Physik A VL11 ( )
|
|
|
- Dominic Bader
- vor 9 Jahren
- Abrufe
Transkript
1 Physk A VL11 ( ) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment
2 Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte Körper können roteren: Grund: Drehmoment aus Betrachtung der Rotatonsbewegung: ranslatonsgröße und Rotatonsgröße hängen über Abstand vom Schwerpunkt zusammen
3 Kresbewegung und Kräfte Roterende starre Körper be enem starren Körper bleben de Abstände zwschen belebgen Punkten P konstant alle Punkte P drehen sch um den glechen Wnkel φ. damt gelten de Gesetze der Rotatonsbewegung: Wederholung: Rotatonsbewegungen ranslaton Rotaton Zusammenhang Weg s s = r Geschwndgket v = ds/dt = d /dt v = r Beschleungung a = dv/dt=d s/dt = d /dt=d /dt a = r Vektorell: Geschwndgket Beschleungung v a r r Wnkelgeschwndgket, Wnkelbeschleungung v a r r ranslatonsgröße und Rotatonsgröße hängen über Abstand vom Schwerpunkt zusammen
4 Kresbewegung und Kräfte Überlagerung von ranslaton und Rotaton rene ranslaton: Schwerpunkt bewegt sch ohne Drehung des Körpers Beschrebung: s, v, a rene Rotaton: Körper dreht sch um Schwerpunkt; Schwerpunkt blebt ortsfest Beschrebung: φ,, Überlagerung von ranslaton und Rotaton: Körper dreht sch um Schwerpunkt; Schwerpunkt bewegt sch Beschrebung: s, v, a, φ,,
5 Zentrpetal- und Zentrfugalkraft Kresbewegung und Kräfte wrd ene Masse herumgeschleudert, wrkt ene Kraft de Zentrpetalkraft erzeugt de Kresbewegung, de Kraft st nach nnen gerchtet mv F Z ma m r r nach dem 3. Newton schen Axom muss ene glech große, nach außen gerchtete Zentrfugalkraft (= Flehkraft) wrken: F F F Z Zentrfugalkraft F F st de Gegenkraft (räghetskraft!) zur Zentrpetalkraft F Z Zentrfugalkraft st nur für enen mtbeschleungten Beobachter wahrnehmbar! En äußerer Beobachter beobachtet nur de Zentrpetalkraft
6 Zentrpetal- und Zentrfugalkraft Enstellung von Regelgrößen Der Flehkraftregler: mt stegender Drehzahl stegt de Zentrfugalkraft, de auf de Gewchte wrkt, und dese nach außen drückt Durch de dargestellte Mechank wrd en Ventl (unten) graduell geöffnet Regulerung der Drehzahl z.b. be Dampfmaschnen. Kresbewegung und Kräfte
7 Zentrpetal- und Zentrfugalkraft Bespel für Flehkräfte: Erdmodell Zentrfugalkraft am Äquator: F a F F m r r Kresbewegung und Kräfte 3 Zu den Polen hn nmmt de Zentrfugalkraft ab Messungen: R(Äquator) = R(Pol) + 0 km r m/s 310 Antparallel zur Gewchtskraft (Deser entgegen gerchtet) für alle anderen Längengrade snd Zentrfugalkraft und Gewchtskraft ncht antparallel Grund: De Erde st en Ellpsod (Newton, 1677 & Huygens 1690) Das Erdnnere st flüssg und de Erde rotert Flehkräfte g Rotatonsellpsode: Ellptztät über Wnkelgeschwndgket enstellbar
8 Kräfte am starren Körper Kresbewegung und Kräfte Kräfte, deren Wrkungslnen durch den Mttelpunkt enes starren Körpers laufen, erzeugen kene Drehung Kräfte, de an anderen Lnen angrefen, erzeugen Drehungen F 1 F 1 F wrkt ene Kraft F auf enen enzelnen Massenpunkt, führt nur de tangentale Komponente zu enem Drehmoment: F t de radale Komponente erzeugt kene Drehbewegung, sondern wrkt auf das Achslager oder bewrkt ene ranslaton des Gesamtsystems F r F sn F cos F φ F t F r r F
9 Kresbewegung und Kräfte Drehmoment () und räghetsmoment () Analogeüberlegungen: ranslaton aus der Ruhe: Kraft erforderlch We kann man ene Rotaton erzeugen? Das Drehmoment erzeugt Drehbewegungen: Drehmoment ~ Wnkelbeschleungung st auch ene Kraft Wenn Kraft F auf enen Massetel Δm m Abstand r vom Mttelpunkt wrkt: Masse wrd tangental beschleungt mt a t bzw. Wnkelbeschleungung t Masse erhält en Drehmoment = r F F r r r m a m Das Drehmoment hängt von der Masse ab t const a t r Für enen spezellen Körper
10 Drehmoment und räghetsmoment Summert man über alle enzelnen Drehmomente, erhält man n Analoge zur Newtons schen Bewegungsglechung: Drehmoment () und räghetsmoment () Drehmoment r m r m räghetsmoment m r Drehmoment Drehmoment = räghetsmoment mal Wnkelbeschleungung Drehmoment be Rotaton entsprcht Kraft be ranslaton. Newton sches Gesetz (Axom) für Drehbewegungen t a Schwerpunk m F
11 Drehmoment und räghetsmoment Drehmoment () und räghetsmoment () räghetsmoment stark abhängg von Massenvertelung m Körper Drehung um ene feste Achse durch Schwerpunkt Bespel: Hohlzylnder m r räghetsmoment des Hohlzylnders m r mr
12 Drehmoment und räghetsmoment Allgemene Defnton des räghetsmomentes r dm [kg m ] Das räghetsmoment beschrebt de räghet enes Körpers be Rotatonsbewegungen. Se st das Gegenstück zur (trägen) Masse der ranslatonsbewegungen. Das räghetsmoment wrd mmer bezüglch ener bestmmten Drehachse berechnet Das Drehmoment st stark abhängg von Massenvertelung m Körper Allgemene Defnton des Drehmomentes r dm a [kg m ]
13 Drehmoment und räghetsmoment räghetsmomente verschedener Objekte Bespel: Zylnder mt Drehachse = Körperachse m = Masse des Zylnders r = Radus dünnwandger Hohlzylnder: m r mr massver Zylnder : 1 mr dckwandger Hohlzylnder : 1 m( r 1 r ) r 1 = nnerer Radus, r = äußerer Radus
14 Drehmoment und räghetsmoment räghetsmomente verschedener Objekte Bespel: Zylnder mt Drehachse senkrecht zur Körperachse m = Masse des Zylnders r = Radus l = Länge des Zylnders dünnwandger Hohlzylnder: mr 1 mr 1 ml massver Zylnder : 1 mr 1 4 mr 1 1 ml dünner Stab: 1 ml 1 Verglech mt Drehmomenten be Drehachse = Körperachse ( ) zegt: En starrer Körper kann zu verschedenen Achsen verschedene räghetsmomente haben!
15 Drehmoment und räghetsmoment räghetsmomente verschedener Objekte Bespel: Kugel mt Drehachse durch Mttelpunkt m = Masse der Kugel r = Radus mr 3 dünnwandge Hohlkugel mr 5 massve Kugel Bespel: Quader mt unterschedlchen Drehachsen Massver Quader, Kantenlängen a,b (Zechnung: a und b für XX, Drehachse durch den Mttelpunkt der Fläche ab) a, b = Kantenlängen a 1 m( a 1 b ) ' XX ' ' YY' ' ZZ ' b Vektoren entsprechen den Rchtungen der Drehachsen, de zu den entsprechenden räghetsmomenten gehören
16 Drehmoment und räghetsmoment räghetsmomente verschedener Objekte
17 Der Stener sche Satz Drehmoment und räghetsmoment Bsher: Drehachse durch den Schwerpunkt des starren Körpers was passert, wenn Drehachse vom Schwerpunkt entfernt legt? Antwort lefert der Stener sche Satz Haben Drehachse und Schwerpunkt den Abstand h, so st das Gesamtträghetsmoment de Summe des räghetsmomentes durch den Schwerpunkt und des räghetsmomentes des Schwerpunkts relatv zur Drehachse: Gesamt Schwerpunkt mh Ist das räghetsmoment enes Körpers bezüglch ener Achse durch den Schwerpunkt bekannt, kann das räghetsmoment bezüglch ener Achse parallel zu deser Achse m Abstand h berechnet werden
18 Der Stener sche Satz Drehmoment und räghetsmoment Bespel: Dünner Stab mt verschedenen Drehachsen räghetsmoment durch Schwerpunkt: 1 ml 1 l räghetsmoment durch Ende: ges 1 1 ml l m 1 3 ml
19 Zusammenfassung de Zentrpetalkraft erzeugt de Kresbewegung, se zegt nach nnen de Zentrfugralkraft (= Flehkraft) zegt nach außen de Zentrfugalkraft st de Gegenkraft (räghetskraft!) zur Zentrpetalkraft mv F Z ma m r r F F F Z das Drehmoment st nach dem. Newton schen Gesetz ene Kraft, de durch räghetsmoment und Wnkelbeschleungung entsteht Drehmoment r dm a räghetsmoment r dm das räghetsmoment beschrebt de räghet enes Körpers be Rotatonsbewegungen: es wrd mmer bezüglch ener bestmmten Drehachse berechnet und st stark abhängg von der Massenvertelung m Körper.
18. Vorlesung Sommersemester
8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten
Dynamik starrer Körper
Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt
Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.
Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,
9. Der starre Körper; Rotation I
Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch
I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler
I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate
Einführung in die Physik I. Mechanik der starren Körper
Enfühung n de Physk I Mechank de staen Köpe O. von de Lühe und U. Landgaf Bslang wuden nu Massen als Punktmassen dealset behandelt, ene ausgedehnte etelung de Masse spelte ene unwesentlche Rolle Defnton
Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade
Der starre Körper Domnk Fauser 1 Grundlagen 1.1 Denton Als enen starren Körper bezechnet man en System von Massepunkten m, deren Abstände zuenander konstant snd: r j = r r j. Mest betrachtet man ene sehr
Kraft, Masse, Trägheit
Kraft, Masse, Träghet U enen Körper n Bewegung zu setzen, also zu beschleungen, uss an an h zehen. De Ursache der Beschleungung nennt an Kraft. Kraft und Beschleungung snd enander proportonal: F a Wr können
3. Lineare Algebra (Teil 2)
Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw
Theoretische Physik: Mechanik
Ferenkurs Theoretsche Physk: Mechank Sommer 2017 Vorlesung 2 (mt freundlcher Genehmgung von Merln Mtscheck und Verena Walbrecht) Technsche Unverstät München 1 Fakultät für Physk Inhaltsverzechns 1 Systeme
Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, [email protected].
Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, [email protected] Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener
Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich
Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem
4.6 Das Pumping-Lemma für reguläre Sprachen:
Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma
6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines
6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.
9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.
Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.
9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.
Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.
MOD-01 LAGRANGE FORMALISMUS -- TEIL 1
MOD- LAGRAGE FORMALISMUS -- EIL. Zustandsfunktonen Defnton -: Zustandsfunkton Ene Zustandsfunkton W( () t, t) = W(, t) bzw. W ( ) st jede belebge skalare Funkton der Zustandsgrößen () t und der Zet t,
NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.
PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs
Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny
eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung
1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit
3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen
nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen
arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree
1.4 Dynamik, Newton sche Axiome ( Postulate) der klassischen (Punkt)Mechanik
Woche.doc, 1/.1.14 1.4 Dynamk, Newton sche Aome ( Postulate) der klassschen (Punkt)Mechank Ausgangspunkt: De Knematk sagt nchts über de Ursache der Bewegung von Körpern n Raum und Zet. In der Dynamk wrd
1 Definition und Grundbegriffe
1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:
Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e
Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de
12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2
1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:
Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der
De Kugel Lösungen 1. Von ener Kugel st der Radus bekannt. Berechne Volumen und Oberfläche der Kugel. r,8 cm 5, cm 18,6 cm 4, cm 5,6 cm 4,8 cm V 0 cm³ 64 cm³ 6 954 cm³ cm³ 76 cm³ 46 cm³ O 181 cm² 5 cm²
Holonome Mehrkörpersysteme
Kaptel 6 Holonome Mehrkörpersysteme In Anlehnung an de Vorgehenswese be Massenpunktsystemen n Kaptel 5 werden n desem Kaptel de Formulerungen der Bewegungsglechungen von Mehrkörpersystemen mt holonomen
1 Mehrdimensionale Analysis
1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus
Einführung in die Theoretische Physik. 5. Teil: Mechanik starrer Körper. Siegfried Petry
Enführung n de Theoretsche Physk 5. Tel: Mechank starrer Körper Segfred Petry 16. Januar 013 I n h a l t : 1 De Knematk starrer Körper 1.1 Was st en starrer Körper? 1. De Verschebung enes starren Körpers
Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten
Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen
d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb
S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von
Ionenselektive Elektroden (Potentiometrie)
III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,
Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4
Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären
Erwartungswert, Varianz, Standardabweichung
RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend
Lineare Regression - Mathematische Grundlagen
FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr
1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl
0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs [email protected]
Grundgedanke der Regressionsanalyse
Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden
Spule, Induktivität und Gegeninduktivität
.7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn
Trägheitsmoment und Drehschwingung. Die kinetische Energie des Massepunktes ist (4)
M5 Phskalsches Praktkum Träghetsmoment und Drehschwngung Das Träghetsmoment unterschedlcher starrer Körper soll nach der Schwngungsmethode gemessen werden. De Ergebnsse snd mt den aus Geometre und Masse
Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -
Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche
Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung:
Dehbewegungen Das Dehoent: Bespe Wppe: D Efahung: De Käfte und bewken ene Dehbewegung u de Dehachse D. De Dehwkung hängt ncht nu von de Kaft, sonden auch vo Kafta, d.h. Abstand Dehachse-Kaft ab. De Kaft
Baudynamik und Erdbebeningenieurwesen
Baudynamk und Erdbebenngeneurwesen Themen und Antworten für de Lzenzprüfung 1. Defneren Se den Begrff: Grad des dynamschen Frehetsgrads. Geben Se Bespele von Systemen mt enem enzgen Grad des dynamschen
Konkave und Konvexe Funktionen
Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage
Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung
Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler ([email protected]) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2
6. Modelle mit binären abhängigen Variablen
6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch
3 Vorlesung: Lagrange Mechanik I. 3.1 Zwangsbedingungen. Beispiele (nach Kuypers)
3 Vorlesung: Lagrange Mechank I 3.1 Zwangsbedngungen Im folgenden Kaptel werden wr uns mt Bewegungen beschäftgen, de geometrschen Zwangsbedngungen unterlegen, we etwa der Pendelbewegung, der Bewegung auf
Lineare Regression (1) - Einführung I -
Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:
Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen
Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen
Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.
Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve
Methoden der innerbetrieblichen Leistungsverrechnung
Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den
2 Vektoren. 2.1 Vektorraum 2 VEKTOREN 1
2 VEKTOREN 1 2 Vektoren 2.1 Vektorraum In der Physk unterscheden wr skalare Grössen von vektorellen. En Skalar st ene reelle Messgrösse, mathematsch enfach ene Zahl, phykalsch ene dmensonsbehaftete Zahl.
Andreas Meyer-Bohe (Autor) Schwimmfähigkeit & Stabilität von Schiffen
Andreas Meyer-Bohe (Autor) Schwmmfähgket & Stabltät von Schffen https://cuvller.de/de/shop/publcatons/426 Copyrght: Cuvller Verlag, Inhabern Annette Jentzsch-Cuvller, Nonnensteg 8, 37075 Göttngen, Germany
2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.
. Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen
7.1 Beschreibung des starren Körpers. 7.2 Kräfte am starren Körper- Drehmoment. 7.3 Rotationsenenergie und Trägheitsmoment
7 Stae Köpe 7. Beschebung des staen Köpes 7. Käfte a staen Köpe- Dehoent 7.3 Rotatonsenenege und Täghetsoent 7.4 Dehoent und Wnkelbeschleungung 7.5 Dehpuls 7.6 Beechnung von Täghetsoenten 7.7 Päzesson
Nernstscher Verteilungssatz
Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.
Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I
Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"
wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:
Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab
Eine Kompassnadel, die sich nur um eine vertikale Achse drehen kann, richtet sich entlang der Horizontalkomponente des Erdmagnetfeldes B E,
IYPT 009 Problem Nr..: Coupled compasses Place a compass on a table. Place a smlar compass next to the frst one and shake t gently to make the needle start oscllatng. The orgnal compass' needle wll start
Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen
Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:
Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):
Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.
Boost-Schaltwandler für Blitzgeräte
[email protected] 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler
-70- Anhang: -Lineare Regression-
-70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de
Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):
LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
13.Selbstinduktion; Induktivität
13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd
14 Überlagerung einfacher Belastungsfälle
85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung
