Probeklausuraufgaben GuDS
|
|
|
- Edith Kirchner
- vor 8 Jahren
- Abrufe
Transkript
1 TU Ilmenau WS 2014/15 Institut für Mathematik Probeklausuraufgaben GuDS Achtung: Die Auswahl der Aufgaben ist nicht repräsentativ für die tatsächlichen Klausuraufgaben, sondern sollte lediglich als Übungsmöglichkeit zu einzelnen Teilbereichen angesehen werden. Die für die Klausur genauso relevanten, aber hier nicht abgedeckten Bereiche werden in jedem Kapitel angegeben (für Aufgaben zu diesen Bereichen verweisen wir auf die Übungs- und Hausaufgabenserie). Aussagenlogik Nicht abgedeckt: Syntax/Semantik, DNF, KNF, Signaturen und funktionale Vollständigkeit. Stellen Sie die Wahrheitstafel für die aussagenlogische Formel ((p q) p) q auf und untersuchen Sie, ob es sich um eine Tautologie handelt. (a) Untersuchen Sie, ob die folgenden aussagenlogischen Ausdrücke äquivalent sind. Begründen Sie ihre Entscheidung. ϕ 1 = (p r) ( r q) ϕ 2 = (p q) r) (b) Negieren Sie die folgenden Aussagen: x N : y N : y < x,,in jeder Matrikel gibt es einen Studierenden, der die Negation von Aussagen nicht beherrscht. (Hinweis: Eine Aussage der Form,,Nicht in jeder Matrikel... wird dabei nicht als korrekte Lösung gewertet.) (a) Für welche Variablenbelegungen ist der folgende logische Ausdruck wahr? (p q) ( q p) (q p) (b) Betrachtet seien die folgenden Aussagen: A: Alle Autos auf dem Parkplatz sind rot. B: Wenn ein Auto auf dem Parkplatz steht, dann ist es rot. C: Der Parkplatz ist leer. 1
2 Negieren sie die Aussage A (ohne Verwendung von,,nicht alle..,. ) Welche der folgenden Aussagen sind wahr? A B, A C, C A, A C Beweistechniken und Mengenlehre Nicht abgedeckt: Beweistechniken (insbesondere Induktion), Arithmetik auf N, Funktionen und Abzählbarkeit. Es sei ε > 0 eine reelle Zahl. Auf der Menge R der reellen Zahlen werden zwei binäre Relationen R 1, R 2 betrachtet. R 1 = {(x, y) R 2 y x > ε} und R 2 = {(x, y) R 2 (x = y) (y x > ε)}. (a) Man untersuche die Relationen R 1, R 2 hinsichtlich der Eigenschaften Reflexivität, Transitivität, Symmetrie und Antisymmentrie. (b) Ist eine der beiden Relationen eine Halbordnung? Wenn ja, welche? Für eine natürliche Zahl n bezeichne t(n) = {p N p ist Primzahl und p n} die Menge der Primteiler von n Weiterhin sei R N 2 die folgende Relation auf N R = {(m, n) t(m) t(n)} Welche der folgenden Aussagen sind wahr? R ist reflexiv und transitiv (so etwas nennt man auch Quasiordnung). R ist eine Totalordnung. R ist eine Äquivalenzrelation. Begründen Sie jeweils ihre Entscheidung. Es sei R A eine Äquivalenzrelation auf der Menge A und R B eine Äquivalenzrelation auf der Menge B. Auf der Menge A B wird die Relation R erklärt durch: (x 1, y 1 )R(x 2, y 2 ) x 1 R A x 2 y 1 R B y 2 Zeigen Sie, dass R eine Äquivalenzrelation auf A B ist. 2
3 Kombinatorik Für die schon genügend behandelten Aufgaben zur Kombinatorik verweisen wir auf die Übungen und Hausaufgaben. Wahrscheinlichkeitsrechnung Nicht abgedeckt: Produkträume, Markow-Ungleichung, Linearität des Erwartungswertes und Coupon-Collector Problem. Aufgrund einer wichtigen Klausur kommt Anna später zu einer Faschingsparty. Sechs ihrer Bekannten, darunter auch ihr Freund befinden sich bereits auf der Party. Drei davon haben sich als maskierte Superhelden verkleidet, zwei sind als Jediritter verkleidet und einer als Doppler-Effekt. Nur die Personen im Superheldenkostüm würde Anna nicht sofort erkennen. Ihren Freund erkennt sie aber in jedem Kostüm. (a) Eine der sechs Personen spricht sie an. Mit welcher Wahrscheinlichkeit erkennt sie sie? (b) Anna erkennt die Person. Mit welcher Wahrscheinlichkeit ist sie als Jediritter verkleidet? Ein Studierender muss in die mündliche GUDS Prüfung. Dort bekommt er Fragen zu zwei der sechs Teilgebiete gestellt, wobei die Gebiete zufällig gewählt werden. Die Fragen zu wenigstens einem der beiden Gebiete muss er beantworten können, um zu bestehen. Der Studierende bereitet sich nicht auf Wahrscheinlichkeitsrechnung vor. Bei den anderen Gebieten kann er die Fragen zu 50% beantworten. (a) Mit welcher Wahrscheinlichkeit besteht der Studierende? (b) Der Studierende hat bestanden. Mit welcher Wahrscheinlichkeit kam dann eine Frage zur Wahrscheinlichkeitsrechnung dran? Bei einer Klausur werden 6 Aufgaben geschrieben. Ein Studierender kann jede der Aufgaben mit einer Wahrscheinlichkeit von 50% lösen. Wie groß ist die Wahrscheinlichkeit, dass er mindestens 3 Aufgaben lösen kann. Aufgabe 4 In einer WG wohnen 3 Studierende, 2 Informatiker und 1 AMW ler. Alle kandidieren 3
4 für den jeweiligen Fakultätsrat. In beiden Fakultätsräte werden jeweils 2 Studierende gewählt und es gibt jeweils 10 Kandidaten. Es sei angenommen, dass jeder Kandidat die gleichen Erfolgsaussichten hat. Es bezeichne X die Anzahl der WG-Bewohner, die gewählt werden. Bestimmen Sie die Einzelwahrscheinlichkeiten P (X = k) sowie den Erwartungswert und die Varianz von X. Algebraische Strukturen Nicht abgedeckt: Halbgruppen, Monoide, Symmetrische Gruppen, Erzeugende Elemente, Diedergruppen, Nebenklassen, Satz von Lagrange, Ringe und Körper. Gegeben sei die Menge G = {2, 4, 6, 8}. Auf G wird eine Operation definiert durch a b := (a b) mod 10, d.h. a b ist der eindeutig bestimmte Rest von a b bei Division durch 10. Zeigen Sie, dass (G, ) eine Gruppe ist. Ist die Gruppe kommutativ? Gegeben sei die Menge G = {( a b 0 c ) } R (2,2) a 0, c 0, wobei R (2,2) die Menge der 2 2-Matrizen über R ist. Zeigen Sie, dass G eine Gruppe bezüglich der Matrizenmultiplikation ist. Rechengesetze der Matrizenmultiplikation dürfen vorausgesetzt werden. Die Operation : Q 2 Q sei definiert durch x y = x + y xy. Beweisen Sie, dass (Q \ {1}, ) eine Gruppe ist. Modulare Arithmetik Für die schon genügend behandelten Aufgaben zur ganzzahligen und modularen Arithmetik verweisen wir auf die Übungen und Hausaufgaben. 4
5 Graphentheoretische Grundlagen Nicht abgedeckt: Repräsentationen, Bipartite Graphen, Breitensuche, Tiefensuche. Es sei G = (V, E) ein ungerichteter Graph mit der Eigenschaft, dass für je zwei verschiedene Knoten x, y V (G) gilt: xy E(G) deg(x) + deg(y) n 1 Beweisen Sie, dass G dann zusammenhängend ist. Es sei G = (V, E) ein (schlichter) Graph mit n Knoten. Zeigen Sie, dass G zwei Knoten gleichen Grades besitzt. Beweisen Sie, dass in einem nicht-leeren Graphen G, dessen Knoten alle einen geraden Grad haben, die folgenden Aussagen gelten. 1) G enthält einen Kreis. 2) Es gibt eine Partition der Kantenmenge E(G), deren Klassen die Kantenmengen von Kreisen in G sind. Aufgabe 4 Zeigen Sie, dass in jedem Baum je zwei Knoten durch genau einen Weg verbunden sind. Aufgabe 5 Zeigen Sie, dass die Knoten jedes Baumes so mit (höchstens) zwei Farben gefärbt werden können, dass benachbarte Knoten stets unterschiedliche Farben haben. 5
Grundlagen und Diskrete Strukturen Wiederholungsaufgaben
TU Ilmenau Institut für Mathematik Dr. Jens Schreyer Teil 1: Aussagenlogik Aufgabe 1 Grundlagen und Diskrete Strukturen Wiederholungsaufgaben Stellen Sie die Wahrheitstafel für die aussagelogische Formel
Mathematische Strukturen
Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )
Tutorium: Diskrete Mathematik
Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016
BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom
Prof. Dr. Norbert Blum Elena Trunz Informatik V BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom 5.2.2014 Bitte beachten Sie, dass die tatsächlichen Klausuraufgaben
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden
Ordnungen und Verbände
Ordnungen und Verbände Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Ordnungen und Verbände Slide 1/28 Agenda Klausur Hausaufgaben Ordnungsrelation Baum-Ordnung Verbände
Lösungen zur Klausur zur Vorlesung. Mathematik für Informatiker I. (Dr. Frank Hoffmann) Wintersemester 2011/ Februar 2012
Lösungen zur Klausur zur Vorlesung Mathematik für Informatiker I (Dr. Frank Hoffmann) Wintersemester 2011/2012 22. Februar 2012 Aufgabe 1 Logisches und Grundsätzliches /4+4+2 (a) Testen Sie mit dem Resolutionskalkül,
Grundbegriffe der Informatik
Grundbegriffe der Informatik Tutorium 1-14. Sitzung Dennis Felsing [email protected] http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-02-07 Äquivalenzrelationen 1 Äquivalenzrelationen
Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz
Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige
Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren
Zusammenfassung Grundlagen Logik, Mengen, Relationen, Folgen & Mengenfamilien, Kardinalitäten Techniken Mathematisches Beweisen, Induktion, Kombinatorische Beweise Strukturen Graphen 1 Grundlagen: 1. Logik
Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }
Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,
Lineare Algebra I 5. Tutorium Die Restklassenringe /n
Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll
Grundlagen der linearen Algebra und analytischen Geometrie
Grundlagen der linearen Algebra und analytischen Geometrie Sascha Trostorff 27. Oktober 2017 Inhaltsverzeichnis I. Einführung in die Mengenlehre 3 1. Grundlagen der Aussagenlogik 4 2. Naive Mengenlehre
Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit
Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {
Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt:
Der K 4 lässt sich auch kreuzungsfrei zeichnen: Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: ( ) n n (n 1) E
Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe
2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:
Relationen und DAGs, starker Zusammenhang
Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind
Lösungen der Übungsaufgaben I
Mathematik für die ersten Semester (2. Auflage): Lösungen der Übungsaufgaben I C. Zerbe, E. Ossner, W. Mückenheim 1.1 Beweisen Sie, dass die folgenden Aussagen stets wahr sind, also zur Ableitung wahrer
Einführung in die Informatik 2
Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag, 12:30-14:00 Uhr,
modulo s auf Z, s. Def
16. Januar 2007 Arbeitsblatt 5 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 21.11.06 Präsenzaufgaben: 1) Seien
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für
Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)
WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
Grundlagen der Mathematik
Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.
3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3.
3. Relationen 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen 3. Relationen GM 3-1 Wozu Relationen? Mathematik Theoretische Informatik Kryptographie
3. Relationen Erläuterungen und Schreibweisen
3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob
Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen
Ordnungsrelationen auf Mengen! Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =
(1.18) Def.: Eine Abbildung f : M N heißt
Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N
Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }
Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird
Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014
Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):
Allgemeine Algebren. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden
Allgemeine Algebren Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Operationen Eine Operation auf einer Menge A ist eine Abbildung f : A n A. A n ist dabei
Grundbegriffe der Mathematik - Blatt 1, bis zum
Grundbegriffe der Mathematik - Blatt 1 bis zum 9.3.01 1. I.) Formalisieren Sie die folgenden Aussagen a) bis c) wie im folgenden Beispiel: Sei K ein Teilmenge der reellen Zahlen. Aussage: K ist genau dann
Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr
Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik
SS 2017 Torsten Schreiber
14 Wenn man mindestens einen Operator mit einer definierten Menge in Verbindung setzt, dann fällt es unter dem Bereich der Strukturen. Bei der kleinsten möglichen Struktur handelt es sich um eine. Eine
Zusammenfassung der letzten LVA. Diskrete Mathematik
Zusammenfassung Zusammenfassung der letzten LVA Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom (Beweisformen) Beweisformen sind etwa (i) deduktive
Logik für Informatiker
Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische
Mathematik I 1. Scheinklausur
Mathematik I 1. Scheinklausur 2.12.2006 Bitte beachten Sie die folgenden Hinweise: Matrikelnummer: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel: Keine Bei den Aufgaben 1,2,4,5,9,und 10 wird nur die
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
KLAUSUR ZUR ALGEBRA (B3) 18. Februar 2009 MUSTERLÖSUNG
KLAUSUR ZUR ALGEBRA (B3) 18. Februar 2009 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 7 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung
Logische Grundlagen der Mathematik, WS 2014/15
Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten
Grundbegriffe der Informatik Tutorium 14
Grundbegriffe der Informatik Tutorium 14 Tutorium Nr. 16 Philipp Oppermann 11. Februar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
4: Algebraische Strukturen / Gruppen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,
Logische Grundlagen der Mathematik, WS 2014/15
Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich
Klausur zu Diskrete Strukturen, WS 09/10
Aufgabenblatt (Gesamtpunktzahl: 50) Klausur zu Diskrete Strukturen, WS 09/10 B.Sc-Modulprüfung / Scheinklausur Dr. Timo Hanke, Lehrstuhl D für Mathematik, RWTH Aachen 06.02.2010 (1. Termin) Name: Matrikelnummer:
Formale Sprachen und Automaten
Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen
Nachbarschaft, Grad, regulär, Inzidenz
Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad
Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.
Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt
Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)
WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN
24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Relationalstrukturen Definition Sei A eine nichtleere Menge, R ist eine k-stellige
7 Äquivalenzrelationen
71 7 Äquivalenzrelationen 7.1 Äquivalenzrelationen und Klassen Definition Eine Relation R auf einer Menge oder einem allgemeineren Objektbereich heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch
Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10
Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen
Ergänzende Übungen Lineare Algebra I. Wintersemester 2010/11. Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik
Ergänzende Übungen Lineare Algebra I Wintersemester 2010/11 Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik 1 Äquivalenz Was bedeutet Äquivalenz? Wie wird der Begriff
Mathematik für Informatiker I
Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft
3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen
3 Die natürlichen Zahlen Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen Die natürlichen Zahlen Æ = {1, 2, 3,...}. sind die natürlichen
Beweistechniken. Vorkurs Informatik - SoSe April 2014
Vorkurs Informatik SoSe14 07. April 2014 Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Motivation Wozu Beweise in der Informatik? Quelle: http://www.nileguide.com Wozu Beweise in der
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik
Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11
Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 3 Aufgabe 1 Zu überpüfen sind jeweils folgende Eigenschaften: 1. Reflexivität: x R x x S 2. Symmetrie:
Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein
Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst
Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden:
Übungsaufgaben 1. Aufgabe 1 Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: a. x ist eine gerade Zahl. Aussageform b. 10 ist Element der Menge A.
Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil
Aussagenlogik. Mengenlehre. Relationen. Funktionen. Zahlentheorie. Vollständige Induktion. Reihen. Zahlenfolgen. WS 2016/17 Torsten Schreiber
Mengenlehre Aussagenlogik Relationen Zahlentheorie Funktionen Vollständige Induktion Zahlenfolgen Reihen 193 Definition einer Menge: Beziehungsjunktoren: ist Element, d.h. Wert und Format stimmen überein
Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:
Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,
Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n
Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9
[Ausarbeitung Mathe 3 Prüfungsfragen WH]
2008 [Ausarbeitung Mathe 3 Prüfungsfragen WH] Wichtige Anmerkung des Autors: Diese Ausarbeitung ist meine persönliche Interpretation der Antworten. Es gibt keinerlei Gewähr, dass die Antworten stimmen
Übungsaufgaben. Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding
Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding Übungsaufgaben Aufgabe 0.1 Ermitteln Sie x R aus folgenden Gleichungen (a) log 2 (x + 14)
Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen
Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken
Aufgaben zur linearen Algebra und analytischen Geometrie I
Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und
a n = 2a n n 1 IV = 2(n 1)2 n n 1 = (n 1)2 n n 1 = n2 n 1.
Lösungsskizzen zu den Klausuraufgaben zum Kurs 4 Algorithmische Mathematik 4KSL07 Aufgabe. Wir definieren die Folge {a n } n N rekursiv vermöge a 0 := 0, a n := a n + n für n. Zeigen Sie: a n = n n für
Mathematik II (BW27)
Mathematik II (BW27) Lernziele / Kompetenzen Mathematik (BW27) Die Studierenden beherrschen den Umgang mit grundlegenden Begriffen und Methoden der linearen Algebra und können diese zur Lösung anwendungsbezogener
1.2 Modulare Arithmetik
Algebra I 8. April 2008 c Rudolf Scharlau, 2002 2008 11 1.2 Modulare Arithmetik Wir erinnern an die Notation für Teilbarkeit: m c für m, c Z heißt, dass ein q Z existiert mit qm = c. Definition 1.2.1 Sei
Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)
WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
Musterlösung MafI 1 - Blatt 5
Musterlösung MafI 1 - Blatt 5 Titus Laska Aufgabe 1 (Relationen). Die drei Relationen R, S, T N N sind jeweils auf Reflexivität, Symmetrie und Antisymmetrie zu untersuchen. Lösung. Erinnerung. Sei R A
PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF.
Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. (GITTENBERGER) Wien, am 5. Februar 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8
Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung
Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und
30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine
30 Ringe und Körper 30.1 Motivation Häufig gibt es auf einer Menge zwei Verknüpfungen: eine Addition und eine Multiplikation. Beispiele: (Z, +, ) hier gibt es sogar noch eine Division mit Rest. (IR, +,
Vorlesung Diskrete Strukturen Die natürlichen Zahlen
Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen
Elemente der Mathematik - Winter 2016/2017
4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 2 Aufgabe 6 (4 Punkte). Bestimmen Sie mit Hilfe von Wahrheitstafeln, welche der folgenden aussagenlogischen
8. Musterlösung zu Mathematik für Informatiker II, SS 2004
8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in
1.4 Äquivalenzrelationen
8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,
Serie 3: Ringe, Körper, Vektorräume
D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 3: Ringe, Körper, Vektorräume 1. Im Folgenden sei n N und Z n bezeichne die Menge der Äquivalenzklassen von Z bezüglich der Relation: k n l n k l
Algebraische und arithmetische Algorithmen
Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche
Mengenlehre. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Grundbegriffe Ein Paradox Ausblick
Mengenlehre Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Mengenlehre Slide 1/30 Agenda Hausaufgaben Grundbegriffe Ein Paradox Ausblick Diskrete Strukturen Mengenlehre
Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***
M. Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2004 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen IN 0 := IN {0}{0, 1, 2, 3, 4,...} Z := {..., 2,
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon
Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3
Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3 Die Lösungshinweise dienen
Lösungen zur Vorlesung Berechenbarkeit und Komplexität
Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin
Klausur zur Vorlesung Lineare Algebra II
Universität zu Köln Sommersemester 06 Mathematisches Institut 9. Juli 06 Prof. Dr. P. Littelmann Dr. Teodor Backhaus Klausur zur Vorlesung Lineare Algebra II Bearbeitungszeit 80 Minuten Bitte geben Sie
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.
2.2 Konstruktion der rationalen Zahlen
2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir
