IGDT: Image Processing Advanced Übungsteil 2
|
|
|
- Paul Kohler
- vor 10 Jahren
- Abrufe
Transkript
1 IGDT: Imae Processn Advanced Übunstel 2 Raner Schubert Insttut für Bomednsche Bldanalse Vsualserun Ist de alorthmsche Nachbldun dessen was en Maler be der Ereuun enes realstschen Bldes tut!
2 Grundlaen Beleuchtun Beobachter Volumen Obete Bld Betrachterebene 3D-Datenstruturen Oberflächen-Repräsentaton Volumen-Repräsentaton
3 Beleuchtunsmodelle Realstsche Beleuchtunsmodelle snd sehr omple und erfordern enormen Rechenaufwand da Mehrfachrefleonen Speelunen verschedene Lchtquellen und unterschedlche Materalen berücschtt werden müssen Guter Kompromss: Beleuchtunsmodell nach Phon Ra Castn: Prnp Wo st de Oberfläche? In der Oberflächen- Repräsentaton: Das erste etroffene Polon In der Volumen- Repräsentaton: Das erste elabelte Voel
4 Lo-F -Vsualserun: Ra-Castn Festelete Blcrchtun senrecht von vorn auf das Bldvolumen Dadurch eometrsche Transformaton und Interpolaton ncht nöt Enfachste Beleuchtun: Abstands-Schatterun Enfachst-Ra-Castn
5 Abstands-Schatterun Abstand enes vsualserten Pels bestmmt de Hellet Schcht m 3D-Volumen 3D-Bld Deteton des Obetes Für Grauwert-Stacs: Schwellwert für Grauwerte mamaler Grauwert entlan des Strahls Schwellwert für Gradent... Für sementerte Labelblder: Erstes efundene Voel mt enem bestmmten Label
6 3D-Volumna n ImaeJ Leder en onsstentes 3D-Konept stattdessen Stacs s. auch Tutoral En Stac st en Stapel von Bldern. Dese entsprechen den beannten 2D-Bldern von ImaeJ protected ImaeStac stac; publc nt setupstrn ar ImaePlus mp { stac = mp.etstac; return DOES_8G + STACK_REQUIRED; } Stac-Dmensonen De Größe enes Stacs erbt sch aus der Brete und Höhe der 2D-Blder sowe der Anahl der estapelten Blder: nt wdth = stac.etwdth; nt heht = stac.etheht; nt slces = stac.etse;
7 Zurff auf Voel Auf en Voel mt den Koordnaten =abc wrd uerffen n dem unächst auf de Schcht c und dann auf de Pel-Koordnaten uerffen wrd: ImaeProcessor current_slce = stac.etprocessorc; nt pel = current_slce.etpel;... current_slce.putpelpel; Aufabe 2 Schreben Se en PluIn das folende Eenschaften hat: Enlesen enes beleben 8bt-Stacs Bespele fnden sch auf der IBIA Web-Ste. Über en lenes Menü st umndest en enfacher Schwellwert für de Obetdeteton eventuell soar verschedene Obetdetetons-Krteren wählbar. Berechnen und Aneen ener 3D-Anscht mt der Größe: Brete der 2D-Blder des Stacs Anahl der Schchten m Stac. Das 3D-Bld soll Abstands-Schattert sen! Für Interesserte: Durch enfache Änderunen Ihres Alorthmus önnen Se u anderen Betrachtunsrchtunen ommen.
8 Volume Rendern Intenstät ewchtet Gradenten- Betra ewchtet = Opatät Undurchschtet Volume Rendern: Wchtunstabellen 0 ra level 0 radent
9 LoF-Volume-Rendern Verenfachunen: Feste Blcrchtun von vorne Gradent wrd mt Fator ewchtet Intenstät wrd n enem Intervall threshold_low threshold_hh mt Fator ewchtet sonst 0 Ken Beleuchtunsmodell! Erebns:
10 Alorthmus Lese ImaeStac Ereue Ausabebld mt Dmensonen Brete Höhe des Stacs For =; <StacHöhe; ++ { Hole Bld For =0... { For =0... { Summere Grauwerte Summere Gradenten Multplere und normere Summen Schrebe Wert ns Ausabebld }}} Berechnun des 3D-Gradenten Der loale Gradenten-Vetor wrd über de Grauwertdfferenen n - - und -Rchtun abeschätt: Für das LoF-VolumeRendern werden de Beträe aufsummert. = rad
11 Geschwndet Methoden etpel und putpel führen u sehr lanen Recheneten ausproberen! Lösun: De benötten Spalten der Blder werden mt der Methode etcolumn n Bte-Arras eladen: bte[] ra = new bte[lenth]; ra = ImaeProcessor.etColumn 0 lenth; Für de Berechnun enes Bldpuntes werden benött: De Spalte an der atuellen -Poston der atuellen Schcht De Spalten lns und rechts daneben De Spalten an der atuellen -Poston n den Schchten darüber und darunter Dadurch wrd de Berechnun star beschleunt! Aufabe 3 Schreben Se en PluIn ur Realserun des beschrebenen LoF-VolumeRenderns! Heru verändern Se am enfachsten das Vsualserunsmodul der Aufabe 2: Füen Se ene Methode ur Berechnun des loalen Gradentenbetraes hnu Erseten Se de Darstellun des ersten efundenen Pels m ewählten Schwellwertbereches durch de Aufsummerun der Gradentenbeträe und der Grauwerte entlan des Strahls für de Pel de m ewählten Grauwertberech leen. Der Wert des Ausabepel erbt sch durch de Multplaton der beden Summen mt anschleßender Normerun. Damt der Ausabewert weder m 8Bt-Berech let müssen Se n eeneter Form normeren!!!
Gruppe. Lineare Block-Codes
Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung
Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, [email protected].
Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, [email protected] Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener
ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de
ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte
Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen
Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum
1 - Prüfungsvorbereitungsseminar
1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten
Die Ausgangssituation... 14 Das Beispiel-Szenario... 14
E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern
4. Musterlösung. Problem 1: Kreuzende Schnitte **
Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,
Ionenselektive Elektroden (Potentiometrie)
III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,
Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.
Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet
Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)
Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:
Lineare Regression (1) - Einführung I -
Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:
Einführung in die Finanzmathematik
1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg
Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e
Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de
Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren!
Franz Schuck GmbH Enbau-/Betrebsanletung Stahl-PE-Übergang Typ PESS / Typ PESVS Orgnalbetrebsanletung Für künftge Verwendung aufbewahren! Enletung Dese Anletung st für das Beden-, Instandhaltungs- und
Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I
Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"
1 Definition und Grundbegriffe
1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:
18. Dynamisches Programmieren
8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus
Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):
Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.
tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung
Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt
Gesetzlicher Unfallversicherungsschutz für Schülerinnen und Schüler
Gesetzlcher Unfallverscherungsschutz für Schülernnen und Schüler Wer st verschert? Lebe Eltern! Ihr Knd st während des Besuches von allgemen bldenden und berufsbldenden Schulen gesetzlch unfallverschert.
12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2
1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:
Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1
Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen
nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen
arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree
Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?
We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de
13.Selbstinduktion; Induktivität
13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd
Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?
We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de
Statistik und Wahrscheinlichkeit
Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse
Leistungsmessung im Drehstromnetz
Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n
mit der Anfangsbedingung y(a) = y0
Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.
Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny
eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung
Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban
Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert
2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.
. Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen
Netzwerkstrukturen. Entfernung in Kilometer:
Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.
Datenträger löschen und einrichten
Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe
phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare
Skalerung von Organsatonen und Innovatonen gestalten phl omondo Se stehen vor dem nächsten Wachstumsschrtt hrer Organsaton oder haben berets begonnen desen aktv zu gestalten? In desem Workshop-Semnar erarbeten
wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:
Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab
DLK Pro Multitalente für den mobilen Datendownload. Maßgeschneidert für unterschiedliche Anforderungen. www.dtco.vdo.de
DLK Pro Multtalente für den moblen Datendownload Maßgeschnedert für unterschedlche Anforderungen www.dtco.vdo.de Enfach brllant, brllant enfach DLK Pro heßt de Produktfamle von VDO, de neue Standards n
6. Modelle mit binären abhängigen Variablen
6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch
Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6
Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und
Energiesäule mit drei Leereinheiten, Höhe 491 mm Energiesäule mit Lichtelement und drei Leereinheiten, Höhe 769 mm
Montageanletung Energesäule mt dre Leerenheten, Höhe 491 mm 1345 26/27/28 Energesäule mt Lchtelement und dre Leerenheten, Höhe 769 mm 1349 26/27/28 Energesäule mt sechs Leerenheten, Höhe 769 mm, 1351 26/27/28
Nernstscher Verteilungssatz
Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.
3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale
3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche
MRKOMNO. kéì=~äw= pfabufp=ud. aáöáí~äéë=o åíöéå=l=sáçéçjpçñíï~êé=j=sfabufp hìêòäéçáéåìåöë~åäéáíìåö= aéìíëåü
kéì=~äw= MRKOMNO pfabufp=ud aáöáí~äéë=o åíöéå=l=sáçéçjpçñíï~êé=j=sfabufp hìêòäéçáéåìåöë~åäéáíìåö= aéìíëåü 0123 Deses Produkt trägt das CE-Kennzechen n Überenstmmung mt den Bestmmungen der Rchtlne 93/42EWG
Methoden der innerbetrieblichen Leistungsverrechnung
Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den
SteigLeitern Systemteile
140 unten 420 2 0 9 12 1540 1820 Länge 140 StegLetern Leterntele/Leterverbnder Materal Alumnum Stahl verznkt Sprossenabstand 2 mm Leternholme 64 mm x 25 mm 50 x 25 mm Leternbrete außen 500 mm Sprossen
"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft
"Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012
d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb
S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008
Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe
Auswertung univariater Datenmengen - deskriptiv
Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;
1 BWL 4 Tutorium V vom 15.05.02
1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)
FORMELSAMMLUNG STATISTIK (I)
Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen
binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:
Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,
Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -
Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche
1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.
1.Schularbet.Okt. 1997 7.A A) Berechne ohne TI-9: Beachte: Für de Bespele 1 und snd alle notwendgen Rechenschrtte anzugeben. 1a) De zu z= a + bkonjugert komplexe Zahl st z= a b. Zege für z 1 = -4 + 3 und
Entgelte für die Netznutzung, Messung und Abrechnung im Gasverteilnetz
Entgelte für de Netznutzung, Messung und Abrechnung m Gasvertelnetz Gültg vom 22.12.2006 bs 30.09.2007 reslste (netto) 1. Netzentgelt (netto) De Netzentgelte der Kunden der Stadtwerke Osnabrück AG werden
Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.
Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve
14 Überlagerung einfacher Belastungsfälle
85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung
Free Riding in Joint Audits A Game-Theoretic Analysis
. wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer ([email protected]) Marcel Steller ([email protected]) Insttut ür Rechnungswesen, Steuerlehre
W i r m a c h e n d a s F e n s t e r
Komfort W r m a c h e n d a s F e n s t e r vertrauen vertrauen Set der Gründung von ROLF Fensterbau m Jahr 1980 snd de Ansprüche an moderne Kunststofffenster deutlch gestegen. Heute stehen neben Scherhet
I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung
Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für
SH SK S..LL. BPW ECO Disc Trailerscheibenbremsen TSB 3709 / 4309 / 4312. Servicemaßnahme BPW BERGISCHE ACHSEN. Trailerscheibenbremsen
Servcemaßnahme BPW ECO Dsc Tralerschebenbremsen BPW BERGISCHE ACHSEN BPW ECO Dsc Tralerschebenbremsen TSB 3709 / 4309 / 4312 Servcemaßnahme SH SK S..LL BPW ECO Dsc Servcemaßnahme Inhalt BPW Servce-Kt BPW
Denavit-Hartenberg-Notation
DENAVIT und HARTENBERG haben ene Methode engeführt, de es erlaubt für alle knematsche Ketten de Lagen der Gleder zuenander enhetlch auszudrücken. De Gelenke, de de Gleder mtenander verbnden, dürfen dabe
1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit
3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen
IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen.
IT- und achwssen: Was zusammengehört, muss weder zusammenwachsen. Dr. Günther Menhold, regercht 2011 Inhalt 1. Manuelle Informatonsverarbetung en ntegraler Bestandtel der fachlchen Arbet 2. Abspaltung
Ihr geschützter Bereich Organisation Einfachheit Leistung
Rev. 07/2012 Ihr geschützter Berech Organsaton Enfachhet Lestung www.vstos.t Ihr La geschützter tua area rservata Berech 1 MyVstos MyVstos st ene nformatsche Plattform für den Vstos Händler. Se ermöglcht
1 Mehrdimensionale Analysis
1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus
VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE
VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen
6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen
196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen
Versicherungstechnischer Umgang mit Risiko
Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über
Online-Services Vorteile für Mandanten im Überblick
Onlne-ervces Vortele für en m Überblck teuerberechnung Jahresbschluss E-Mal Dgtales Belegbuchen Fgur-enzeln De Entfernung zu Ihrem Berater spelt mt deser Anwendung kene Rolle mehr. Und so funktonert s:
Entscheidungsprobleme der Marktforschung (1)
Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket
Die Schnittstellenmatrix Autor: Jürgen P. Bläsing
QUALITY-APPs Applkatonen für das Qaltätsmanagement Prozessmanagement De Schnttstellenmatrx Ator: Jürgen P. Bläsng Schnttstellen (Übergangsstellen, Verbndngsstellen) n betreblchen Prozessen ergeben sch
Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich
Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem
Lösungen zu Übungsblatt 1 Höhere Mathematik 1 WS 10/11 Prof. Dr.B.Grabowski. Zu Aufgabe 1. Zu Aufgabe 2
Lösunen zu Übunsblatt 1 Höhere Matheatk 1 WS 10/11 Prof. Dr.B.rabowsk Zu Aufabe 1 Zu Aufabe 2 1 Lösunen zu Übunsblatt 1 Höhere Matheatk 1 WS 10/11 Prof. Dr.B.rabowsk 2 Zu Aufabe 3 Se de Mene aller Studerenden
1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen
1 Systematserung der Verznsungsarten 2 Jährlche Verznsung 3 Unterjährge Verznsung 4 Stetge Verznsung 5 Aufgaben zur Znsrechnung 1. Systematserung der Verznsungsarten a d g Jährlche Verznsung nfache Znsen
Fachkräfte- Die aktuelle Situation in Österreich
Chart 1 Fachkräfte- De aktuelle Stuaton n Österrech Projektleter: Studen-Nr.: Prok. Dr. Davd Pfarrhofer F818..P2.T n= telefonsche CATI-Intervews, repräsentatv für de Arbetgeberbetrebe Österrechs (ohne
Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition
Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden
Spule, Induktivität und Gegeninduktivität
.7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn
Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1
Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement
Vermessungskunde für Bauingenieure und Geodäten
Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13
Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung
am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall
Lösungen der Aufgaben zu Kapitel 2
Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n
Der Satz von COOK (1971)
Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls
Donnerstag, 27.11.2014
F ot o: BMW AGMünc hen X Phone nmot on E x ec ut v epr ev ew 2 7.Nov ember2 01 4 BMW Wel tmünc hen Donnerstag, 27.11.2014 14:00 15:00 15:00 16:00 16:00 17:00 17:00 17:45 Apertf Meet & Greet Kaffee & klener
I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler
I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate
