Funds Transfer Pricing. Daniel Schlotmann

Größe: px
Ab Seite anzeigen:

Download "Funds Transfer Pricing. Daniel Schlotmann"

Transkript

1 Danel Schlotmann Fankfut, 8. Apl 2013

2 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd hochlqude, wenn se jedezet ohne sgnfkante Veluste n Geldmttel tansfeet weden können. Lqudtätssko Rsko, tagesaktuellen Zahlungsvepflchtungen ncht nachkommen zu können. Zahlungsunfähgketssko Lqudtätsfstentansfomatonssko Sete 2

3 Regulatosche Anfodeungen MaRsk 12/2012 BTR 3.1 TZ 5 En geegnetes Veechnungssystem zu veusachungsgeechten ntenen Veechnung de jewelgen Lqudtätskosten, -nutzen und -sken st enzuchten. Goße Insttute mt komplexen Geschäftsaktvtäten müssen hezu en Lqudtätstansfepessystem etableen. BTR 3.1 TZ 6 Veechnung möglchst auf Tansaktonsebene Fü unschee Zahlungsstöme snd geegnete Annahmen zu teffen Das Lqudtätstansfepessystem hat auch de Kosten fü vozuhaltende Lqudtätseseven zu veechnen. Popotonaltätspnzp De konkete Ausgestaltung des Lqudtätstansfepessystems hängt ab von At, Umfang, Komplextät und Rskogehalt de Geschäftsaktvtäten sowe de Refnanzeungsstuktu des Insttuts. Sete 3

4 Regulatosche Anfodeungen MaRsk 12/2012 Rundscheben vom Inkaftteten am Umzusetzen bs Kene Sanktonen bs zum : snd Anfodeungen, de m MaRsk-Kontext neu snd und ncht ledglch Klastellungen ohnehn schon vohandene Anfodeungen dastellen, bs zum umzusetzen. 1 Stellungnahme FTP Ich wede dahe be de aufschtlchen Beutelung bezüglch dese neuen Anfodeungen übe den Umsetzungszetaum hnaus mt Augenmaß vogehen, { } 1 1. Anscheben MaRsk-Novelle Veöffentlchung de Endfassung von Ramund Rösele, BaFn Exekutvdekto Bankenaufscht Sete 4

5 Zele enes s Zele FTP Fü alle lqudtätsbndenden Geschäfte wd be Geschäftsabschluss en laufzetabhängge Lqudtätspes bs zum Ende de Geschäftslaufzet fxet. Des st de sogenannte Lqudtäts-Enstandssatz enes Geschäfts. Ene dezentale Vetebsenhet soll ken Lqudtätssko übenehmen Magenstabltät / Schehet fü de dezentalen Enheten Enstandssätze blden den Ausgangspunkt fü de Kondtonsfestlegung De zu Beechnung vewendete Kuve dent zu Banksteueung Poftabltät enzelne Podukte wd tanspaent Efüllung egulatosche Anfodeungen Sete 5

6 Schematsche Dastellung enes s Lqudtätskosten Zentale Stuktusteueung Lqudtätsvegütung Flale A Flale B Baufnanzeung Spaguthaben Ene zentale Funkton ene Bank veantwotet typschewese das Management des Lqudtätsskos. Hebe wd das Lqudtätssko von Blanzpostonen (Aktva und Passva) und außeblanzellen Podukten (z. B. Kedtlnen) aus den dezentalen Geschäftsenheten an de zentale Enhet tansfeet und zental gesteuet. Sete 6

7 Bestmmung enes Lqudtäts-Tansfepeses Gundlegende Beechnungsdee Im Mttelpunkt alle Betachtungen steht de Lqudtäts-Spead-Kuve. Vogehen: Wahl des Enstandssatzes so, dass de anfänglche Bawet 0 st. Poblem: Beechnung von Dskontfaktoen aus de Lqudtäts-Spead-Kuve st ncht möglch. Idee fü de Beechnung De Beechnung wd enesets mt de Znskuve duchgefüht und andeesets mt de Refnanzeungskuve, de de Summe aus Zns- und Lqudtäts-Spead-Kuve dastellt. Anschleßend bldet man de Dffeenz, z.b. fü den Enstandssatz: Lqu = Ref - Zns Sete 7

8 Bestmmung enes Lqudtäts-Tansfepeses Gundlegende Beechnungsdee Znskuve Spead-Kuve Lqudtäts- Refnanzeungs- Kuve Typschewese ene Swapkuve, epäsentet das ene Znssko (glech fü alle Banken) Speadkuve (Add-On), epäsentet das spezelle Kaptalmakt-Standng de enzelnen Bank (ndvduell) Gesamtsatz, zu dem sch de Bank am Geld- und Kaptalmakt efnanzeen kann Um übe das Lqudtätstansfepessystem ene Steueungswkung zu ezelen, st es wchtg, de zu veechnenden Kosten ncht mt de beobachtbaen Lqudtäts- Spead-Kuve aus dem Geld- und Kaptalmakt zu bestmmen, sonden mt Hlfe sepaate Steueungskuven. Sete 8

9 Bestmmung enes Lqudtäts-Tansfepeses Konketseung de Beechnungsdee Veanschaulchung de Beechnungsdee anhand von Fomeln Veenfachende Annahmen: Kene Detalpobleme we z.b. Day Count Conventon, Ago/Dsago etc.. Bewetungszetpunkt Nomnal Notaton t b N 0 n Znspeodenlängen Dskontfaktoen 1, Kuve b, Sete 9

10 Bestmmung enes Lqudtäts-Tansfepeses Konketseung de Beechnungsdee Schtt 1: Enstandssatz Zns- & Lqudtätssko Bestmme den dealspezfschen Refnanzeungssatz (Enstandssatz fü Zns- & Lqudtätssko) Ref Dese wd genau so gesetzt, dass de Bawet bezüglch de Refnanzeungskuve NULL egbt, d.h.! Ref n N 11, b, N N 1 n Ref 1 1 Ref 0 N 0 b,0 Ref b, Ref N 0 Ref b,0 n 1 N n 1 1 N 1, N 1 Ref b, Ref b, Sete 10

11 Bestmmung enes Lqudtäts-Tansfepeses Konketseung de Beechnungsdee Schtt 2: Enstandssatz Znssko Bestmme analog den dealspezfschen IZV (Intenen Znsveechnungssatz) Zns Beachte, dass dese Enstandssatz ncht mt dem tatsächlchen Enstandssatz fü de ntene Znsveechnung übeenstmmen muss. Es glt somt: Zns N 0 Zns b,0 n 1 N n 1 1 N 1, N 1 Zns b, Zns b, Sete 11

12 Bestmmung enes Lqudtäts-Tansfepeses Konketseung de Beechnungsdee Schtt 3: Enstandssatz Lqudtätssko De dealspezfsche Lqudtäts-Spead Lqu bestmmt sch abschleßend als Dffeenz aus dem dealspezfschen Refnanzeungssatz und dem dealspezfschen IZV: Lqu Ref Zns Sete 12

13 Heausfodeungen Heausfodeungen Enfühung / Poduktvnahme enes s Auch fü das vohandene Bestandsgeschäft muss en Vogehen veenbat weden Vefügbaket alle benötgte Daten (Lqudtäts-IT-Infastuktu) Beechnung von Lqudtätskosten Enbezug veschedene Kostenkomponenten denkba Foecast Rechnungen fü ene adäquate Lqudtätsplanung Ausglechszahlungen be ncht geplanten Eegnssen Heausfodeungen n komplexeen Podukten: Optonaltäten (z.b. Sondetlgungsechte, Wähungswahlechte) Beschete / telbeschete Podukte Modelleung von Podukten mt stochastschen Cashflows Konsstenz de Beechnungen n de Vo- und Nachkalkulaton Sete 13

14 Zusammenfassung Enblck Regulatok Fokus: MaRsk-Novelle 12/2012 Enstandssatz FTP Lqu = Ref - Zns Bestandtele Refnanzeungskomponente Znskomponente Zahleche Fagestellungen Fachlche und technsche Heausfodeungen neben FTP Bestmmung aufschtsechtlche Lqudtätskennzahlen Estellung ene Lqudtätsablaufblanz Banksteueung, Modelleungs-Methoden, Repotng, Lqudtäts IT-Infastuktu, Sete 14

15 Ih Anspechpatne: Danel Schlotmann CONSULTANT MOBIL +49 (151)

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002 Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, [email protected].

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, [email protected] Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

2. Arbeitsgemeinschaft (11.11.2002)

2. Arbeitsgemeinschaft (11.11.2002) Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen.

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen. IT- und achwssen: Was zusammengehört, muss weder zusammenwachsen. Dr. Günther Menhold, regercht 2011 Inhalt 1. Manuelle Informatonsverarbetung en ntegraler Bestandtel der fachlchen Arbet 2. Abspaltung

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler ([email protected]) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer ([email protected]) Marcel Steller ([email protected]) Insttut ür Rechnungswesen, Steuerlehre

Mehr

SH SK S..LL. BPW ECO Disc Trailerscheibenbremsen TSB 3709 / 4309 / 4312. Servicemaßnahme BPW BERGISCHE ACHSEN. Trailerscheibenbremsen

SH SK S..LL. BPW ECO Disc Trailerscheibenbremsen TSB 3709 / 4309 / 4312. Servicemaßnahme BPW BERGISCHE ACHSEN. Trailerscheibenbremsen Servcemaßnahme BPW ECO Dsc Tralerschebenbremsen BPW BERGISCHE ACHSEN BPW ECO Dsc Tralerschebenbremsen TSB 3709 / 4309 / 4312 Servcemaßnahme SH SK S..LL BPW ECO Dsc Servcemaßnahme Inhalt BPW Servce-Kt BPW

Mehr

Finanzmathematik Kapitalmarkt

Finanzmathematik Kapitalmarkt Finanzmathematik Kapitalmakt Skiptum fü ACI Dealing und Opeations Cetificate und ACI Diploma In Zusammenabeit mit den ACI-Oganisationen Deutschland, Luxemboug, Östeeich und Schweiz Stand: 02. Apil 2010

Mehr

MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt

MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt Inhalt MULTIVAC Kundenportal Enletung Errechbarket rund um de Uhr Ihre ndvduellen Informatonen Enfach und ntutv Hlfrech und aktuell Ihre Vortele m Überblck

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren!

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren! Franz Schuck GmbH Enbau-/Betrebsanletung Stahl-PE-Übergang Typ PESS / Typ PESVS Orgnalbetrebsanletung Für künftge Verwendung aufbewahren! Enletung Dese Anletung st für das Beden-, Instandhaltungs- und

Mehr

W i r m a c h e n d a s F e n s t e r

W i r m a c h e n d a s F e n s t e r Komfort W r m a c h e n d a s F e n s t e r vertrauen vertrauen Set der Gründung von ROLF Fensterbau m Jahr 1980 snd de Ansprüche an moderne Kunststofffenster deutlch gestegen. Heute stehen neben Scherhet

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Fachkräfte- Die aktuelle Situation in Österreich

Fachkräfte- Die aktuelle Situation in Österreich Chart 1 Fachkräfte- De aktuelle Stuaton n Österrech Projektleter: Studen-Nr.: Prok. Dr. Davd Pfarrhofer F818..P2.T n= telefonsche CATI-Intervews, repräsentatv für de Arbetgeberbetrebe Österrechs (ohne

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Energiesäule mit drei Leereinheiten, Höhe 491 mm Energiesäule mit Lichtelement und drei Leereinheiten, Höhe 769 mm

Energiesäule mit drei Leereinheiten, Höhe 491 mm Energiesäule mit Lichtelement und drei Leereinheiten, Höhe 769 mm Montageanletung Energesäule mt dre Leerenheten, Höhe 491 mm 1345 26/27/28 Energesäule mt Lchtelement und dre Leerenheten, Höhe 769 mm 1349 26/27/28 Energesäule mt sechs Leerenheten, Höhe 769 mm, 1351 26/27/28

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

SteigLeitern Systemteile

SteigLeitern Systemteile 140 unten 420 2 0 9 12 1540 1820 Länge 140 StegLetern Leterntele/Leterverbnder Materal Alumnum Stahl verznkt Sprossenabstand 2 mm Leternholme 64 mm x 25 mm 50 x 25 mm Leternbrete außen 500 mm Sprossen

Mehr

Anlage Netznutzungsentgelte Erdgas 2014 der Stadtwerke Eschwege GmbH

Anlage Netznutzungsentgelte Erdgas 2014 der Stadtwerke Eschwege GmbH Entgelte be Erdgas-Ersatzbeleferung für Industre- und Geschäftskunden mt Lestungsmessung und enem Jahresverbrauch von mehr als 1.500.000 kh. Gültg ab 01.01.2014 De Ersatzversorgung endet sobald de Erdgasleferung

Mehr

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing QUALITY-APPs Applkatonen für das Qaltätsmanagement Prozessmanagement De Schnttstellenmatrx Ator: Jürgen P. Bläsng Schnttstellen (Übergangsstellen, Verbndngsstellen) n betreblchen Prozessen ergeben sch

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt teueungskonzept zu Vemeidung des chattenwufs eine Windkaftanlage auf ein Objekt Auto: K. Binkmann Lehgebiet Elektische Enegietechnik Feithstaße 140, Philipp-Reis-Gebäude, D-58084 Hagen, fa: +49/331/987

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wtschaftswssenschaften Desdne Betäge zu Quanttatven Vefahen N. 58/1 Rato calculand pecul - en analytsche Ansatz zu Bestmmung de Velustvetelung enes Kedtpotfolos

Mehr

Gesetzlicher Unfallversicherungsschutz für Schülerinnen und Schüler

Gesetzlicher Unfallversicherungsschutz für Schülerinnen und Schüler Gesetzlcher Unfallverscherungsschutz für Schülernnen und Schüler Wer st verschert? Lebe Eltern! Ihr Knd st während des Besuches von allgemen bldenden und berufsbldenden Schulen gesetzlch unfallverschert.

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

PKV-Beitragsoptimierer-Auftragserteilung

PKV-Beitragsoptimierer-Auftragserteilung PKV-Beitagsoptimiee-Auftagseteilung zu einmaligen Beatung Bei dem Vesichee : mit de Vetagsnumme : fü folgende Pesonen : Auftaggebe Name : Geb.-Dat. : Staße : PLZ und Ot : Telefon : Mobil : E-Mail : Beuf

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen 1 Systematserung der Verznsungsarten 2 Jährlche Verznsung 3 Unterjährge Verznsung 4 Stetge Verznsung 5 Aufgaben zur Znsrechnung 1. Systematserung der Verznsungsarten a d g Jährlche Verznsung nfache Znsen

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für

Mehr

DLK Pro Multitalente für den mobilen Datendownload. Maßgeschneidert für unterschiedliche Anforderungen. www.dtco.vdo.de

DLK Pro Multitalente für den mobilen Datendownload. Maßgeschneidert für unterschiedliche Anforderungen. www.dtco.vdo.de DLK Pro Multtalente für den moblen Datendownload Maßgeschnedert für unterschedlche Anforderungen www.dtco.vdo.de Enfach brllant, brllant enfach DLK Pro heßt de Produktfamle von VDO, de neue Standards n

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D.

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D. Anatomsche, physkalsche und funktonelle Modelle des menschlchen Köpes Gundlagen de Modelleung Vsualseung Venetzung Vsualseung Was soll dagestellt weden? Medznsche Blddaten (CT, MT, Photogaphe,...) Anatome

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

14 Überlagerung einfacher Belastungsfälle

14 Überlagerung einfacher Belastungsfälle 85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung

Mehr

Ihr geschützter Bereich Organisation Einfachheit Leistung

Ihr geschützter Bereich Organisation Einfachheit Leistung Rev. 07/2012 Ihr geschützter Berech Organsaton Enfachhet Lestung www.vstos.t Ihr La geschützter tua area rservata Berech 1 MyVstos MyVstos st ene nformatsche Plattform für den Vstos Händler. Se ermöglcht

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Der Bonus wird nach Zustellung der erforderlichen Formulare 1 bis 3 (siehe Anlage) ausbezahlt.

Der Bonus wird nach Zustellung der erforderlichen Formulare 1 bis 3 (siehe Anlage) ausbezahlt. FFA Far the Game. Far the Warld. An de Generalsekretäre der Mtgleder der FFA Zrkular Nr. 1426 Sao Paulo, 12. Jun 2014 GS/clo-csu-esv Fnanzergebns des Zyklus 2011-2014 - Sonderbonus für de FFA-Mtgledsverbände

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ Technsche Unvestät Desden Fchchtung Physk A. Schwb C. Schöte 09/006 Physklsches Pktkum Vesuch: MZ Mgnetfeldmessung n Zylndespulen MZ 1. Enletung Nch dem Duchflutungsgeset st jede stomduchflossene ete von

Mehr

Erläuterungen zu Leitlinien zum Umgang mit Markt- und Gegenparteirisikopositionen in der Standardformel

Erläuterungen zu Leitlinien zum Umgang mit Markt- und Gegenparteirisikopositionen in der Standardformel Erläutrungn zu Ltlnn zum Umgang mt Markt- und Ggnpartrskopostonn n dr Standardforml D nachfolgndn Ausführungn n dutschr Sprach solln d EIOPA- Ltlnn rläutrn. Währnd d Ltlnn auf Vranlassung von EIOPA n alln

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

CKE Trainingsbausteine. Energieeffizienz und Contracting Nutzung von Markttrends zur Kundenbindung

CKE Trainingsbausteine. Energieeffizienz und Contracting Nutzung von Markttrends zur Kundenbindung CKE Tranngsbaustene Energeeffzenz und Contractng Nutzung von Markttrends zur Kundenbndung Ihr Zel Se suchen Instrumente zur Kundenbndung und zur Dfferenzerung m Energevertreb. Se wollen Wärmeleferungsprojekte

Mehr

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen Vobeetung fü. Klassenabet Dezmalzahlen und Zuodnungen Name:. Setze de chtgen Zechen en:

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1 Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen

Mehr

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt

Mehr