Grundgedanke der Regressionsanalyse
|
|
|
- Nelly Holtzer
- vor 8 Jahren
- Abrufe
Transkript
1 Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden En Modell st der (mathematsch) formalserte Kern ener Theore Modelle ermöglchen es, de abhängge Varable durch de unabhängge Varable vorherzusagen De m Kurs verwendeten Modelle spezfzeren lneare Zusammenhänge: je mehr, desto mehr (oder wenger) de Bezehung kann durch ene enfache Gerade veranschaulcht werden komplzertere Modelle snd denkbar 1
2 Das mathematsche Modell Im Regressonsmodell wrd ene abhängge Varable auf ene unabhängge Varable zurückgeführt (regredert) Bede Varablen snd mndestens ntervallskalert Dese Bezehung wrd durch de Glechung a+b* beschreben In desem Modell denkt man sch den Wert der abhänggen Varablen zusammengesetzt aus: ener Konstanten a dem mt enem Faktor b multplzerten Wert der unabhänggen Varablen De Bezehung kann durch ene Gerade veranschaulcht werden a st der Achsenabschntt, d.h. der Wert, den annmmt, wenn 0 b st de Stegung der Geraden, d.h. de Veränderung von, wenn um ene Enhet zunmmt 2
3 Regressonsgerade -Achse Stegungsdreeck a Achsenabschntt b -Achse 3
4 Bestmmung der Regressonsglechung Welche Parameter für a und b sollen n de Schätzglechung engesetzt werden? ˆ a + b De beste Schätzung erhält man, wenn de Abstände zwschen der Regressonsgeraden und den emprschen Meßpunkten mnmert werden De enfachen Abstände zur Geraden snd ungeegnet, wel es für jede Wolke von Meßpunkten unendlch vele Geraden gbt, für de sch de enfachen Abwechungen zu null adderen Deshalb werden de quadrerten Abwechungen verwendet, wodurch große Abwechungen stärker gewchtet werden (OLS-Schätzung) Mnmert wrd de quadrerte Abwechung n -Rchtung 4
5 Berechnung von b Gesucht wrd en Wert, der de SAQ mnmert Durch Betrachtung der Abletungen kommt man zu der Formel b SAP SAQ D.h., es müssen we be der Berechnung von r de Abwechungsprodukte und de Abwechungsquadrate (für ) bestmmt werden De auf dese Wese geschätzte Gerade läuft durch den Punkt (Egenschaft der Klenste-Quadrate-Schätzung) ( ; ) Deshalb kann en Stegungsdreeck konstruert werden, mt dessen Hlfe sch a bestmmen läßt 5
6 Berechnung von a Für 0 st a (Achsenabschntt) Damt st klar, daß de Gerade durch de Punkte (0;a) und ( ; ) gehen muß De Stegung des dadurch defnerten Dreecks st b. Durch Umformen läßt sch a ermtteln: b a b a 0 a 6
7 Qualtät der Regresson Wrd durch r 2 beschreben. Andere Bezechnungen R 2, Determnatonskoeffzent, Varanzaufklärung Ist ebenfalls en PRE-Maß Bester -Prognosewert für enen belebgen Fall wäre ohne wetere Zusatznformaton der Durchschntt (quadrerte Abwechungen mnmal) Abwechung vom Durchschntt Vorhersagefehler SAQ bzw. Varanz 7
8 r 2 Gesamtabwechung (Vorhersagefehler): Enen Tel der Abwechung vom Durchschntt erklärt das Regressonsmodell: ˆ De Abwechung zwschen vorhergesagtem Wert und tatsächlchem Wert wrd durch das Modell ncht erklärt: ˆ De Gesamtabwechung läßt sch zerlegen: Gesamtabwechung ncht-erklärte Abwechung + erklärte Abwechung: ( ˆ ) + ( ˆ ) Auch her müssen weder de quadrerten Abwechungen, d.h., de Varanzen betrachtet werden, da de Summe aller Abwechungen glech null st. Auch de Varanzen können (über alle Fälle hnweg) zerlegt werden 8
9 r 2 II r 2 : Alle dre Abwechungen quadreren und über alle Meßwerte aufsummeren r 2 n 1 n 1 ( ˆ ( ) 2 ) 2 SAQ SAQ ( erklärt ) ( gesamt) r 2 nmmt Werte zwschen 0 (kene Varanzaufklärung) und 1 (totale Varanzaufklärung an. De Wurzel aus r 2 st mt dem Korrelatonskoeffzenten r dentsch, allerdngs vorzechenlos 9
Beschreibende Statistik Mittelwert
Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )
Lineare Regression (1) - Einführung I -
Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:
wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:
Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab
6. Modelle mit binären abhängigen Variablen
6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch
Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.
Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve
Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression
Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5
Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e
Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de
Erwartungswert, Varianz, Standardabweichung
RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend
Schätzfehler in der linearen Regression (1) Einführung
Schätzfehler ( Reduum: Schätzfehler n der lnearen Regreon ( e Enführung Zel der Regreontattk t e, Schätzglechungen nach dem Krterum der klenten Quadrate aufzutellen und anzugeben, we groß der jewelge Schätzfehler
Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007
Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen
Lösungen zum 3. Aufgabenblock
Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass
Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):
Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.
3. Lineare Algebra (Teil 2)
Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw
Nomenklatur - Übersicht
Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen
Methoden der innerbetrieblichen Leistungsverrechnung
Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den
Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):
LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete
18. Vorlesung Sommersemester
8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten
Statistische Methoden für Bauingenieure WS 13/14
Statstsche Methoden ür Baungeneure WS 3/4 Enhet 3: Bvarate Zuallsvarablen Unv.Pro. Dr. Günter Blöschl Bezechnungen... Zuallsvarable... Realsaton konkrete Werte Momente Grundgesamthet Mttelwert,Varanz Stchprobe
P[bk t c se(b k) k bk t c se(b k)] 1 (5.1.3)
Kaptel 5: Inferenz m multplen Modell 5 Inferenz m multplen Modell 5. Intervallschätzung m multplen Regressonsmodell Analog zum enfachen Regressonsmodell glt: Dem Intervallschätzer der Parameter legt zugrunde,
Ionenselektive Elektroden (Potentiometrie)
III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,
Gruppe. Lineare Block-Codes
Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung
Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i
Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson
1 Definition und Grundbegriffe
1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:
6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen
196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen
Standardnormalverteilung / z-transformation
Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen
arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree
Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord
1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für
3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale
3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche
Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung
Werkstoffmechank SS11 Bather/Schmtz 5. Vorlesung 0.05.011 4. Mkroskopsche Ursachen der Elastztät 4.1 Energeelastztät wrd bestmmt durch de Wechselwrkungspotentale zwschen den Atomen, oft schon auf der Bass
Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten
Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen
Diskrete Mathematik 1 WS 2008/09
Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /
Netzwerkstrukturen. Entfernung in Kilometer:
Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.
12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2
1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:
Konkave und Konvexe Funktionen
Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage
8 Logistische Regressionsanalyse
wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen
ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz
Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung
1.1 Das Prinzip von No Arbitrage
Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No
4. Musterlösung. Problem 1: Kreuzende Schnitte **
Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
18. Dynamisches Programmieren
8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus
Einführung in Origin 8 Pro
Orgn 8 Pro - Enführung 1 Enführung n Orgn 8 Pro Andreas Zwerger Orgn 8 Pro - Enführung 2 Überscht 1) Kurvenft, was st das nochmal? 2) Daten n Orgn mporteren 3) Daten darstellen / plotten 4) Kurven an Daten
Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07
Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage
Protokoll zum Grundversuch Mechanik
Protokoll zum Grundversuch Mechank 3.6. In desem Grundversuch zur Mechank werden dre verschedene Arten von Pendeln untersucht. Das Reversonspendel, das Torsonspendel und gekoppelte Pendel. A. Das Reversonspendel
5. ZWEI ODER MEHRERE METRISCHE MERKMALE
5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe
Konzept der Chartanalyse bei Chart-Trend.de
Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Konzept der Chartanalyse be Chart-Trend.de Konzept der Chartanalyse be Chart-Trend.de... Bewertungsgrundlagen.... Skala und Symbole.... Trendkanalbewertung.... Bewertung
FORMELSAMMLUNG STATISTIK (I)
Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen
Spiele und Codes. Rafael Mechtel
Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,
Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, [email protected].
Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, [email protected] Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener
Versicherungstechnischer Umgang mit Risiko
Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über
Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich
Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem
Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit
Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket
Statistik und Wahrscheinlichkeit
Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse
Vermessungskunde für Bauingenieure und Geodäten
Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13
Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny
eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung
Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -
Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole
Boost-Schaltwandler für Blitzgeräte
[email protected] 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler
1 Mehrdimensionale Analysis
1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus
Lineare Optimierung Dualität
Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)
NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.
PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs
13.Selbstinduktion; Induktivität
13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd
Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I
Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"
Kapitel 8: Graph-Strukturierte Daten
Ludwg Maxmlans Unerstät München Insttut für Informatk Lehr- und Forschungsenhet für Datenbanksysteme Skrpt zur Vorlesung Knowledge Dscoery n Dtb Databases II m Wntersemester 2011/2012 Kaptel 8: Graph-Strukturerte
9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen
9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules
Musterklausur Wirtschaftsmathematik und Statistik. Zusatzstudium für Wirtschaftsingenieur
Musterklausur Wrtschaftsmathematk und Statstk Zusatzstudum für Wrtschaftsngeneur Telnehmer (Name, Vorname): Datum:.2006 Prüfer: Böhm-Retg Matrkelnummer: REGELN 1. Zum Bestehen der Klausur snd mndestens
Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)
Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:
Grundlagen der Technischen Informatik. 9. Übung
Grundlagen der Technschen Informatk 9. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 9. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer/Subtraherer Mehr-Operanden-Adderer
Hydrosystemanalyse: Finite-Elemente-Methode (FEM)
Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf
MOD-01 LAGRANGE FORMALISMUS -- TEIL 1
MOD- LAGRAGE FORMALISMUS -- EIL. Zustandsfunktonen Defnton -: Zustandsfunkton Ene Zustandsfunkton W( () t, t) = W(, t) bzw. W ( ) st jede belebge skalare Funkton der Zustandsgrößen () t und der Zet t,
Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6
Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und
Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002
Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene
Hausübung 1 Lösungsvorschlag
Hydrologe und Wasserwrtschaft Hausübung Lösungsvorschlag NIDRSCHLAG Hnwes: Be dem vorlegenden Dokument handelt es sch ledglch um enen Lösungsvorschlag und ncht um ene Musterlösung. s besteht ken Anspruch
Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung
Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012
Zur Außen-Bewertung von Freigeld
Zur Außen-Bewertung von Fregeld Nkolaus K.A. Läufer 8.1.2006 1 De Fragestellung und hre Voraussetzungen De Frage der Bewertung von Fregeld st nur dann nteressant, wenn es mndestens zwe parallele Währungen
I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung
Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für
Einführung in die Finanzmathematik
1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg
Datenträger löschen und einrichten
Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe
Physik A VL11 ( )
Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte
