Fourier-Reihe mit komplexer Exponentialfunktion
|
|
|
- Anna Neumann
- vor 9 Jahren
- Abrufe
Transkript
1 Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 9. Juni 2010, 15:54 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Überlagung sinusförmiger Schwingungen Das Verhalten vieler Systeme ist für sinusförmige Störungen/Anregungen relativ leicht zu beschreiben. Außerdem sind praktisch alle hinreichend schwachen Schwingungen sinusförmig, weil die entsprechenden Differentialgleichungen dann mehr und mehr linear werden und damit der des Federpendels entsprechen. Netterweise können alle Schwingungen aus sinusförmigen Schwingungen zusammengesetzt werden. Das ist der praktische Hintergrund der Fourier-Reihe [Fourier series] und der kontinuierlichen Fourier-Transformation [Fourier transform] (Link: Aussprache). Man kann zum Zusammensetzen auch andere Schwingungen als sinusförmige nehmen, zum Beispiel Wavelets. Aber die Fourier- Theorie beschäftigt sich nur mit den sinusförmigen; das ist in der Praxis der wichtigste Fall. Das Spektrum eines Signals gibt an, aus welchen sinusförmigen Teilsignalen sich das Signal zusammensetzt. Typischerweise gibt man deren Frequenzen und deren Amplitude an, nicht deren Phase. Der Weg vom Signal zu den Amplituden und Phasen seiner sinusförmigen Teilsignale heißt Fourier-Analyse; der umgekehrte Weg von den Amplituden und Phasen der sinusförmigen Teile zum Gesamtsignal heißt Fourier-Synthese. Bei der Fourier-Reihe geht es um periodische Schwingungen. Es zeigt sich, dass diese aus sinusförmigen Schwingungen der gleichen Frequenz (Grundfrequenz [fundamental]) und der ganzzahligen Vielfachen (Oberwellen) dieser Frequenz bilden lassen, gegebenenfalls plus einen konstanten Versatz (Gleichspannung [DC component]). Alle diese Teilschwingungen inklusive der Grundschwingung heißen Harmonische oder Teiltöne [partials]. Die n-te Harmonische hat die n-fache Grundfrequenz, n = 0,1,2,... Demos mit Wolfram Alpha: Sägezahnwelle [sawtooth] mit Periode 2π: FourierSeries[t,t,7] Rechteckwelle [rectangle] mit Periode 2π: FourierSeries[sgn(t),t,7] 1
2 2 FUNKTIONEN MIT DER PERIODE 1 2 Dreieckwelle [triangle] mit Periode 2π: FourierSeries[ t,t,7] Demos mit Audacity: Spektrogramm, Spektrum-Analyzer. 2 Funktionen mit der Periode 1 Zunächst soll es um Funktionen f, gehen, welche die Periode 1 haben, das heißt f (t + 1) = f (t) für alle t, also zum Beispiel eine solche: 1 Auch komplexwertige Funktionen sind dabei erlaubt. Nebenbei: Eine Funktion mit der Periode 1/42 hat automatisch auch die Periode 1. Als Ausgangspunkt, um eine solche Funktion f aus sinusförmigen Schwingungen zusammenzusetzen, nimmt man folgende Basisfunktionen: 2 für alle ganzen Zahlen n =..., 2, 1,0,1,2,... Diese Funktionen haben ebenfalls (unter anderem) die Periode 1. Die komplexwertigen Funktionen mit Periode 1 bilden einen Vektorraum: Man kann sie mit (reellen oder komplexen) Zahlen multiplizieren und zueinander addieren, wobei wieder Funktionen mit Periode 1 entstehen und die üblichen Rechenregeln gelten. In diesem Vektorraum kann man auch ein (abstraktes) Skalarprodukt zweier Funktionen f und g definieren, nämlich: 3 f, g := Das Skalarprodukt einer Funktion mit sich selbst soll wie in der Geometrie das Quadrat ihrer (abstrakten) Länge sein: 4 f := Diese Länge (korrekt genannt: L 2 -Norm ) entspricht dem Effektivwert [RMS, root mean square] in der Elektrotechnik.
3 3 FOURIER-REIHE MIT KOMPLEXER EXPONENTIALFUNKTION 3 5 Die Funktionen t exp(2π jnt) für n Z haben alle die Norm 1: Außerdem stehen sie aufeinander senkrecht in dem Sinne, dass das Skalarprodukt jeder dieser Funktionen mit einer anderen dieser Funktionen null ist: 6 3 Fourier-Reihe mit komplexer Exponentialfunktion Angenommen, eine Funktion f ist irgendwie aus Vielfachen c n der Funktionen t exp(2π jnt) zusammengesetzt. Also: 7 Das ist die Fourier-Reihe. Die Zahlen c n heißen komplexe Fourier-Koeffizienten. Zum Beispiel c 42 und c 42 sagen zusammen etwas über den Anteil der Frequenz 42 und über die Phase der entsprechenden sinusförmigen Schwingung. Einen Cosinus mit Frequenz 42 und Amplitude 1 erhält man mit: 8
4 4 VOLLSTÄNDIGKEIT 4 Einen Sinus mit Frequenz 42 und Amplitude 5 erhält man mit: 9 Netterweise kann man jedes c n nun ganz billig ausrechnen, so wie man in der Geometrie einen Vektor in eine Basis senkrechter Einheitsvektoren zerlegt. Bilden wir versuchsweise das Skalarprodukt von t exp(2π jmt) mit f : 10 Also gilt: 11 Streng genommen, müsste man sich hier darüber Gedanken machen, dass man auch bei unendliche lange Summen (also Reihen) so ausklammern kann. 4 Vollständigkeit Eine Frage ist noch offen: Kann man jede Funktion f, welche die Periode 1 hat, aus den Funktionen t exp(2π jnt) zusammensetzen? In der Tat geht das, wenn f bis auf endlich viele Sprung- oder Knickstellen stetig differenzierbar ist. An Sprungstellen von f konvergiert die Fourier-Reihe allerdings gegen den Mittelwert aus linkem und rechtem Grenzwert von f, was nicht unbedingt der Funktionswert von f sein muss: 12 Das mathematisch zu beweisen, ist allerdings recht kompliziert. Dass sich jede Funktion bilden lässt (mit gewissen Einschränkungen), heißt mathematisch, dass Menge der Funktionen t exp(2π jnt) mit n Z vollständig [complete] ist. Das ist analog dazu, dass man im R 3 drei Basisvektoren braucht,
5 5 FUNKTIONEN MIT BELIEBIGER PERIODE T 5 um alle anderen Vektoren bilden zu können, und nur mit zwei Basisvektoren nicht hinkommt. 5 Funktionen mit beliebiger Periode T Um statt der Funktionen mit Periode 1 solche mit einer anderen Periode T zu behandeln, ändert man das Skalarprodukt: 13 und entsprechend die Länge (Norm): 14 Als Basis nimmt man die Funktionen: 15 Denn nun haben diese die Norm 1 und stehen senkrecht aufeinander. Also ergibt sich für Funktionen f mit Periode T die Fourier-Reihe: 16 mit den Fourier-Koeffizienten: 17 Nebenbei: Wenn man eine periodische Funktion über die Länge einer Periode integriert, ist es egal, an welcher Stelle man anfängt!
Kontinuierliche Fourier-Transformation. Laplace-Transformation
Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:
18 Kontinuierliche Fourier-Transformation. Laplace-Transformation
18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:
Länge, Skalarprodukt, Geradengleichungen
Länge, Skalarprodukt, Geradengleichungen Jörn Loviscach Versionsstand: 9. April 2010, 18:48 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach
Vektoren. Jörn Loviscach. Versionsstand: 30. März 2010, 18:06 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung.
Vektoren Jörn Loviscach Versionsstand: 30. März 2010, 18:06 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Rechnen mit Pfeilen Bei den komplexen Zahlen haben wir das Rechnen
Potenzen und Wurzeln komplexer Zahlen. Eulersche Identität. Polardarstellung. Additionstheoreme. Vollständige Faktorisierung von Polynomen
Potenzen und Wurzeln komplexer Zahlen. Eulersche Identität. Polardarstellung. Additionstheoreme. Vollständige Faktorisierung von Polynomen Jörn Loviscach Versionsstand: 3. Dezember 200, 20:42 Die nummerierten
2 Geradengleichungen in Parameterform. Länge und Skalarprodukt
2 Geradengleichungen in Parameterform. Länge und Skalarprodukt Jörn Loviscach Versionsstand: 19. März 2011, 15:33 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:
Vektoren. Jörn Loviscach. Versionsstand: 11. April 2009, 23:42
Vektoren Jörn Loviscach Versionsstand:. April 29, 23:42 Rechnen mit Pfeilen Bei den komplexen Zahlen haben wir das Rechnen mit Pfeilen schon kennen gelernt. Addition und Subtraktion klappen in drei wie
Ableitung von Sinus und Cosinus. Additionstheoreme. Sinusschwingungen
Ableitung von Sinus und Cosinus. Additionstheoreme. Sinusschwingungen Jörn Loviscach Versionsstand: 7. Dezember 2009, 22:47 1 Ableitung von Sinus und Cosinus Wenn man es mit der mathematischen Strenge
Länge, Skalarprodukt, Vektorprodukt
Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren
Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung
34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis
Schnelle Fouriertransformation (FFT)
Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung
Fourier Reihe. Fourier Transformation. Ma 2 Lubov Vassilevskaya, SS 2008
Fourier Reihe Fourier Transformation Entwicklung einer Funktion in eine Potenzreihe Eine beliebig oft differenzierbare Funktion f (x) kann in eine unendliche Reihe von Potenzfunktionen x n entwickelt werden
4.1. Vektorräume und lineare Abbildungen
4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt
:. (engl.: first harmonic frequency)
5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man
Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung.
Matrizen Jörn Loviscach Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Matrix Ein rechteckige Anordnung von mathematischen Objekten
Matrizen. Jörn Loviscach
Matrizen Jörn Loviscach Versionsstand: 7. April 2010, 14:27 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach 1 Matrix Ein
Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16
Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).
Vom Zeit- zum Spektralbereich: Fourier-Analyse
Vom Zeit- zum Spektralbereich: Fourier-Analyse Ergebnis der Analyse Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinoidalschwingungen Ermittlung der Amplituden
Angewandte Mathematik und Programmierung
Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.
In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha):
3 Matrizen Jörn Loviscach Versionsstand: 20. März 2012, 16:02 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html This work is licensed
Dreiecke, Geraden, Lineare Gleichungssysteme
Dreiecke, Geraden, Lineare Gleichungssysteme Jörn Loviscach Versionsstand: 18. April 2009, 19:46 1 Cosinussatz Mit Hilfe des Skalarprodukts kann man den Cosinussatz [law of cosines] zeigen. Seien a und
Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung
Partielle Ableitungen, Gradient, Lineare Näherung, Extrema, Fehlerfortpflanzung Jörn Loviscach Versionsstand: 29. Juni 2009, 18:41 1 Partielle Ableitungen, Gradient Die Ableitung einer Funktion f an einer
00. Einiges zum Vektorraum R n
00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen
Einführung in die Physik I. Schwingungen und Wellen 1
Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten
Mathematische Erfrischungen III - Vektoren und Matrizen
Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen
Höhere Mathematik I/II
Markus Stroppel Höhere Mathematik I/II Z. Zusätze. Z.. Skalarprodukte in Funktionenräumen. Wir wollen an einigen Beispielen zeigen, dass es nützlich sein kann, Skalarprodukte auch in ganz allgemeinen (reellen)
Primzahlen Darstellung als harmonische Schwingung
Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der
4 Zahlenbereiche. 1 Natürliche, ganze und rationale Zahlen
4 Zahlenbereiche Jörn Loviscach Versionsstand: 21. September 2013, 15:53 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work
2 Grundlagen zu Ableitung und Integral
2 Grundlagen zu Ableitung und Integral Jörn Loviscach Versionsstand: 21. September 2013, 15:52 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html
1 Äquivalenzumformungen, Lösungsmenge
5 Ungleichungen Jörn Loviscach Versionsstand: 21. September 2013, 15:55 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work is
SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:
/5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
14 Partialbruchzerlegung
14 Partialbruchzerlegung Jörn Loviscach Versionsstand: 21. September 2013, 15:59 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This
In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha):
3 Matrizen Jörn Loviscach Versionsstand: 28. März 2015, 21:32 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work is licensed
Lineare Näherung. Anwendungen
Lineare Näherung. Anwendungen Jörn Loviscach Versionsstand: 1. Januar 2010, 17:15 1 Lineare Näherung Ist eine Funktion f an der Stelle x 0 differenzierbar, existiert dort ihre Ableitung f und es gilt:
1 Überblick über das zweite Semester. Vektorräume
1 Überblick über das zweite Semester. Vektorräume Jörn Loviscach Versionsstand: 28. März 2015, 21:32 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html
Fourier-Reihen. Definition. Eine auf R definierte Funktion f heißt periodisch mit der Periode T 0, wenn f(x + T ) = f(x) x R.
Fourier-Reihen Sehr häufig in der Natur begegnen uns periodische Vorgänge, zb beim Lauf der Gestirne am Nachthimmel In der Physik sind Phänomene wie Schwingungen und Wechselströme periodischer Natur Zumeist
Mathematik und Musik: Fourieranalyse
Mathematik und Musik: Fourieranalyse Matheseminar JKU Linz WS2015/16 Peter Gangl Linz 5. Februar 2016 1 / 20 Outline 1 Musik mathematisch betrachtet 2 2 / 20 Outline 1 Musik mathematisch betrachtet 2 2
Konvergenz und Stetigkeit
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn
f(t) = a 2 + darstellen lasst Periodische Funktionen.
7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen
Orthogonalität von Kosinus und Sinus
Orthogonalität von Kosinus und Sinus Die Funktionen 1, cos(kx), sin(kx), k >, bilden ein Orthogonalsystem im Raum der quadratintegrierbaren π-periodischen Funktionen: cos(jx) cos(kx) dx = cos(jx) sin(lx)
Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik
14 Schmiegeparabel und Freunde, Taylor-Reihe
14 Schmiegeparabel und Freunde, Taylor-Reihe Jörn Loviscach Versionsstand: 20. März 2012, 16:01 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html
17 Grundrechenarten für komplexe Zahlen
7 Grundrechenarten für komplexe Zahlen Jörn Loviscach Versionsstand: 2. September 203, 5:58 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html
SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100
SYS_A - ANALYSIEREN Statistik Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 Histogramm (Praxis) Realisierung Lage Streuung Zufallsvariable Dichte der Normalverteilung Verteilungsfunktion Fläche
11 Fourier-Analysis Grundlegende Begriffe
11 Fourier-Analysis 11.1 Grundlegende Begriffe Definition: Eine Funktion f : R R (oder f : R C) heißt periodisch mit der Periode T (oder T-periodisch), falls f(t + T) = f(t) für alle t R. Ziel: Entwicklung
19 Folgen. Grenzwerte. Stetigkeit
19 Folgen. Grenzwerte. Stetigkeit Jörn Loviscach Versionsstand: 27. Dezember 2014, 16:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html
Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 9. Dezember 2017
Brückenkurs Mathematik Jörn Steuding (Uni Würzburg), 9. Dezember 2017 unser Programm 11. November: 1. Zahlen und einfache Gleichungen Zahlen, Rechengesetze, lineare u. quadratische Gleichungen, Dezimalbrüche,
5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix
5 Determinante, Spatprodukt, Vektorprodukt, inverse Matrix Jörn Loviscach Versionsstand: 20. März 2012, 16:02 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:
3. Kinematik und Schwingungen
3. Kinematik und Schwingungen 1 3.1. Kinematik Als Nächstes wollen wir Bewegungen beschreiben z.b. die einer Cataglyphis 2 Zuallererst brauchen wir ein Koordinatensystem um die Positionen überhaupt zu
Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5
Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine
Kapitel 2: Fourieranalyse. Analoge, periodische Signale
ZHW, NM, 5/, Rur Kapitel : Fourieranalyse Analoge, periodische Signale Inhaltsverzeichnis. EINLEIUNG.... LINEARER MIELWER... 3. LEISUNG UND EFFEKIVWER...3 4. WINKELFUNKIONEN...3 5. FOURIERREIHE...4 6.
7 Fourier-Transformation
7 Fourier-Transformation Ausgangspunkt: Die bereits bekannte Fourier-Reihenentwicklung einer T-periodischen, stückweise stetig differenzierbaren Funktion f T : R R, f T (t) = k= γ k e ikωt mit Frequenz
Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v.
Fourier-Reihen für periodische Funktionen Sei periodisch, mit Periode L: Auch für diesen Fall gilt die Fourier- Reihen-Darstellung (b.3), mit : (b.3) (und stückweise stetig differenzierbar) (c.5) Integral
16 Trigonometrie: Sinus und Freunde, Arcusfunktionen
6 Trigonometrie: Sinus und Freunde, Arcusfunktionen Jörn Loviscach Versionsstand: 2. Dezember 20, 6:28 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html
Fourieranalyse und -synthese in Experiment und Simulation
in Experiment und Simulation 1. Theoretische und technische Grundlagen Analysiert man einen Sinuston am Oszilloskop (erzeugt vom Funktionsgenerator), so erkennt man einen reinen sinusförmigen Verlauf.
5. Fourier-Transformation
Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf
Seminar Akustik. Aufgaben zu Teil 1 des Skripts Uwe Reichel, Phil Hoole
Seminar Akustik. Aufgaben zu Teil des Skripts Uwe Reichel, Phil Hoole Welche Kräfte wirken auf ein schwingendes Teilchen?! von außen angelegte Kraft (z.b. Glottisimpulse)! Rückstellkräfte (Elastizität,
HTBLA Neufelden Fourierreihen Seite 1 von 14. Peter Fischer
HTBLA Neufelden Fourierreihen Seite von 4 Peter Fischer [email protected] Fourierreihen Mathematische / Fachliche Inhalte in Stichworten: Fourierreihe, Fourierkoeffizienten, gerade und ungerade Funktionen,
Praktikum Grundlagen der Elektrotechnik
Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik Lehrgruppe Grundlagen der Elektrotechnik Praktikum Grundlagen der Elektrotechnik 1. Versuchsbezeichnung GET 10: Fourieranalyse
Signale und Systeme Signale
Signale und Systeme Signale Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Fakultät Elektrotechnik und Informationstechnik Digitale Signalverarbeitung und Systemtheorie Inhalt der Vorlesung
Technische Beschreibung der akustischen Signalkette
Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information
Übersicht Kapitel 9. Vektorräume
Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten
Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)
Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz
Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2016/17. FB Mathematik
Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 016/17 7. Fourier-Methoden 7.1. Periodische Funktionen In der Physik und in der Technik spielen periodische Funktionen eine
Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-
Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;
Es gibt eine Heuristik, mit der sich die Primzahldichte
Es gibt eine Heuristik, mit der sich die Primzahldichte 1 ln(x) für großes x N plausibel machen lässt. Die Idee besteht darin, das Änderungsverhalten der Primzahldichte bei x zu untersuchen. Den Ansatz
Lineare Gleichungssysteme
KAPITEL 2 Lineare Gleichungssysteme. Beispiele Wir betrachten zunächst vier Gleichungssysteme und bestimmen ihre Lösungsmenge. Dabei geht es uns noch nicht darum, ein Lösungsverfahren für lineare Gleichungssysteme
10.2 Linearkombinationen
147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition
Mathematik I. Vorlesung 11. Lineare Unabhängigkeit
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,
Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen
Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt
Zeitfunktionen. Kapitel Elementarfunktionen
Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch
Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung
28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen
3. Fourieranalyse und Amplitudenspektren
3.1 Fourieranalyse 3.1.1 Einleitung Laut dem französischen Mathematiker Fourier (1768-1830) kann jedes periodische Signal in eine Summe von sinusförmigen Signalen mit unterschiedlichen Amplituden, Frequenzen
Mathematische Grundlagen für die Vorlesung. Differentialgeometrie
Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie
$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $
Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit
Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen
Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen
Stetigkeit von Funktionen
Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte
Differentialgleichungen 2. Ordnung
Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei
Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)
1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge
c < 1, (1) c k x k0 c k = x k0
4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger
Übung 2 vom
Übung vom.0.04 Aufgabe 5 Gegeben ist die Gleichung sin(α) + sin(α + β) + sin(α + β) = 0 Für welches Argument β ist diese Gleichung für jedes α erfüllt? Wo findet diese Gleichung Anwendung in der Technik?
Vorkurs Mathematik. Übungen Teil IV
Vorkurs Mathematik Herbst 009 M. Carl E. Bönecke Skript und Übungen Teil IV. Folgen und die Konstruktion von R Im vorherigen Kapitel haben wir Z und Q über (formale) Lösungsmengen von Gleichungen der Form
Physik & Musik. Fouriersynthese. 1 Auftrag
Physik & Musik 21 Fouriersynthese 1 Auftrag Physik & Musik Fouriersynthese Seite 1 Fouriersynthese Bearbeitungszeit: 45 Minuten Sozialform: Einzelarbeit Voraussetzung: Posten 1: "Wie funktioniert ein KO?"
Fourier-Reihe und -Spektrum
SiSy, Fourier-Reihen / Fourier-Reihe und -Spektrum Fourier-Darstellung periodischer Funktionen. Einleitung In vielen technischen Anwendungen sind die zeitlichen Verläufe von Signalen wie z.b. Spannung
Fourierreihen und Fouriertransformation
Fourierreihen und Fouriertransformation Fourierreihen Autor: Harald Höller letzte Änderung: 11.11.09 Lizenz: Creative Commons Lizenz by-nc-sa 3.0 at Bei Fourierreihen wird nach trigonometrischen (Erzeugenden)Funktionen
