4. Klausur ( )
|
|
|
- Klaus Jaeger
- vor 9 Jahren
- Abrufe
Transkript
1 EI PH J PHYSIK 4. Klausur ( ) Telle oder Weilchen? Eure letzte Physik-Klausur in der Schule! Du kannst deinen GTR verwenden. Achte auf eine übersichtliche Darstellung! (Bearbeitungszeit: 50 Minuten) 1. Aufgabe (8 Punkte) Monochromatisches Licht der Wellenlänge L trifft senkrecht auf einen Doppelspalt mit Spaltabstand b. Im Abstand a>>b trifft das Licht auf einen Schirm S. a) Was ist auf dem Schirm zu beobachten? Skizziere das Phänomen. Auf dem Schirm sieht man ein Interferenzbild. Dabei kann man mehrere Maxima erkennen, die äquidistant liegen. In der Mitte findet sich das Hauptmaximum (0. Ordnung), da hier die Intensitäten am größten sind. b) Fertige eine Skizze des Aufbaus an und trage die relevanten Größen ein.
2 c) Begründe kurz, dass die Näherungsformel x=l a/b für den Abstand x zweier Maxima gilt. Wir betrachten bspw. das Maximum 1. Ordnung oberhalb des Max. 0. Ordnung. An diesem Punkt trifft Licht von beiden Spalten aufeinander und überlagert sich. Dabei kommen die Strahlen praktisch parallel an und zwar unter einem Einfallswinkel α. Betrachtet man dieses rechtwinklige Dreieck: so gilt tan(α)=x/a mit x als Abstand zw. diesen beiden Maxima. Andererseits sind die Laufwege unterschiedlich. Unter der Annahme (hier ist eine Näherung), dass die Strahlen von beiden Spalten parallel sind, gilt in diesem Dreieck: folgendes: sin(α)=l/b. Dabei ist die Wegdifferenz gerade die Wellenlänge, was sozusagen keiner Differenz entspricht und so können sich die Maxima/Minima der elektromagnetischen Welle verstärken. Anders ist es, wenn die Differenz bspw. L/2 beträgt, denn dann fällt ein Tal auf einen Berg etc. und es kommt zur Auslöschung. Bei kleinen Winkeln gilt tan(α) sin(α) und damit gilt L/b=x/a oder x=la/b. d) Die beiden Maxima 2. Ordnung haben einen Abstand von 5,2cm zueinander, wenn b=0,5mm und a=10m sind. Welche Wellenlänge L hat das monochromatische Licht? In der 2. Skizze ist das bereits eingetragen. Das entspricht gerade 4x. Also ist x=1,3cm. Damit ist L=xb/a=650nm.
3 2. Aufgabe (4 Punkte) Laserlicht mit Wellenlänge λ=633nm fällt senkrecht auf ein optisches Gitter. Im Abstand a=4m hinter dem Gitter beobachtet man auf einem Schirm ein Interferenzbild. Die dort zu sehenden Maxima 1. Ordnung liegen 14cm auseinander. a) Wieviele Spalten besitzt das Gitter auf 1mm Länge? Wir wissen, dass die Maxima 1. Ordnung 0,14m auseinander liegen. Damit ist 2x=0,14m bzw. x=0,07m. Nun ist x/a=λ/g mit Gitterkonstanten g. g=λa/x, was etwa 0,036mm entspricht. Nach dem Dreisatz passen also ca. 28 Spalten auf einen Millimeter. 3. Aufgabe (3 Punkte) Das Spektrum einer Quecksilberdampflampe wurde wie folgt festgehalten: a) Beschreibe, was in diesem Schaubild zu erkennen ist. Auf dem Schaubild ist zu sehen, dass die Hg-Lampe hauptsächlich Licht in 4 Farben abstrahlt; von links nach rechts sind das UV-blau-grün-gelb. b) Gib einen Versuchsaufbau an, mit dem man ein solches Spektrum bestimmen könnte. Wir konnten diese Farben mit einem Gitter sichtbar machen, wobei wir den Lichtkegel der Lampe noch mit einer Linse fokussieren mussten. Der Aufbau ist also (ohne Skizze): Lampe-Linse-Gitter-Schirm. Man muss Linse und Schirm entsprechend justieren.
4 4. Aufgabe (5 Punkte) Ein Betastrahler wird als Elektronenquelle verwendet und diese gelangen durch einen Doppelspalt auf einen Nachweisschirm: Dabei besitzen die Elektronen eine Energie von J. a) Welcher Frequenz entspricht dies nach der Formel von Planck? (h=6, Js) W=hf und damit ist f=w/h=0, Hz=4, Hz. b) Berechne die debroglie-wellenlänge für ein solches Elektron. (c= m/s) Mit der Wellengleichung c=λf ist λ=c/f= m, was 0,67 nm sind. Das ist um einiges weniger als bei sichtbarem Licht, aber (fast) noch im Nanometerbereich und nicht jenseits von gut und böse wie bei unserem Tennis- oder Fußball. c) Was wird auf dem Schirm zu sehen sein, wenn der Doppelspalt sehr schmal ist? Ein Interferenzbild, genauso wie in Aufgabe 1. Dabei ist davon auszugehen, dass hinreichend viele Elektronen abgeschossen werden. Eigentlich sieht man auch noch etwas den Einzelspalt, aber das haben wir vernachlässigt. d) Was geschieht mit dem Schirmbild, wenn man einzelne Elektronen abschießt? Man sieht erstaunlicherweise immer noch ein Interferenzbild. Wobei man das nur sieht, wenn man wieder lange genug mit Elektronen schießt und NICHT nachschaut, durch welchen Spalt das einzelne Teilchen fliegt ( Welcher-Weg-Information ). In letzterem Fall bricht das Wellenbild zusammen und man sieht zwei Einzelspalte. Wenn man nur wenige Teilchen abschießt, sieht man das jeweilige Bild, allerdings sehr körnig.
5 5. Aufgabe (3 Punkte) Bei Wikipedia findet sich der folgende einleitende Text zum Welle-Teilchen-Dualismus : a) Erläutere kurz, was du unter dem Begriff Welle-Teilchen-Dualismus verstehst. Die Sache ist die: Ein Teilchen ist ein menschliches Gedankenkonstrukt. Genauso ist es die Idee einer Welle. Beides existiert in unseren Köpfen und wir können beides auch mathematisch beschreiben. Das heißt aber noch lange nicht, dass eines der beiden Konzepte auch wirklich in der Natur vorkommt. Wie sich herausgestellt hat, sind beides Idealisierungen und es hängt von den Größenordnungen ab, ob eines der beiden Modelle die Natur gut beschreiben kann. Manchmal ist es günstiger, ein Elektron als Teilchen zu sehen, manchmal muss man es als Welle beschreiben. Dies gilt im Prinzip für alle Objekte in der Natur, doch da die beiden Modelle gegenläufig sind, überwiegt oft ein Aspekt den anderen. Bspw. ist die Billardkugel definitiv besser als Teilchen zu beschreiben denn als Welle! b) Nenne ein Beispiel, an dem man sehen kann, dass Licht auch Teilcheneigenschaften hat. Am Fotoeffekt, denn bei einer Welle ist die Energie gleichmäßig über den Raum verteilt. Der Effekt, dass Licht erst ab einer bestimmten Wellenlänge überhaupt in der Lage ist, Elektronen aus Stoffen zu lösen, spricht dafür, dass es sich um Teilchen handelt. Denn so kann man sich vorstellen, dass ein solches Teilchen (Photon) entweder stark genug gegen ein Elektron prallt, um es abzureißen oder eben nicht. Dann ist es egal, ob viele Photonen geringer Energie einprasseln oder wenige. Es wird keine abgelösten Elektronen geben. Dies deckt sich mit den bisherigen Messungen. 6. Aufgabe (1 Punkt) Welches ist deine größte/schwierigste/komischste unbeantwortete Frage, die dir spontan zu Physik einfällt? Wieso gibt es Materie? Wahrscheinlich ist die Frage aber falsch gestellt.
Lösung: a) b = 3, 08 m c) nein
Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter
Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!
Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten
Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min
Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung
Abiturprüfung Physik, Grundkurs
Seite 1 von 6 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer Bedeutung.
7. Klausur am
Name: Punkte: Note: Ø: Profilkurs Physik Abzüge für Darstellung: Rundung: 7. Klausur am 8.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h = 6,66 0-34
Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.
Physikklausur Nr.4 Stufe
Physikklausur Nr.4 Stufe 12 08.05.2009 Aufgabe 1 6/3/5/4 Punkte Licht einer Kaliumlampe mit den Spektrallinien 588nm und 766nm wird auf einen Doppelspalt des Spaltmittenabstands 0,1mm gerichtet. a.) Geben
Gruppe: Arbnor, Clemens, Dustin & Henrik
PHYSIK Musterlösung [Wellen] Gruppe: Arbnor, Clemens, Dustin & Henrik 02.03.2015 INHALTSVERZEICHNIS 1. Abituraufgabe: Gitter... 2 Aufgabe 1.1... 2 Aufgabe 1.2... 3 Aufgabe 2.1... 4 Aufgabe 2.2... 6 Aufgabe
Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2
Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll
08 Aufgaben zur Wellenoptik
1Profilkurs Physik ÜA 08 Aufgaben zur Wellenoptik 2011 Seite 1 A Überlagerung zweier Kreiswellen Aufgabe A 1 08 Aufgaben zur Wellenoptik Zwei Lautsprecher schwingen mit f = 15 khz und befinden sich im
Abiturprüfung Physik, Leistungskurs
Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer
Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min
Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische
Praktikum GI Gitterspektren
Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings
Lloydscher Spiegelversuch
1 Lloydscher Spiegelversuch 1.1 Fertige eine ausführliche gegliederte Versuchsbeschreibung an. 1.2. Erkläre das Zustandekommen von Interferenzen a) beim Doppelspalt, b) beim Fresnelschen Doppelspiegel,
Versuch Nr. 18 BEUGUNG
Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der
Aufgabensammlung. zum. RCL "Fotoeffekt"
Aufgabensammlung zum RCL "Fotoeffekt" S. Gröber Technische Universität Kaiserslautern März 2009 Inhaltsverzeichnis I. Aufgaben 1. Intensität von Licht 2 2. Versuchsaufbau zum RCL Fotoeffekt 2 3. Einsteinsche
Abitur 2006: Physik - Aufgabe I
Abitur 2006: Physik - Aufgabe I Ministerium für Kultus, Jugend und Sport Baden-Württemberg Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach : Physik Haupttermin : 2006 Aufgabe : I a) Im
Quantenobjekte Welle? Teilchen?
1 Quantenobjekte Welle? Teilchen? Bezug zu den Schwerpunkten / RRL Fragestellung(en) Experiment(e) Hintergrund Benutze die Links, um zu den einzelnen Kategorien zu gelangen! Simulationen Übungen / Aufgaben
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgabe ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.
Physik-Abitur 2006 Aufgabe II d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA
Physik-Abitur 2006 Aufgabe II d Photonen einer monochromatischen Lichtquelle stehen zwei Wege zur Verfügung, die über einen Strahlteiler, je einen Spiegel und einen halbdurchlässigen Spiegel auf den gleichen
FK Experimentalphysik 3, Lösung 3
1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl
1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter
1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen
Physik-Praktikum: BUB
Physik-Praktikum: BUB Einleitung Während man Lichtbrechung noch mit einer Modellvorstellung von Licht als Teilchen oder als Strahl mit materialabhängiger Ausbreitungsgeschwindigkeit erklären kann, ist
Weißes Licht wird farbig
B1 Experiment Weißes Licht wird farbig Das Licht, dass die Sonne oder eine Glühlampe aussendet, bezeichnet man als weißes Licht. Lässt man es auf ein Glasprisma fallen, so entstehen auf einem Schirm hinter
Wellenoptik/Laser. Praktikumsversuch Meßtechnik INHALT
Praktikumsversuch Meßtechnik Wellenoptik/Laser INHALT 1.0 Einführung 2.0 Versuchsaufbau/Beschreibung 3.0 Aufgaben 4.0 Zusammenfassung 5.0 Fehlerdiskussion 6.0 Quellennachweise 1.0 Einführung Die Beugung
Examensaufgaben QUANTENPHYSIK
Examensaufgaben QUANTENPHYSIK Aufgabe 1 (Juni 2006) Bei einem Versuch wurden folgende Messwerte ermittelt : Wellenlänge des Lichtes (nm) Gegenspannung (V) 436 0,83 578 0,13 a) Berechne aus diesen Werten
Übungen zur Physik des Lichts
) Monochromatisches Licht (λ = 500 nm) wird an einem optischen Gitter (000 Striche pro cm) gebeugt. a) Berechnen Sie die Beugungswinkel der Intensitätsmaxima bis zur 5. Ordnung. b) Jeder einzelne Gitterstrich
Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses.
Schriftliche Abiturprüfung 2005 Seite 1 Hinweise: Zugelassene Hilfsmittel: Taschenrechner Die Aufgaben umfassen 5 Seiten. Die Zahlenwerte benötigter Konstanten sind nach der Aufgabe III zusammengefasst.
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.2: Wellenlängenbestimmung mit dem Gitter- und Prismenspektrometer Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1
Physik auf grundlegendem Niveau. Kurs Ph
Physik auf grundlegendem Niveau Kurs Ph2 2013-2015 Kurze Erinnerung Operatorenliste zu finden unter: http://www.nibis.de/nli1/gohrgs/operatoren/operatoren_ab_2012/op09_10n W.pdf Kerncurriculum zu finden
Weißes Licht wird farbig
B1 Weißes Licht wird farbig Das Licht, dass die Sonne oder eine Halogenlampe aussendet, bezeichnet man als weißes Licht. Lässt man es auf ein Prisma fallen, so entstehen auf einem Schirm hinter dem Prisma
Schriftliche Prüfung zur Feststellung der Hochschuleignung
Freie Universität Berlin Schriftliche Prüfung zur Feststellung der Hochschuleignung T-Kurs Fach Physik (Musterklausur) Von den vier Aufgabenvorschlägen sind drei vollständig zu bearbeiten. Bearbeitungszeit:
22 Optische Spektroskopie; elektromagnetisches Spektrum
22 Optische Spektroskopie; elektromagnetisches Spektrum Messung der Wellenlänge von Licht mithilfedes optischen Gitters Versuch: Um das Spektrum einer Lichtquelle, hier einer Kohlenbogenlampe, aufzunehmen
Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe
Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt
Versuch P2-18: Laser und Wellenoptik Teil A
Versuch P2-18: Laser und Wellenoptik Teil A Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 1 Physikalische Grundlagen... 2 1.1 Funktionsweise eines Lasers... 2 2 Versuchsbeschreibungen...
Examensaufgaben - WELLENOPTIK
Examensaufgaben - WELLENOPTIK Aufgabe 1 Der Abstand g der beiden Spalten eines Doppelspaltes ist unbekannt. Mit Hilfe dieses Doppelspaltes soll die Wellenlänge des Lichtes bestimmt werden, welches ein
UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am
UNIVERSITÄT BIELEFELD Optik GV Interferenz und Beugung Durchgeführt am 10.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer Inhaltsverzeichnis 1 Ziel
Übungsaufgaben zu Interferenz
Übungsaufgaben zu Interferenz ˆ Aufgabe 1: Interferenzmaxima Natrium der Wellenlänge λ = 589 nm falle senkrecht auf ein quadratisches Beugungsgitter mit der Seitenlänge cm mit 4000 Linien pro Zentimeter.
2Fs m = 2 600N 0.225m. t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s. v y. tanα = (v y /v x ) α = 18. m 1 v 1 = (m 1 + m 2 )v 2
Lösungen Vorschlag I: Massepunkte im Gravitationsfeld 1. (a) (b) Fallzeit = Flugzeit: a = F m v = 2as = v y 2Fs m = 2 600N 0.225m = 30 m/s 0.3kg t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s v x α
9. GV: Atom- und Molekülspektren
Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während
Gitter. Schriftliche VORbereitung:
D06a In diesem Versuch untersuchen Sie die physikalischen Eigenschaften eines optischen s. Zu diesen za hlen insbesondere die konstante und das Auflo sungsvermo gen. Schriftliche VORbereitung: Wie entsteht
1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen
Klausur Klasse 2 Licht als Wellen (Teil ) 2.2.204 (90 min) Name:... Hilfsmittel: alles veroten. Die Aildung zeigt den Strahlenverlauf eines einfarigen Lichtstrahls durch eine Glasplatte, ei dem Reflexion
Thüringer Kultusministerium
Thüringer Kultusministerium Abiturprüfung 1995 Physik als Grundfach (Haupttermin) Hinweise für die Prüfungsteilnehmerinnen und Prüfungsteilnehmer Arbeitszeit: Einlesezeit: Hilfsmittel: 180 Minuten 30 Minuten
Äußerer lichtelektrischer Effekt Übungsaufgaben
Lösung: LB S.66/1 Ein Modell ist ein Ersatzobjekt für ein Original. Es stimmt in einigen Eigenschaftenmit dem Original überein, in anderen nicht. Einsolches Modell kann ideel (in Form eines Aussagesystems)
Protokoll zum Versuch: Interferenz und Beugung
Protokoll zum Versuch: Interferenz und Beugung Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 30.11.2006 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 2.1
Physik, grundlegendes Anforderungsniveau
Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische
Physik 2 (GPh2) am
Name, Matrikelnummer: Physik 2 (GPh2) am 16.9.11 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung
Die Teilchenstrahlung
GoBack Die Teilchenstrahlung c Markus Baur October 19, 2010 1 / 14 bisher bekannt: Das Licht ist eine Teilchenwelle, deren Bestandteil Photonen sind. 2 2 / 14 bisher bekannt: Das Licht ist eine Teilchenwelle,
Prüfung aus Physik III (PHB3) Freitag 18. Juli 2008
Fachhochschule München FK06 Sommersemester 2008 Prüfer: Prof. Dr. Maier Zweitprüfer: Prof. Dr. Herberg Prüfung aus Physik III (PHB3) Freitag 18. Juli 2008 Zugelassene Hilfsmittel: Formelsammlung (wird
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 9. Übungsblatt - 20.Dezember 2010 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (5 Punkte) Mit
Pflichtaufgaben. Die geradlinige Bewegung eines PKW ist durch folgende Zeit-Geschwindigkeit- Messwertpaare beschrieben.
Abitur 2002 Physik Gk Seite 3 Pflichtaufgaben (24 BE) Aufgabe P1 Mechanik Die geradlinige Bewegung eines PKW ist durch folgende Zeit-Geschwindigkeit- Messwertpaare beschrieben. t in s 0 7 37 40 100 v in
Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops
22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,
Klausur 2 Kurs 13Ph3g Physik
2010-12-02 Klausur 2 Kurs 13Ph3g Physik Lösung 1 Verbrennt in einer an sich farblosen Gasflamme Salz (NaClNatriumchlorid), so wird die Flamme gelb gefärbt. Lässt man Natriumlicht auf diese Flamme fallen,
Überlagern sich zwei Schwingungen, so gilt für die Amplitude, also für die maximale Auslenkung:
(C) 2015 - SchulLV 1 von 12 Einführung Egal ob im Alltag oder im Urlaub, Wellen begegnen uns immer wieder in Form von Wasser, Licht, Schall,... Eine einfache Welle besteht aus einem Maximum und einem Minimum.
Physikalisches Praktikum 3. Abbésche Theorie
Physikalisches Praktikum 3 Versuch: Betreuer: Abbésche Theorie Dr. Enenkel Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergrößerung auf. 2. Untersuchen Sie bei verschiedenen
Lösungen zu den Aufg. S. 363/4
Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f
Festkörperelektronik 2008 Übungsblatt 1
Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 1. Übungsblatt 17. April 2008 Dozent:
22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)
22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche
31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek).
31-1 MICHELSON-INTERFEROMETER Vorbereitung Michelson-Interferometer, Michelson-Experiment zur Äthertheorie und Konsequenzen, Wechselwirkung von sichtbarem Licht mit Materie (qualitativ: spontane und stimulierte
Lichtbrechung / Lichtbeugung
Lichtbrechung / Lichtbeugung 1. Aufgaben 1. Über die Beugung an einem Gitter sind die Wellenlängen ausgewählter Spektrallinien von Quecksilberdampf zu bestimmen. 2. Für ein Prisma ist die Dispersionskurve
8. GV: Interferenz und Beugung
Protokoll zum Physik Praktikum I: WS 2005/06 8. GV: Interferenz und Beugung Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Maik Stuke Versuchstag Dienstag, 31.01.2006 Interferenz und Beugung 1
Ein roter und ein grüner Scheinwerfer beleuchten eine weiße Wand. Wie erscheint die Wand an der Stelle, an der sich beide Lichtkegel überschneiden?
Multiple Choice Bearbeitungszeit: 10:00 Minuten Aufgabe 1 Punkte: 1 Ein roter und ein grüner Scheinwerfer beleuchten eine weiße Wand. Wie erscheint die Wand an der Stelle, an der sich beide Lichtkegel
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen
Aufgabe 1: Kristallstrukturuntersuchungen
Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung
Thema: Die Planck-Konstante
bitur 009 Physik. Klausur Hannover, 4.09.008 arei LK 3. Semester Bearbeitungszeit: 90 Thema: Die Planck-Konstante. ufgabe Die Fotozelle (bb.) wird mit dem Licht einer Quecksilberdampflampe bestrahlt. Die
Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Wintersemester 2004/2005
Name: Gruppennummer: Aufgabe 1 2 3 4 5 6 7 insgesamt erreichte Punkte erreichte Punkte Aufgabe 8 9 10 11 12 13 14 erreichte Punkte Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner
Aufgaben zur Wellenoptik
Aufgaben zur Wellenoptik C Mehrfachspalte Aufgabe C 1: Zeigeraddition bei Doppelspalt Die Abbildung zeigt einen Doppelspalt, an dessen Spalten zwei gleichphasig schwingende Wellen starten. Die zu den Schwingungen
Einführung in die Gitterbeugung
Einführung in die Gitterbeugung Methoden der Physik SS2006 Prof. Szymanski Seibold Elisabeth Leitner Andreas Krieger Tobias EINLEITUNG 3 DAS HUYGENSSCHE PRINZIP 3 DIE BEUGUNG 3 BEUGUNG AM EINZELSPALT 3
Aufgaben zum Photoeffekt
Aufgaben zum Photoeffekt 1. Die Türe einer U-Bahn wird durch eine Lichtschranke gesichert. Die Lichtschranke besteht aus einer Lichtquelle, die Licht der Wellenlänge λ = 549 nm emittiert und als Lichtbündel
Interferenz und Beugung
Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben
Klausurtermin: Nächster Klausurtermin: September :15-11:15
Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: [email protected] direkt oder im Tutorium
4. Elektromagnetische Wellen
4. Elektromagnetische Wellen 4.1. elektrische Schwingkreise Wir haben gesehen, dass zeitlich veränderliche Magnetfelder elektrische Felder machen und zeitlich veränderliche elektrische Felder Magnetfelder.
Äußerer lichtelektrischer Effekt
Grundexperiment 1 UV-Licht Video: 301-1 Grundexperiment 2 UV-Licht Grundexperiment 3 Rotes Licht Video: 301-2 Grundexperiment 3 UV-Licht Glasplatte Video: 301-2 Herauslösung von Elektronen aus Metallplatte
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723
Abitur 2007: Physik - Aufgabe I
Abitur 2007: Physik - Aufgabe I Ministerium für Kultus, Jugend und Sport Baden-Württemberg Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach : Physik Haupttermin : 2007 Aufgabe : I a) Ein
Othmar Marti Experimentelle Physik Universität Ulm
Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002
Schulbiologiezentrum Hannover. Mit einer CD die Wellenlängen des Lichts messen
Schulbiologiezentrum Hannover Vinnhorster Weg 2, 30419 Hannover Tel: 0511-16847665/7 Fax: 0511-16847352 email: [email protected] Unterrichtsprojekte Natur und Technik 19.68 Zum Selbstbau
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Licht und Optik. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Licht und Optik Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Licht und Optik Seite 7 von 20
A. Mechanik (18 Punkte)
Prof. Dr. A. Hese Prof. Dr. G. v. Oppen Dipl.-Phys. G. Hoheisel Dipl.-Phys. R. Jung Technische Universität Berlin Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: A. Mechanik (18 Punkte) 1. Wie
Kontrollaufgaben zur Optik
Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,
Abitur 2004: Physik - Aufgabe I
Abitur 2004: Physik - Aufgabe I Ministerium für Kultus, Jugend und Sport Baden-Württemberg Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach : Physik Haupttermin : 2004 Aufgabe : I a) Zum
Im folgenden Kapitel soll nun die Teilcheneigenschaften des Lichts untersucht werden.
9. Quantenphysik Albert Einstein entwickelte Anfang des 20. Jahrhunderts seine spezielle und allgemeine Relativitätstheorie für die er bis heute bekannt ist. Zur gleichen Zeit leistete Einstein jedoch
KAISERSLAUTERN. Untersuchung von Lichtspektren. Lampen mit eigenem Versuchsaufbau. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht
ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht KAISERSLAUTERN Untersuchung von Lichtspektren bei verschiedenen Lampen mit eigenem Versuchsaufbau Johannes Kührt Schule: Burggymnasium Burgstraße
2. Schulaufgabe aus der Physik
Q Kurs QPh0 2. Schulaufgabe aus der Physik Be max 50 BE Punkte am 22.06.207 Name : M U S T E R L Ö S U N G Konstanten: c Schall =340 m s,c Licht=3,0 0 8 m s.wie können Sie den Wellencharakter von Mikrowellenstrahlung
23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)
23. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 3 Beugung und Interferenz Aufgabe 1: Seifenblasen a) Erklären Sie, warum Seifenblasen in bunten Farben schillern.
Ferienkurs Experimentalphysik III
Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten
Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten
Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten 5. März 2014 I Lernziele Huygen sches Prinzip und optische Interferenz Photoelektronik als Messmethode II Physikalische Grundlagen Grundlage
Abitur 2008: Physik - Aufgabe I
Abitur 2008: Physik - Aufgabe I Ministerium für Kultus, Jugend und Sport Baden-Württemberg Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach : Physik Haupttermin : 2008 Aufgabe : I In der
Photozelle. Kathode. Spannungsquelle - + U Voltmeter
1. Mache dich mit dem Applet vertraut! Lies hierzu den einführenden Text und erkläre die folgenden Begriffe in diesem Zusammenhang in einem kurzen Satz. Photon: Kathode: Anode: Energie eines Photons: Energie
Optik. Wellenoptik ABER: Gliederung. Definition und Kenngrößen. Dispersion
Gliederung Optik Wellenoptik Dispersion Definition und Kenngrößen der Welle Huygens sches Prinzip Welleneigenschaften Interferenz Kohärenz Streuung Polarisation Dispersion Strahlengang durch ein Prisma
Einführung in die Quantenphysik
Einführung in die Quantenphysik Klassische Optik Der lichtelektrische Effekt Effekte elektromagnetischer Strahlung Kopenhagen-Interpretation Elektronen Quantenphysik und klassische Physik Atomphysik Klassische
2. Klausur in K2 am 7.12. 2011
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit
Physik 2 (GPh2) am
Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur
Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt)
Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Experiment 1: Bestrahlung einer elektrisch geladene Zinkplatte mit Licht Rotlichtlampe; positive Ladung Quecksilberdampflampe; positive
Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs
1 Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs Max v. Vopelius, Matthias Brasse 25.02.2009 Aufgabe 1: Dreifachspalt Abbildung 1: Spalt Gegeben ist ein Dreifachspalt 1. Alle Spaltbreiten
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD 6. Atom- und Molekülphysik 6.7 - Photoeffekt Durchgeführt am 29.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Sarah Dirk Marius Schirmer [email protected]
