Statistik und Wahrscheinlichkeit
|
|
|
- Ewald Simen
- vor 9 Jahren
- Abrufe
Transkript
1 Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse Komplementäreregns zu trtt dann en, wenn das Eregns ncht entrtt. Komplementäreregns zu trtt dann en, wenn das Eregns ncht entrtt. Verengung (Verengungsmenge) trtt dann en, wenn enes der Eregnsse oder entrtt. = + []. = ( ) ( ) ( ) Durchschntt (chnttmenge) ORIGIN = 0 lle erechnungen erfolgen mt dem Rechenprogramm MathCad. De relatve Häufgket h errechnet sch aus der nzahl der nteresserenden Eregnsse n nt und der Gesamtzahl der Eregnsse n enes Zufallsexperments. n nt h := n []. h = 0. Ist das nteresserende Eregns ncht engetreten, hat de relatve Häufgket den Wert h = 0. En mt cherhet entretendes Eregns hat de relatve Häufgket h =. Mt wachsender Gesamtzahl n der Eregnsse schwankt de relatve Häufgket h mmer wenger um enen bestmmten Wert, der als Wahrschenlchket Q gedeutet wrd. De erechnung von Eregnssen sowe deren Wahrschenlchketen, mt denen se entreten, lässt sch auf de erechnung von Mengen zurückführen. Es gelten de Gesetzmäßgketen der Mengenlehre. trtt dann en, wenn glechzetg das Eregns und entrtt. = 0 nverenbare Eregnsse und 0 Verenbare Eregnsse und Morgansche Regeln = = De folgenden Venn-Dagramme lassen den Zusammenhang zwschen Eregns- und Mengenalgebra erkennen. En Eregns st das Ergebns oder der usgang ener Versuchsdurchführung. En Eregns st m nne der tatstk und Wahrschenlchket zufällg und ncht vorhersehbar. nwendungsgebete der tatstk und Wahrschenlchket pele und nterhaltung: rnenexperment, Glücksrad, Würfel, Roulette, Lottere, Toto, Lotto, Fußballwette usw. Wssenschaft: Physk, ologe, Medzn, Ethnologe, Industre usw...00 xome.mcd
2 Regeln der Wahrschenlchketsrechnung ddtonsregel ddtons- und Multplkatonsregel werden durch das Venn-Dagramm verdeutlcht. Für de erechnung der Wahrschenlchket von Eregnssen gelten de glechen Gesetzmäßgketen we für de erechnung von Mengen n der Mengenlehre. Für verenbare Eregnsse und glt de ddtonsregel Q ( ) = Q ( ) + Q ( ) Q ( ). De Wahrschenlchket für das Entreten enes Eregnsses mt mehreren usprägungen (Merkmalen) n enem Zufallsexperment st de umme der Wahrschenlchketen der enzelnen usprägungen, wenn be der kton, de das Zufallsexperment ausmacht, das Eregns der ersten oder der zweten oder ener weteren usprägung erwartet wrd. nd de Eregnsse telwese verenbar, müssen auch de chnttmengen der entsprechenden Eregnsse berückschtgt werden. em Würfelexperment (Würfelspel) mt enem Würfel (Hexaeder) beträgt de nzahl der nteresserenden Eregnsse n nt := De Gesamtzahl der möglchen unverenbaren Eregnsse beträgt gemäß der nzahl der ebenen egrenzungsflächen des Hexaeders n :=.. De Wahrschenlchket Q, bem Würfelexperment mt enem Würfel ene bestmmte vor dem Wurf festgelegte ugenzahl auf der oben legenden Würfelfläche zu erhalten, beträgt unter Voraussetzung der Glechwahrschenlchket aller Vorgänge und der enutzung enes dealen Würfels (Hexaeder) Q := n nt n Q = 0.. Varable und Parameter k := nzahl der erwarteten Eregnsse e Wahl der Rechenopton ORIGIN = 0 n MathCad wrd der Index des ersten Elementes enes Feldes auf Null gesetzt. Dese Enstellung muss be der teratven ddton und Multplkaton beachtet werden. De Wahrschenlchket, mt enem Würfel und enem Wurf ene von k vorher festgelegten, belebgen, als Wurfergebns erwarteten ugenzahlen zwschen und zu würfeln, beträgt nach nwendung der ddtonsregel und be nwendung der teratven ddton nach MathCad mt Hlfe ener Matrx..00 xome.mcd
3 Regeln der Wahrschenlchketsrechnung k 0. Q := Q = Q 0 = 0. Q = 0. k := Q := Q Q = = 0 Im vorlegenden Fall st de vorher festgelegte ugenzahl k =. De Nummererung der Enzelwahrschenlchketen begnnt mt = 0 (tartndex) und recht bs k- be der teratven ummaton nach MathCad. Multplkatonsregel De Multplkatonsregel lässt sch durch das gleche Venn-Dagramm verdeutlchen we de ddtonsregel. Q ( ) = Q ( ) Q ( ) Voraussetzung Q ( ) 0 Q () st de durch bedngte Wahrschenlchket von. Q ( ) = Q ( ) Q ( ) Voraussetzung Q ( ) 0 Q () st de durch bedngte Wahrschenlchket von. De Wahrschenlchket für das Entreten enes Eregnsses mt mehreren usprägungen (Merkmalen) n enem Zufallsexperment, st das Produkt der Wahrschenlchketen der enzelnen usprägungen, wenn be der kton, de das Zufallsexperment ausmacht, das Eregns der ersten sowohl als auch der zweten und ener weteren usprägung erwartet wrd. De erechnung von Eregnssen sowe deren Wahrschenlchketen, mt denen se entreten, lässt sch auf de erechnung von Mengen und deren Gesetzmäßgketen zurückführen. Handelt es sch be den Eregnssen und um unabhängge Eregnsse, entfällt de bedngte Wahrschenlchket und wrd durch de bedngungslose Wahrschenlchket Q() bzw. Q() ersetzt. Q ( ) = Q ( ) Q ( ) Varable und Parameter k := nzahl der Würfel De Wahrschenlchket, mt enem enem Wurf und k (farbg) gekennzechneten Würfeln ene vorher festgelegte Konstellaton von k den Würfeln zugeordneten ugenzahlen (erwartete Eregnsse) zu würfeln, beträgt be nwendung der teratven Multplkaton nach MathCad mt Hlfe ener Matrx uswertung ORIGIN = 0 k 0. Q := Q = Q 0 = 0. Q = 0. Q := 0. Q Q = 0.0. = 0 De Nummererung der Enzelwahrschenlchketen begnnt mt = 0 (ORIGIN = 0 ) und recht bs k- be der teratven Multplkaton nach MathCad. Im vorlegenden Fall handelt es sch um k = Würfel. Würfelexperment De Produkt- und ddtonsregel soll mt Hlfe der relatven Häufgket und der bzählmethode an enem weteren Würfelexperment unter Verwendung von zwe Würfeln nachgeprüft werden. Es soll untersucht werden mt welcher Wahrschenlchket ene vorher festgelegte ugensumme der beden Würfel errecht werden kann. Das Experment soll de xome plausbel machen, ncht aber bewesen. Das würde dem Charakter der xome wdersprechen. Varable und Parameter k := ugenzahl je Würfel := 0.. k Zählvarable Erstellen ener Matrx mt den möglchen ugensummen bem Würfeln mt zwe Würfeln a := b := + c := a + b d := c + a e := d + a f := e + a g := f + a De Matrzenrechnung n MathCad erlaubt es, de Zahlenverhältnsse be dem Würfelexperment anschaulch darzustellen...00 xome.mcd
4 Regeln der Wahrschenlchketsrechnung a = b = c = d = e = f = g = h := erwetern( a, b) h := erwetern( a, b) h := erwetern( a, b) h := erwetern( a, b) h := erwetern( a, b) h := erwetern( a, b) m := erwetern( h, h, h, h, h, h) n := erwetern( a + b, a + b, a + b, a + b, a + b, a + b) 0 0 Möglche ugenzahlen der beden Würfel Möglche ugensummen m = n = ( ( )) l sort stapeln n 0 n, n, n, n :=,, n k []. ORIGIN = 0 ugensummen und hre Häufgket nzahl glecher ugensummen zelen( verglech(, l) ) = p 0, 0 := zelen( verglech(, l) ) p 0, 0 = zelen( verglech(, l) ) = p 0, := zelen( verglech(, l) ) p 0, = zelen( verglech(, l) ) = p 0, := zelen( verglech(, l) ) p 0, = zelen( verglech(, l) ) = p 0, := zelen( verglech(, l) ) p 0, = zelen( verglech(, l) ) = p 0, := zelen( verglech(, l) ) p 0, = zelen( verglech(, l) ) = p 0, := zelen( verglech(, l) ) p 0, = zelen( verglech(, l) ) = p 0, := zelen( verglech(, l) ) p 0, = zelen( verglech(, l) ) = p 0, := zelen( verglech(, l) ) p 0, = zelen( verglech( 0, l) ) = p 0, := zelen( verglech( 0, l) ) p 0, = zelen( verglech(, l) ) = p 0, := zelen( verglech(, l) ) p 0, = zelen( verglech(, l) ) = p 0, 0 := zelen( verglech(, l) ) p 0, 0 = nzahl der möglchen ugensummen zelen( l) =..00 xome.mcd
5 Regeln der Wahrschenlchketsrechnung p = Wahrschenlchket Q für das Zustandekommen von glechen ugensummen mt p ummanden Q := stapeln p, p zelen( l) Wahrschenlchket Q := Zählvarable Q = Je mehr Möglchketen es für de ldung ener bestmmten ugensumme gbt, desto größer st de Wahrschenlchket, dese ugensumme zu erzelen (ddtonsregel). Je mehr Würfel an dem Experment telnehmen umso gernger st de Wahrschenlchket ene bestmmte ugenzahl zu erzelen (Multplkatonsregel). 0. Q, 0. p 0, 0 0 Wahrschenlchket 0 0 nzahl der möglchen ugensummen nmöglches Eregns Das unmöglche Eregns st durch de Wahrschenlchket cheres Eregns Das schere Eregns st durch de Wahrschenlchket Es trtt dann mt cherhet rgenden Eregns aus dem Eregnsraum en. nabhänggket Von z.. zwe Eregnssen und beenflusst das Eregns ncht das Eregns. Das Eregns st vom Eregns unabhängg. Krterum für de Wahrschenlchket zweer unabhängger Eregnsse und : Q ( ) = Q ( ) Q ( ) nverenbarket De Eregnsse schleßen sch gegensetg aus. Von zwe Eregnssen trtt entweder das ene oder das andere en. Dadurch snd se aber vonenander abhängg. Krterum für de Wahrschenlchket zweer unverenbarer Eregnsse und : Q ( ) = 0 Q() = Q() = 0 gekennzechnet. gekennzechnet...00 xome.mcd
6 Regeln der Wahrschenlchketsrechnung edngung Von z.. zwe Eregnssen und kann Eregns unter der edngung geschehen, dass das Eregns entrtt und das Eregns kann unter der edngung geschehen, dass das Eregns entrtt. Krterum für de bedngte Wahrschenlchket zweer Eregnsse und : Q ( ) = Q ( ) Q ( ) = Q ( ) Q ( ) Normerung Wenn de Wahrschenlchket für das Entreten rgendenes, also enes ncht bestmmten Eregnsses aus dem gesamten Eregnsraum glech st, dann muss das Integral der Wahrschenlchketsdchte über den gesamten Eregnsraum glech sen. Dese edngung muss von der Wahrschenlchketsdchte notwendgerwese erfüllt werden. Das Integral erstreckt sch über den gesamten Defntonsberech der Wahrschenlchketsdchte. nderersets kann jede mathematsche Funkton, de dese edngung erfüllt, als Wahrschenlchketsdchte fungeren oder mt Hlfe der Normerung dazu gemacht werden. In der tatstk snd vele solcher Funktonen bekannt, z.. de Wahrschenlchketsdchte der Gaußschen Normalvertelung. Enzelheten und e snd n den Kapteln Dskrete Wahrschenlchketsvertelung und tetge Wahrschenlchketsvertelung zu fnden. xome. nwendungen und Defntonen n der Eregnsalgebra (Mengenlehre). De Wahrschenlchket enes Eregnsses Q() wrd durch ene ncht negatve reelle Zahl angegeben. De Wahrschenlchket des scheren Eregnsses beträgt Q() = De Wahrschenlchket des unmöglchen Eregnsses beträgt Q() = 0. ddtons- und Multplkatonsregel Jedes statstsche Problem bedarf ener sorgfältgen nalyse. Nur de formale nwendung der xome führt ncht zum Zel. Der Vorgang, Zustand oder dgl., über den ene statsche ussage gemacht werden soll, muss zuerst mt allen Konsequenzen durchdacht werden. Man unterschedet de beschrebende und de beurtelende tatstk. In der beschrebenden tatstk wrd ungeordnetes Datenmateral (Rohdaten, rlsten, andaufzechnungen, Erhebungen, eobachtungen usw.) geordnet, ausgewertet, grafsch aufberetet und rechnersch hnschtlch der nteresserenden Maßzahlen (Mttelwert, treuung usw.) untersucht. In der beurtelenden tatstk werden aus den gewonnen Daten Rückschlüsse gezogen, de de Probleme n dem untersuchten erech lösen oder ene Verbesserung und Weterentwcklung ermöglchen sollen. Da be jedem Ordnen und Zusammenfassen von Daten Enzelheten verloren gehen, muss de rechnersche ufberetung und uswertung mt großer ach- und Fachkenntns auf dem untersuchten Gebet vorgenommen werden, damt aus der tatstk auch Nutzen gezogen werden kann...00 xome.mcd
Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, [email protected].
Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, [email protected] Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener
nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen
arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree
Lineare Regression (1) - Einführung I -
Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:
4. Musterlösung. Problem 1: Kreuzende Schnitte **
Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,
Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):
Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.
Netzwerkstrukturen. Entfernung in Kilometer:
Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.
12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2
1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:
Free Riding in Joint Audits A Game-Theoretic Analysis
. wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer ([email protected]) Marcel Steller ([email protected]) Insttut ür Rechnungswesen, Steuerlehre
Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e
Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de
Gruppe. Lineare Block-Codes
Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung
FORMELSAMMLUNG STATISTIK (I)
Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen
Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)
Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:
Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.
Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet
ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de
ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte
Methoden der innerbetrieblichen Leistungsverrechnung
Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den
1 - Prüfungsvorbereitungsseminar
1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten
Nernstscher Verteilungssatz
Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.
Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I
Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"
Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen
Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen
3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale
3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche
Einführung in die Finanzmathematik
1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg
1 Definition und Grundbegriffe
1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:
Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich
Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem
Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007
Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen
"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft
"Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012
Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008
Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe
Leistungsmessung im Drehstromnetz
Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n
Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren!
Franz Schuck GmbH Enbau-/Betrebsanletung Stahl-PE-Übergang Typ PESS / Typ PESVS Orgnalbetrebsanletung Für künftge Verwendung aufbewahren! Enletung Dese Anletung st für das Beden-, Instandhaltungs- und
Ionenselektive Elektroden (Potentiometrie)
III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,
Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny
eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung
Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung
am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall
1 BWL 4 Tutorium V vom 15.05.02
1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)
d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb
S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von
1.1 Grundbegriffe und Grundgesetze 29
1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld
Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage
Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften
2 Zufallsvariable und Verteilungen
Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem
Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen
Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und
Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6
Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und
18. Dynamisches Programmieren
8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus
Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung
Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler ([email protected]) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2
IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen.
IT- und achwssen: Was zusammengehört, muss weder zusammenwachsen. Dr. Günther Menhold, regercht 2011 Inhalt 1. Manuelle Informatonsverarbetung en ntegraler Bestandtel der fachlchen Arbet 2. Abspaltung
Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2
ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung
Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?
We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de
Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften
Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de
Fachkräfte- Die aktuelle Situation in Österreich
Chart 1 Fachkräfte- De aktuelle Stuaton n Österrech Projektleter: Studen-Nr.: Prok. Dr. Davd Pfarrhofer F818..P2.T n= telefonsche CATI-Intervews, repräsentatv für de Arbetgeberbetrebe Österrechs (ohne
6. Modelle mit binären abhängigen Variablen
6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch
Qualitative Evaluation einer interkulturellen Trainingseinheit
Qualtatve Evaluaton ener nterkulturellen Tranngsenhet Xun Luo Bettna Müller Yelz Yldrm Kranng Zur Kulturgebundenhet schrftlcher und mündlcher Befragungsmethoden und hrer Egnung zur Evaluaton m nterkulturellen
Kennlinienaufnahme des Transistors BC170
Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur
Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1
Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen
Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum
Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.
. Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen
VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE
VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen
13.Selbstinduktion; Induktivität
13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd
Streuungs-, Schiefe und Wölbungsmaße
aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen
Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)
Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope
Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?
We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de
Die Ausgangssituation... 14 Das Beispiel-Szenario... 14
E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern
DLK Pro Multitalente für den mobilen Datendownload. Maßgeschneidert für unterschiedliche Anforderungen. www.dtco.vdo.de
DLK Pro Multtalente für den moblen Datendownload Maßgeschnedert für unterschedlche Anforderungen www.dtco.vdo.de Enfach brllant, brllant enfach DLK Pro heßt de Produktfamle von VDO, de neue Standards n
Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban
Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert
AUFGABEN ZUR INFORMATIONSTHEORIE
AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen
Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.
Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve
1.1 Das Prinzip von No Arbitrage
Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No
Versicherungstechnischer Umgang mit Risiko
Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über
Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert
R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen
Nomenklatur - Übersicht
Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen
Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit
Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket
Datenträger löschen und einrichten
Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe
z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!
Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf
4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973)
4. Raenmonoones Schedulng Rae-Monoonc Schedulng (LIU/LAYLAND 973) 4.. Tasbeschrebung Tas Planungsenhe. Perodsche Folge von Jobs. T = {,..., n } Tasparameer Anforderungsze, Bereze (release me) Bearbeungs-,
Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4
Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären
W i r m a c h e n d a s F e n s t e r
Komfort W r m a c h e n d a s F e n s t e r vertrauen vertrauen Set der Gründung von ROLF Fensterbau m Jahr 1980 snd de Ansprüche an moderne Kunststofffenster deutlch gestegen. Heute stehen neben Scherhet
Entscheidungsprobleme der Marktforschung (1)
Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket
Funds Transfer Pricing. Daniel Schlotmann
Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd
Personelle Einzelmaßnahmen - 99 BetrVG. Eingruppierung G 4 G 3 G 2 G 1 G 4. Bei Neueinstellungen oder Arbeitsplatzwechsel. Personelle Einzelmaßnahmen
- 99 BetrVG Enstellung Engrupperung Umgrupperung Versetzung 95 Abs. 3 BetrVG G 4 G 4 G 3 G 2 G 1 G 3 G 2 G 1 neue Arbetsverhältnsse Verlängerung befrsteter AV Umwandlung n unbefrstete AV Beschäftgung von
Erwartungswert, Varianz, Standardabweichung
RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend
Definition des linearen Korrelationskoeffizienten
Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.
Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -
Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche
Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1
Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement
Operations Research II (Netzplantechnik und Projektmanagement)
Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.
PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs
wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:
Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab
Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08
y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge
Gesetzlicher Unfallversicherungsschutz für Schülerinnen und Schüler
Gesetzlcher Unfallverscherungsschutz für Schülernnen und Schüler Wer st verschert? Lebe Eltern! Ihr Knd st während des Besuches von allgemen bldenden und berufsbldenden Schulen gesetzlch unfallverschert.
Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1
Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets
Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung
Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012
WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}
1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade
Produkt-Moment-Korrelation (1) - Einführung I -
Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...
Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.
Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0
Die Schnittstellenmatrix Autor: Jürgen P. Bläsing
QUALITY-APPs Applkatonen für das Qaltätsmanagement Prozessmanagement De Schnttstellenmatrx Ator: Jürgen P. Bläsng Schnttstellen (Übergangsstellen, Verbndngsstellen) n betreblchen Prozessen ergeben sch
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
