten Kanal mt und ohne Ensatz ener Kanalcoderung untersucht werden. Dabe kann en symmetrscher Bnärkanal durch Angabe ener Nettobtfehlerwahrschenlchket defnert werden. En Sprach- oder Bldsgnal kann über das Sgnal -Menü am oberen Rand ausgewählt und geladen werden. Der Sgnalverlauf des Sprachsgnals bzw. das Bld werden vor und nach der Übertragung dargestellt. Im Auswahlmenü zur Coderung kann ene Übertragung ohne Kanalcoderung bzw. be Ensatz verschedener lnear Block-Codes festgelegt werden. Durch Anklcken des Coderungsfelds kann ene Coderung vorgenommen werden. Da zur Smulaton der Übertragungsfehler en Zufallsgenerator verwendet wrd, st das Ergebns ener wederholten Übertragung über enen gestörten Kanal n der Regel ncht glech. Laden Se das Sprachsgnal artos_ofenrohr_8k.wav, das mt ener Frequenz von 8 khz abgetastet wurde und ene zetlche Länge von etwa 3,35s bestzt. Aus we velen Bts besteht der bnäre Datenstrom, wenn jeder Abtastwert mt 16 Bt quantsert wurde: H. Günter Hrsch Verson: pa3 Sete 5 (6)
6 Thema: Lneare Block-Codes We vele Bts des Datenstroms werden be den nachstehend angeführten Nettobtfehlerraten gestört werden: Nettobtfehlerrate / % Anzahl gestörter Bts Hören Se sch das Sgnal nach ener Übertragung ohne Kanalcoderung für de zuvor angegebenen Btfehlerraten an. Bestmmen Se be Ensatz enes (7,4)-Hammngcodes, der zur Fehlerkorrektur verwendet wrd, de Restbtfehlerraten für de n der nachstehenden Tabelle angegebenen Nettobtfehlerraten: Nettobtfehlerrate / % Restbtfehlerrate / % Warum wrd de Restbtfehlerrate ab enem gewssen Wert größer als de Nettobtfehlerrate: Laden Se enes der Blder smley_lucky.bmp oder smley_devl.bmp. Dabe wrd jeder Bldpunkt durch de 3 Intenstätswerte für de Grundfarben rot, grün und blau beschreben. Jeder Intenstätswert wrd mt 8 Bt quantsert. Aus we velen Bts besteht der bnäre Datenstrom, der zur Übertragung enes Blds benötgt wrd: Bts Im Folgenden sollen verglechend en (7,4)-Hammngcode, en (15,11)-Hammngcode und en (31,26)-Hammngcode zur Übertragung des Blds verwendet werden. Aus we velen Bts besteht der zu übertragende, bnäre Datenstrom be Verwendung des (7,4)-Hammngcodes: (15,11)-Hammngcodes: (31,26)-Hammngcodes: Bestmmen Se de Restbtfehlerraten für de n der nachstehenden Tabelle angegebenen Nettobtfehlerraten: Nettobtfehlerrate / % Restbtfehlerrate / % (15,11)-Code (7,4)-Code (31,26)-Code Welcher Code bestzt de besten Korrekturegenschaften: H. Günter Hrsch Verson: pa3 Sete 6 (6)
Gruppe. Kanalcodierung
Kanalcodierung Ziele Mit diesen rechnerischen und experimentellen Übungen wird die prinzipielle Vorgehensweise zur Kanalcodierung mit linearen Block-Codes und mit Faltungscodes erarbeitet. Die konkrete
Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e
Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de
4. Musterlösung. Problem 1: Kreuzende Schnitte **
Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,
ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de
ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte
12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2
1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:
Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.
Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet
Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)
Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:
Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I
Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"
Methoden der innerbetrieblichen Leistungsverrechnung
Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den
Ionenselektive Elektroden (Potentiometrie)
III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,
Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, [email protected].
Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, [email protected] Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener
Einführung in die Finanzmathematik
1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg
Netzwerkstrukturen. Entfernung in Kilometer:
Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.
1 Definition und Grundbegriffe
1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:
Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):
Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.
Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?
We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de
Nernstscher Verteilungssatz
Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.
Übung zur Vorlesung. Informationstheorie und Codierung
Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832
18. Dynamisches Programmieren
8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus
FORMELSAMMLUNG STATISTIK (I)
Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen
nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen
arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree
binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:
Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,
Statistik und Wahrscheinlichkeit
Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse
Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?
We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de
Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny
eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung
Die Ausgangssituation... 14 Das Beispiel-Szenario... 14
E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern
Spiele und Codes. Rafael Mechtel
Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,
Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1
Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement
Lineare Regression (1) - Einführung I -
Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:
1 - Prüfungsvorbereitungsseminar
1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten
Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6
Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und
Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1
Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen
Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung
Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler ([email protected]) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2
Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008
Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe
1.1 Grundbegriffe und Grundgesetze 29
1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld
Kennlinienaufnahme des Transistors BC170
Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur
Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -
Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche
6. Modelle mit binären abhängigen Variablen
6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch
I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung
Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für
phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare
Skalerung von Organsatonen und Innovatonen gestalten phl omondo Se stehen vor dem nächsten Wachstumsschrtt hrer Organsaton oder haben berets begonnen desen aktv zu gestalten? In desem Workshop-Semnar erarbeten
1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen
1 Systematserung der Verznsungsarten 2 Jährlche Verznsung 3 Unterjährge Verznsung 4 Stetge Verznsung 5 Aufgaben zur Znsrechnung 1. Systematserung der Verznsungsarten a d g Jährlche Verznsung nfache Znsen
1 BWL 4 Tutorium V vom 15.05.02
1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)
2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.
. Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen
IGDT: Image Processing Advanced Übungsteil 2
IGDT: Imae Processn Advanced Übunstel 2 Raner Schubert Insttut für Bomednsche Bldanalse Vsualserun Ist de alorthmsche Nachbldun dessen was en Maler be der Ereuun enes realstschen Bldes tut! Grundlaen Beleuchtun
Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2
ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung
Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung
Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012
Free Riding in Joint Audits A Game-Theoretic Analysis
. wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer ([email protected]) Marcel Steller ([email protected]) Insttut ür Rechnungswesen, Steuerlehre
AUFGABEN ZUR INFORMATIONSTHEORIE
AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen
tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung
Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt
"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft
"Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012
Datenträger löschen und einrichten
Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe
Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich
Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem
Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -
Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole
Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban
Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert
MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt
MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt Inhalt MULTIVAC Kundenportal Enletung Errechbarket rund um de Uhr Ihre ndvduellen Informatonen Enfach und ntutv Hlfrech und aktuell Ihre Vortele m Überblck
Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen
Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und
Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten
Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen
Digitalrechner Festverdrahtete Mikroprogrammsteuerung
Dgtalrechner Festverdrahtete Mkroprogrammsteuerung Versuch 3 Aufgabenstellung zum Versuch Unverstät Hannover Insttut für Informatk Verson 1.0 Dpl.-Math. Chrstof Graß-de-Iuls Insttut für Systems Engneerng
Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren!
Franz Schuck GmbH Enbau-/Betrebsanletung Stahl-PE-Übergang Typ PESS / Typ PESVS Orgnalbetrebsanletung Für künftge Verwendung aufbewahren! Enletung Dese Anletung st für das Beden-, Instandhaltungs- und
3. Lineare Algebra (Teil 2)
Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw
Grundgedanke der Regressionsanalyse
Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden
1.1 Das Prinzip von No Arbitrage
Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No
Ihr geschützter Bereich Organisation Einfachheit Leistung
Rev. 07/2012 Ihr geschützter Berech Organsaton Enfachhet Lestung www.vstos.t Ihr La geschützter tua area rservata Berech 1 MyVstos MyVstos st ene nformatsche Plattform für den Vstos Händler. Se ermöglcht
IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen.
IT- und achwssen: Was zusammengehört, muss weder zusammenwachsen. Dr. Günther Menhold, regercht 2011 Inhalt 1. Manuelle Informatonsverarbetung en ntegraler Bestandtel der fachlchen Arbet 2. Abspaltung
Energiesäule mit drei Leereinheiten, Höhe 491 mm Energiesäule mit Lichtelement und drei Leereinheiten, Höhe 769 mm
Montageanletung Energesäule mt dre Leerenheten, Höhe 491 mm 1345 26/27/28 Energesäule mt Lchtelement und dre Leerenheten, Höhe 769 mm 1349 26/27/28 Energesäule mt sechs Leerenheten, Höhe 769 mm, 1351 26/27/28
Grundlagen der Technischen Informatik. 9. Übung
Grundlagen der Technschen Informatk 9. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 9. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer/Subtraherer Mehr-Operanden-Adderer
Grundlagen der Technischen Informatik. 11. Übung
Grundlagen der Technschen Informatk 11. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 11. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer / Subtraherer Mehr-Operanden-Adderer
Grundlagen der Technischen Informatik. 12. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit
Grundlagen der Technschen Informatk 12. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 12. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer/Subtraherer Mehr-Operanden-Adderer
SteigLeitern Systemteile
140 unten 420 2 0 9 12 1540 1820 Länge 140 StegLetern Leterntele/Leterverbnder Materal Alumnum Stahl verznkt Sprossenabstand 2 mm Leternholme 64 mm x 25 mm 50 x 25 mm Leternbrete außen 500 mm Sprossen
Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage
Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften
Leistungsmessung im Drehstromnetz
Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n
Elemente der Mathematik - Sommer 2016
Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s
Nomenklatur - Übersicht
Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen
Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung
Moble cherhet durch effzente ublc-key-verschlüsselung Hagen loog Drk Tmmermann Unverstät Rostock, Insttut für Angewandte Mkroelektronk und Datenverarbetung Rchard-Wagner-tr., 9 Rostock [email protected]
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung
am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall
Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007
Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen
14 Überlagerung einfacher Belastungsfälle
85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung
Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel
ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore
Funds Transfer Pricing. Daniel Schlotmann
Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd
VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE
VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen
Gesetzlicher Unfallversicherungsschutz für Schülerinnen und Schüler
Gesetzlcher Unfallverscherungsschutz für Schülernnen und Schüler Wer st verschert? Lebe Eltern! Ihr Knd st während des Besuches von allgemen bldenden und berufsbldenden Schulen gesetzlch unfallverschert.
1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit
3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen
Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften
Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de
3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale
3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche
Diskrete Mathematik 1 WS 2008/09
Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /
wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:
Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab
d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb
S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von
13.Selbstinduktion; Induktivität
13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd
