Konzept der Chartanalyse bei Chart-Trend.de
|
|
|
- Claudia Berger
- vor 9 Jahren
- Abrufe
Transkript
1 Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Konzept der Chartanalyse be Chart-Trend.de Konzept der Chartanalyse be Chart-Trend.de... Bewertungsgrundlagen.... Skala und Symbole.... Trendkanalbewertung.... Bewertung der Stegung des gletenden Durchschntts Bewertung der Lage der gletenden Durchschntte Kurzfrstger Trend Mttelfrstger Trend Langfrstger Trend Trend...6 Adaptve Gewchtung der Trends Verson 0. Chart-Trend
2 Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Bewertungsgrundlagen De Bewertung erfolgt auf Bass der Auswertung des Kursverhaltens nnerhalb des Trendkanals, der Stegung des gletenden Durchschntts und der relatven Abstände der gletenden Durchschntte zuenander. Es wrd jewels ene kurz-, mttel- und langfrstge Bewertung durchgeführt. De kurzfrstge Bewertung berückschtgt de 0 Tage Regressonsgerade, de Stegung des 0 Tage gletenden Durchschntts und das Verhältns der 0 und 00 Tage Durchschntte. Analog basert der mttelfrstge Trend auf den 00 Tage und der langfrstge Trend auf den 00 Tage Werten. Kursgrundlage st mmer der aus Tageshöchst und Tagestefstkurs gemttelte Tageskurs. Jede Enzelbewertung we auch de Gesamtbewertungen werden auf ene Skala von -0 bs +0 abgebldet. De Gesamtbewertungen ergeben sch jewels als gewchtetes arthmetsches Mttel der entsprechenden Enzelbewertungen. Der Bewertungsnde wrd m Folgenden mt dem grechschen Buchstaben Ps abgekürzt.. Skala und Symbole Im Folgenden st de Zuordnung der numerschen Bewertung (Inde ) zu den Symbolen angegeben. m halb offenen Intervall [0, 6) m halb offenen Intervall [6, ) m halb abgeschlossenen Intervall [, -] m halb offenen Intervall [-6, ) m halb offenen Intervall [-0, -6). Trendkanalbewertung De erste Bewertung erfolgt nach der Lage des aktuellen Kurses TK n Bezug auf den jewelgen Trendkanal. TG w TD TK TG TK: gemttelter Tageskurs TG: Regressonsgerade : Standardabwechung der Regresson TG : Bewertung des Trendkanals auf der Skala : 0 Tage, 00 Tage, 00 Tage Mt dem emprsch ermttelten Gewchtsfaktor w TD = -6 und der lnearen Regresson: y y m y y N b y m TG m b : Handelstage des betrachteten Intervalls y : gemttelter Tageskurs m: Stegung der Regressonsgeraden Verson 0. Chart-Trend
3 Dpl.-Phys.,Dpl.-Math. Jürgen Brandes / TG TK Das obenstehende Dagramm zegt den Verlauf ener Trendgeraden und den Berech der Standardabwechung. Das folgende Dagramm zegt bespelhaft für 500 Handelstage den Verlauf des DAX. De blaue- und grüne Lne geben den für den jewelgen Handelstag gültgen Wert der Trendgeraden und der Standardabwechung an. Im unteren Tel des Dagramms st der Skalerte Wert TG aufgetragen. Nähert sch der Kurs der durch de aktuelle Standardabwechung gegebenen Begrenzung so sgnalsert TG de erwartete Umkehr Verson 0. Chart-Trend
4 Dpl.-Phys.,Dpl.-Math. Jürgen Brandes. Bewertung der Stegung des gletenden Durchschntts De zwete Bewertung erfolgt anhand der Stegung des jewelgen gletenden Durchschntts der zur Verglechbarket normert wrd. w tan 0 ( t ) 4 TK( t0 ) t t ( t ) : gletender Durchschntt (t-): am Vortag : Bewertung der Stegung des auf der Skala t 0 : Zetpunkt bs zu dem der berechnet wrd : 0 Tage, 00 Tage, 00 Tage w : Emprscher Gewchtsfaktor.4 Bewertung der Lage der gletenden Durchschntte De drtte Bewertung erfolgt anhand der Lage der gletenden Durchschntte zuenander. 00( 0 F ( 00 F ) ) 0 00 F : gletender Durchschntt F : Bewertung der relatven Lage der Durchschntte zuenander auf der Skala Verson 0. Chart-Trend 4
5 Dpl.-Phys.,Dpl.-Math. Jürgen Brandes.5 Kurzfrstger Trend Der kurzfrstge Trend ergbt sch als gewchtetes arthmetsches Mttel der 0 Tage Bewertungen. Der Enfluss der Trendgeraden wrd zu enem Drttel gewchtet n das Mttel enbezogen. kurz TG0 0 7 F0.6 Mttelfrstger Trend Der kurzfrstge Trend ergbt sch als arthmetsches Mttel der 00 Tage Bewertungen. mttel TG F00.7 Langfrstger Trend Der kurzfrstge Trend ergbt sch als arthmetsches Mttel der 00 Tage Bewertungen. TG00 00 F00 lang 7 Das folgende Dagramm zegt anhand der langfrstgen Indkatoren am Bespel des DAX das Verhalten von lang. Im oberen Tel des Dagramms st der Verlauf des DAX mt den gletenden Durchschntten dargestellt. Im mttleren Tel de Indkatoren TG, und F und m unteren Drttel lang. Hnterlegt snd jewels Bereche n denen der Indkator stegende bzw. fallende Kurse sgnalsert Verson 0. Chart-Trend 5
6 Dpl.-Phys.,Dpl.-Math. Jürgen Brandes.8 Trend Der allgemene Trend ergbt sch als gewchtetes arthmetsches Mttel aus den kurz-, mttel und langfrstgen Trends. Kurzfrstge Effekte werden gernger gewchtet. kurz 6 mttel lang Verson 0. Chart-Trend 6
7 Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Verson 0. Chart-Trend 7 Adaptve Gewchtung der Trends Emprsch lässt sch feststellen, dass der Enfluss der enzelnen Trends mt der Zet varert. Mal überwegen der Enfluss des Trendkanals und dann weder der Enfluss der gletenden Durchschntte. Analog verhält es sch mt dem Enfluss der kurz-, mttel- und langfrstgen Trends. Von daher st es wünschenswert de Gewchtung der Trends ncht starr vorzunehmen sondern kontnuerlch den Marktverhältnssen anzupassen. Ausgangspunkt st de Lnearkombnaton der Enzeltrends: Dabe stehen de für de jewelgen Teltrends und de Faktoren, und für de Gewchtsfaktoren. Zel st es de Gewchtsfaktoren zu ermtteln und dynamsch anzupassen. De Gesamtfunkton soll möglchst gut de Stegung der Regressonsgeraden für de Zukunft angeben. Daher st de quadratsche Abwechung zu mnmeren. mn m R Mttels der partellen Abletungen nach, und ergbt sch folgendes Glechungssystem: m m m De Lösung des Glechungssystems lefert de Gewchtsfaktoren für en gewähltes Intervall der Zetrehe. Das folgende Dagramm zegt de Ergebnsse mt gewchteten Teltrends jewels für de kurz-, mttel- und langfrstge Trendanalyse. Daraus kann man entnehmen, dass de dynamsche Gewchtung ene beachtlche Verbesserung gegenüber der starren Gewchtung brngt. Auf den jewelgen Zetachsen wrd der Trend zuverlässg erkannt.
8 Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Das folgende Dagramm zegt den Verlauf der dynamschen Gewchtsfaktoren für den langfrstgen Trend Verson 0. Chart-Trend 8
9 Dpl.-Phys.,Dpl.-Math. Jürgen Brandes De Ermttelung des Gesamttrends aus den Trends der unterschedlchen Zetskalen erfolgt als gewchtetes Mttel. kurz 6 mttel lang Verson 0. Chart-Trend 9
10 Dpl.-Phys.,Dpl.-Math. Jürgen Brandes Verson 0. Chart-Trend 0
wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:
Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab
Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e
Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de
Streuungs-, Schiefe und Wölbungsmaße
aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen
Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen
Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
Beschreibende Statistik Mittelwert
Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )
Grundgedanke der Regressionsanalyse
Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n
Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade
Aspekte zur Approximation von Quadratwurzeln
Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet
-70- Anhang: -Lineare Regression-
-70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de
Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i
Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson
Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -
Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche
Lineare Regression - Mathematische Grundlagen
FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr
Lineare Regression (1) - Einführung I -
Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:
SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT
Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch
6. Modelle mit binären abhängigen Variablen
6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch
8 Logistische Regressionsanalyse
wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen
Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):
Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.
Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.
Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve
Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung
Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012
Erwartungswert, Varianz, Standardabweichung
RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend
1 BWL 4 Tutorium V vom 15.05.02
1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)
Lösungen zum 3. Aufgabenblock
Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass
Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny
eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung
nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen
arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree
Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).
44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften
Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07
Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage
Maße der zentralen Tendenz (10)
Maße der zentralen Tendenz (10) - De Berechnung der zentralen Tendenz be ategorserten Daten mt offenen Endlassen I - Bespel 1: offene Endlasse Alter x f x f p x p p cum bs 20 1? 3? 6? 6 21-25 2 23 20 460
3. Lineare Algebra (Teil 2)
Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw
Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel
ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore
Protokoll zum Grundversuch Mechanik
Protokoll zum Grundversuch Mechank 3.6. In desem Grundversuch zur Mechank werden dre verschedene Arten von Pendeln untersucht. Das Reversonspendel, das Torsonspendel und gekoppelte Pendel. A. Das Reversonspendel
Gruppe. Lineare Block-Codes
Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung
14 Überlagerung einfacher Belastungsfälle
85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung
Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung
Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler ([email protected]) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2
Lineare Optimierung Dualität
Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen
Konkave und Konvexe Funktionen
Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage
Nomenklatur - Übersicht
Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen
Entscheidungsprobleme der Marktforschung (1)
Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket
ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz
Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung
Grundpraktikum M5 Oberflächenspannung
Grundpraktkum M5 Oberflächenspannung Julen Kluge 21. Ma 2015 Student: Julen Kluge (564513) Partner: Emly Albert (564536) Betreuer: Dr. Mykhaylo Semtsv Raum: 314 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT
Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen
Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen
Methoden der innerbetrieblichen Leistungsverrechnung
Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den
Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 2
Übungen zur Vorlesung Physkalsche Chee 1 B. Sc.) Lösungsorschlag zu Blatt Prof. Dr. Norbert Happ Jens Träger Soerseester 7. 4. 7 Aufgabe 1 a) Aus den tabellerten Werten ergbt sch folgendes Dagra. Btte
12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2
1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:
I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler
I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate
Institut für Technische Chemie Technische Universität Clausthal
Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von
Hausübung 1 Lösungsvorschlag
Hydrologe und Wasserwrtschaft Hausübung Lösungsvorschlag NIDRSCHLAG Hnwes: Be dem vorlegenden Dokument handelt es sch ledglch um enen Lösungsvorschlag und ncht um ene Musterlösung. s besteht ken Anspruch
NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.
PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs
Ionenselektive Elektroden (Potentiometrie)
III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,
Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression
Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5
FORMELSAMMLUNG STATISTIK (I)
Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen
5.3.3 Relaxationsverfahren: das SOR-Verfahren
53 Iteratve Lösungsverfahren für lneare Glechungssysteme 533 Relaxatonsverfahren: das SOR-Verfahren Das vorangehende Bespel zegt, dass Jacob- sowe Gauß-Sedel-Verfahren sehr langsam konvergeren Für de Modellmatrx
Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden.
Stoffwerte De Stoffwerte für de enzelnen omponenten raftstoff, Luft und Abgas snd den verschedenen Stellen aus den Lteraturhnwesen zu entnehmen, für enge Stoffe sollen jedoch de grundlegenden Zusammenhänge
Nernstscher Verteilungssatz
Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.
Contents blog.stromhaltig.de
Contents We hoch st egentlch Ihre Grundlast? Ene ncht ganz unwchtge Frage, wenn es um de Dmensonerung ener senannten Plug&Play Solar-Anlage geht. Solarsteckdosensystem für jermann, auch für Meter lautete
Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6
Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und
6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines
6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.
Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten
Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen
Netzwerkstrukturen. Entfernung in Kilometer:
Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.
Stochastische Prozesse
INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)
Hydrosystemanalyse: Finite-Elemente-Methode (FEM)
Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf
Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1
Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement
2 Zufallsvariable und Verteilungen
Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem
H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5
1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,
Auslegung eines Extrusionswerkzeugs
Prof. Dr.-Ing Torsten Kes: S Laustz Skrt Auslegung enes Extrusonswerkzeugs Engangsbemerkung: Das Skrt versteht sch als Ergänzung zur Vorlesung und st ncht als Ersatz für de ersönlche Anwesenhet der Studerenden
SteigLeitern Systemteile
140 unten 420 2 0 9 12 1540 1820 Länge 140 StegLetern Leterntele/Leterverbnder Materal Alumnum Stahl verznkt Sprossenabstand 2 mm Leternholme 64 mm x 25 mm 50 x 25 mm Leternbrete außen 500 mm Sprossen
Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2
ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung
Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.
Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet
Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, [email protected].
Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, [email protected] Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener
Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R
Temporäre Stlllegungsentschedungen mttels stufenweser Grenzkostenrechnung E W U F W O R K I N G P A P E R Mag. Dr. Thomas Wala, FH des bf Wen PD Dr. Leonhard Knoll, Unverstät Würzburg Mag. Dr. Stephane
Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten.
Faktorwerte Da es das Zel der Faktorenanalyse st, de Zahl der Kennwerte zu reduzeren (aus velen Items sollen deutlch wenger Faktoren resulteren, st es nötg, Kennwerte für de Ausprägungen der Personen n
Thema 3: Die Schätzung a priori unbekannter Renditemomente
Thema 3: De Schätzung a pror unbekannter Rendtemomente Problem: We gelangt man zur Kenntns der benötgten Rendteerwartungswerte, -varanzen und -kovaranzen für Markowtz- Portfoloselekton? Möglche Quellen:
ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell
ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.
2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.
. Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen
6. Übung zur Linearen Algebra II
Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der
Anlage Netznutzungsentgelte Erdgas 2014 der Stadtwerke Eschwege GmbH
Entgelte be Erdgas-Ersatzbeleferung für Industre- und Geschäftskunden mt Lestungsmessung und enem Jahresverbrauch von mehr als 1.500.000 kh. Gültg ab 01.01.2014 De Ersatzversorgung endet sobald de Erdgasleferung
