Implementation Sozialer Auswahlregeln Sommersemester Vorlesung,

Größe: px
Ab Seite anzeigen:

Download "Implementation Sozialer Auswahlregeln Sommersemester Vorlesung,"

Transkript

1 Implementation Sozialer Auswahlregeln Sommersemester Vorlesung, PD Dr. Jörg Naeve Universität des Saarlandes Lehrstuhl für Nationalökonomie insbes. Wirtschaftstheorie (Mittwoch bis Freitag) 1 / 28

2 : Definition Sei I die Menge der Individuen und ϕ eine soziale Auswahlkorrespondenz ϕ : E X, E = ( 1, 2,..., n) ϕ(e) = A X, wobei wir die Ökonomie E mit dem Präferenzprofil der Individuen identifizieren. Dann ist ϕ Maskin monoton genau dann, wenn für alle x X und alle Paare von Ökonomien E,E E gilt ( x ϕ(e) und = x ϕ ( E ). [ L ( x, i) L ( x, i) ] ) y X, i I Das heißt, eine gemäß ϕ in der Ökonomie E akzeptable Alternative, für die in der Ökonomie E für alle Individuen die Nicht-Besser-Mengen größer geworden ist, muss auch in E von ϕ als akzeptabel ausgewiesen werden. 2 / 28

3 : positive Beispiele Es gibt eine Reihe von sozialen Auswahlregeln, die Maskin monoton sind. Es ist allerdings nicht in jedem Falle leicht, dies nachzuweisen. Maskin monoton sind etwa die folgenden sozialen Auswahlkorrespondenzen. Die individuell rationalen. Die Pareto optimalen in einer Edgeworthbox mit strikt monoton steigenden Präferenzen. Die Walras Gleichgewichte im Innern. Die Lindahl Gleichgewichte im Innern. 3 / 28

4 : individuell rationale Eine Alternative x ist individuell rational, wenn sie für alle Individuen mindestens so gut ist wie ein Status Quo, x X. In einer Tauschökonomie ist dieser Status Quo beispielsweise die Anfangsausstattung ω. Ein Möglichkeit, die Bedingung dafür, dass x X individuell rational ist, formal auszudrücken ist die folgende. x L ( x, i) i I. Daraus wird deutlich, dass diese soziale Auswahlkorrespondenz Maskin monoton ist, was auch intuitiv einleuchtet: Wenn eine Alternative für alle mindestens so gut ist wei der Status quo, bleibt dies so, so lange die Alternative nicht für ein Individuum in seiner Präferenzordnung abrutscht. 4 / 28

5 : (schwache) Pareto Optima Für Korrespondenz, die alle Pareto optimalen auswählt, gilt es zu unterscheiden, welche Definition der Pareto Optimalität ir verwenden. Definition: Eine Alternative a heisst Pareto effizient (Pareto optimal) genau dann, wenn es keine Pareto bessere Alternative gibt. Eine Alternative a heisst schwach Pareto effizient genau dann, wenn es keine strikt Pareto bessere Alternative gibt. 5 / 28

6 : (schwache) Pareto Optima (Forts.) Definition: Alternative a ist strikt Pareto besser als Alternative b genau dann, wenn alle Individuen a gegenüber b vorziehen. a strikt b i : a i b Alternative a ist (schwach) Pareto besser als Alternative b genau dann, wenn alle Individuen a mindestens so gut finden wie b und für mindestens ein Individuum a besser ist als b. a b [ i : a i b und i : b i a ]. 6 / 28

7 : (schwache) Pareto Optima (Forts.) Die schwache Pareto Korrespondenz ist Maskin monoton. Eine Alternative x liegt in dieser Korrespondenz, wenn es keine Altenative gibt, die alle strikt besser finden. Anders ausgedrückt, für jede Alternative y X gibt es mindestens ein Individuum i I für das gilt y L ( x, i). Dies bleibt offenbar so für jedes Präferenzprofil, das den Bedingungen in der Definiton der Maskin monontonie genügt. 7 / 28

8 : (schwache) Pareto Optima (Forts.) Die Pareto Korrespondenz ist nicht Maskin monoton. Eine Alternative x liegt in dieser Korrespondenz, wenn es keine Alternative y gibt, die kein Indiviuum schlechter und die ein Individuum strikt besser findet. Betrachten wir drei X = {x,y,z} und zwei Individuen. Beim Präferenzprofil y 1 x 1 z und z 2 x 2 y ist Alternative x Pareto optimal. 8 / 28

9 : (schwache) Pareto Optima (Forts.) Das Präferenzprofil y 1 x 1 z und z 2 x 2 y genügt den Bedingungen aus der Definition der : L ( x, i) = L ( x, i), für i = 1,2. Die Alternative x ist aber für das neue Präferenzprofil nicht mehr Pareto Optimal, da sie nun durch die Alternative y (schwach) Pareto dominiert wird. 9 / 28

10 : (schwache) Pareto Optima (Forts.) Da in einer Edgeworthbox im Allgemeinen die Pareto Optima eine echte Teilmenge der schwachen Pareto Optima bilden, ist die im Allgemeinen zwar die schwache Pareto Korrespondenz nicht aber die Pareto Korrespondenz Maskin monoton. Für strikt monotone Präferenzen fallen beide Korrespondenzen allerdings zusammen, so dass dann auch die Pareto Korrespondenz Maskin monoton ist. Der Grund ist, dass für strikt monotone Präferenzen aus jeder Alternative y, die x (schwach) Pareto dominiert eine Alternative y konstruiert werden kann, die x strikt Pareto dominiert. Dies geschieht, indem einem Individuum, für das y echt besser ist als x, in der Allokation y von jedem Gut etwas weggenommen wird, so dass es die enstehende Allokation y immer noch strikt gegenüber x vorzieht. Diese Güter werden dann gleichmäßig auf alle anderen verteilt, so dass nun alle y strikt vorziehen. 10 / 28

11 : Die Mehrheitswahl Intuitiv würde man die Mehrheitswahl eventuell für Maskin monoton halten. Erhält eine Alternative x mindestens so viele Stimmen wie alle anderen und wird daher gewählt, so erhält sie ja zumindest nicht weniger Stimmen, so lange sie für niemanden im Präferenzprofil abrutscht. Dies trifft zwar zu, allerdings können andere mehr Stimmen erhalten. 11 / 28

12 : Die Mehrheitswahl (Forts.) Betrachte 7 Individuen und drei X = {x,y,z}. Im Präferenzprofil besitzen drei Präferenzen vom Typ A und je zwei Präferenzen vom Typ B bzw. C. x A y A z, y B z B x, und z C y C x. Gewählt wird x mit drei Stimmen (y und z erhalten je zwei Stimmen). Im Präferenzprofil haben immer noch drei Individuen Präferenzen vom Typ A, aber nun haben vier Präferenzen vom Typ B. Zwar ist x für niemanden schlechter geworden, aber nun gewinnt Alternative y mit vier Stimmen gegen die drei für Alternative x. 12 / 28

13 : Die Mehrheitswahl (Forts.) Die Mehrheitswahl ist (für strikte Präferenzen) ein Spezialfall der sogenannten Scoring rules. Zur Definition einer Scoring rule nehmen wir an, dass die Menge der endlich ist und n Elemente hat. Wir schreiben also X = {x 1,x 2,...,x n }. Eine Scoring rule ist festgelegt durch einen Vektor von Gewichten w = (w 1,w 2,...,w n ), für den gilt w 1 w 2... w n und w 1 > w n. Jeder Wähler gibt seiner besten Alternative w 1 Punkte, der zweitbesten w 2 usw. Gewählt werden diejenigen, die die höchtse Summe von Punkten erhalten. Die Mehrheitswahl ist festgelegt durch den Gewichtsvektor w = (1,0,...,0). 13 / 28

14 : Andere Scoring rules Auch andere Scoring rules sind nicht Maskin monoton. Dazu gehört der Borda count mit dem Gewichtsvektor w = (n 1,n 2,...,1,0), für den das selbe Gegenbeispiel funktioniert, wie für die Mehrheitswahl. Ebenfalls nicht Maskin monoton ist die Anti-Mehrheitswahl mit dem Gewichtsvektor w = (1,1,...,1,0). Betrachte die Präferenzen x A y A z, x B z B y, und y C z C x. Haben je zwei Individuen Präferenzen vom Typ A bzw. B und eines Präferenzen vom Typ C, wird x mit vier Stimmen (gegen je drei für y und z gewählt. Haben vier Individuen Präferenzen vom Typ A und eines Präferenzen vom Typ C, ist x zwar für niemanden schlechter geworden, gewählt wird jetzt aber y mit fünf Stimmen. 14 / 28

15 : Definition Eine soziale Auswahlkorrespondenz ϕ : E X erfüllt die Bedingung kein Vetorecht (no veto power) genau dann, wenn für alle x X und alle Ökonomien E = ( 1,..., n) E gilt [ i I : L ( x, j) ] = X, j I \ {i} = x ϕ (E). Wenn also eine Alternative x für alle Individuen bis auf i die beste Alternative in X darstellt, kann i nicht verhindern, dass diese Alternative x von der sozialen Auswhlkorresponenz ausgewählt wird, d.h., niemand besitzt ein Vetorecht. 15 / 28

16 : Mehrheitswahl Die Mehrheitswahl gibt niemandem ein Vetorecht, wenn alle Präferenzen strikt sind. Ist eine Alternative x für alle Individuen bis auf eines die beste, erhält sie alle Stimmen bis auf eine. Für drei oder mehr Individuen bedeutet das, dass sie jedenfalls gewählt wird, da das verbleibende Individuum nur eine Stimme zu vergeben hat. Lassen wir Indifferenzen zu und nehmen an, dass jeweils die besten eine Stimme erhalten, stimmt dies nicht mehr. Sind x und y für alle Individuen außer i die beiden besten, kann i mit seiner Stimme zwischen x und y entscheiden. 16 / 28

17 : Borda count Der Borda count hingegen efüllt die Bedingung No veto power nicht. Sei X = {a,b,c,d} und I = {1,2,3}. Betrachte das Präferenzprofil a i b i c i d, für i = 1,2 und b 3 c 3 d 3 a. Dann sind die kumulierten scores wie folgt: a : 6, b : 7, c : 4 und d : 1. Somit wird b gewählt, obwohl a für alle Individuen außer 3 die beste Alternative darstellt. 17 / 28

18 : Borda count Auch die Anti-Mehrheitswahl efüllt die Bedingung No veto power nicht. Sei X = {a,b,c,d} und I = {1,2,3}. Betrachte das Präferenzprofil a i b i c i d, für i = 1,2 und b 3 c 3 d 3 a. Dann sind die kumulierten scores wie folgt: a : 2,;b : 3, c : 3 und d : 1. Somit werden b und c gewählt, obwohl a für alle Individuen außer 3 die beste Alternative darstellt. 18 / 28

19 : schwache Pareto Optima Die schwache Pareto Korrespondenz erfüllt die Bedingung No veto power. Sei x X für alle Individuen bis auf eines unter den besten. Dann gibt es für diese Individuen keine Alternative, die sie gegenüber x besser stellen kann. Demnach ist unabhängig von den Präferenzen des letzten individuums keine strikte Pareto Verbesserung möglich. Damit ist die schwache Pareto Korrespondenz Maskin monoton und gibt niemandem ein Vetorecht, so dass die schwache Pareto Korrespondenz voll implementierbar im Nash Gleichgewicht ist. 19 / 28

20 : Pareto Optima Die Pareto Korrespondenz erfüllt die Bedingung No veto power nicht. Seien x und y für alle Individuen bis auf Individuum j I unter den besten. Dann müssten sowohl x als auch y gewählt werden. Hat j I Präferenzen für die gilt x j y, stellt x eine schwache Paeto Verbesserung gegenüer y dar, d. h., y ist nicht Pareto optimal. Damit ist die Pareto Korrespondenz weder Maskin monoton noch erfüllt sie die Bedingung, niemandem ein Vetorecht zu geben. 20 / 28

21 Mechanismus und 21 / 28

22 Mechanismus Der Mechanismus ist der generelle Mechanismus aus dem Beweis des Satzes, wonach und No veto power hinreichende Bedingungen für die volle Nash Implementierbarkeit einer sozialen Auswahlfunktion sind. An verschiedenen Aspekten dieses Mechanismus lässt sich Kritik üben, die jeweils zu unterschiedlichen Ansätzen führt. Wir werden dies abschließend relativ knapp diskutieren, ohne in die explizit näher zu betrachten. 22 / 28

23 Mechanismus: Integer Game Besonders negativ gesehen wird das Integer Game, das den dritten Fall in der Definition der Ergebnisfunktin des Mechanismus bildet. Dessen Sinn ist, unliebsame Nash Gleichgewichte auszuräumen. Es ist allerdings fraglich, ob ein derartiger Mechanismus in der Realität akzeptabel wäre. Grundsätzlich führt dies zu der Frage, wie man gute und schlechte Mechanismen unterscheiden kann, die generell schwer zu beantworten ist. 23 / 28

24 Mechanismus: große Strategieräume Im Mechanismus melden alle Individuen unter anderem eine komplette Beschreibung der Ökonomie. Das heißt im allgemeinen, dass die Signalräume des Mechanismus recht komplex sind. Im konkreten Fall wre es hilfreich, kleinere Signalräume zu konstruieren, die die Kosten der Informationsübermittlung (die wir nicht explizit modelliert haben) senken könnten. Saijo (1988) zeigt, dass es ausreicht, wenn jedes Individum neben seinen Charakteristika noch die zweier anderer meldet (so dass insgesamt für jedes Individuum drei Meldungen vorliegen). (Grundsätzlich führt dies zu der Frage, wie man gute und schlechte Je mehr Individuen es gibt, dest stärker reduziert dies die Größe der Signalräume. 24 / 28

25 Mechanismus: Informationsannahmen Die Idee von Saijo (1988) zeigt, dass ein Mechanismus a la Maskin Repullo auch dann noch funktionieren kann, wenn wir nicht mehr vollkommene Information annehmen. Sein Mechanismus funktioniert, so lange jeder die Charakteristike der zwei anderen kennt, die er melden soll. Im allgemeinen muss die Art der Implementation und damit auch der Mechanismus an die Informationsannahmen angepasst werden. 25 / 28

26 Mechanismus: Verhaltensannahmen Hinter der Nash-Implementation steckt eine Verhaltensannahme, nämlich die, dass die Individuen in dem durch den Mechanismus induzierten Spiel Nash Glechgewichte spielen. Man kann für jede alternative Verhaltensannahme die Implementierbarkeit ebenso definieren und untersuchen, welche sozialen Auswahlfunktionen dann implemetierbar sind. 26 / 28

27 Mehrfache Implementierbarkeit Wenn unterschiedliche Annahmen bezüglich der Informationen der Individuen und ihres Verhaltens möglich sind, stellt sich die Frage, wlche davon der Planer treffen soll. Es wäre denkbar, dass der Planer nicht nur die Präferenzen der Individuen nicht kennt, sndern auch nicht weiß, wie ihre Informationen sind oder nach welchen regeln sie sich verhalten. Daher betrachtet man Mechanismen, die eine gegebene soziale Auswahlfunktion für unterschiedliche Informations- und Verhaltensannahmen implementieren. Derartige Mechanismen kann dann auch ein Planer einsetzen, der nicht weiß, dass vollkommene Information und Nash Verhalten die angemessenen Annahme darstellen. 27 / 28

28 Volle Implementation und eingeschränkter Definitionsbereich In unserer Diskussion der Definition sinnvoller sozialer Auswahlfunktionen hatten wir gesehen, dass eine Einschränkung des Definitionsbereichs oft hilfreich sein kann. Wenn wir volle Implementation im Nash Gleichgewicht (oder einem anderen Gleichgewicht) betrachten, hat eine Einschränkung des Definitionsbereichs aber zwei gegenläufige Effekte. Zum einen macht sie es leichter, die gewünschten als Ergebnis im Geichgewicht zu bekommen. Zum anderen können neue unliebsame Gleichgewichte auftreten, die zu nicht akzeptablen Ergebnissen führen. 28 / 28

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

Universität Ulm SS 2007 Institut für Betriebswirtschaft Hellwig/Meuser Blatt 5. w l = W. q l = l=1. l=1

Universität Ulm SS 2007 Institut für Betriebswirtschaft Hellwig/Meuser Blatt 5. w l = W. q l = l=1. l=1 Universität Ulm SS 2007 Institut für Betriebswirtschaft 27.06.2007 Hellwig/Meuser Blatt 5 Lösungen zu AVWL III Aufgabe 20 Wir betrachten hier eine reine Tauschökonomie ohne Produktion mit m Konsumenten

Mehr

8. Vorlesung Spieltheorie in der Nachrichtentechnik

8. Vorlesung Spieltheorie in der Nachrichtentechnik 8. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Kooperative Spieltheorie Kooperative Spiele haben die Möglichkeit verbindlicher

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Statische Spiele mit vollständiger Information

Statische Spiele mit vollständiger Information Statische Spiele mit vollständiger Information Wir beginnen nun mit dem Aufbau unseres spieltheoretischen Methodenbaukastens, indem wir uns zunächst die einfachsten Spiele ansehen. In diesen Spielen handeln

Mehr

Seminararbeit zur Spieltheorie. Thema: Rationalisierbarkeit und Wissen

Seminararbeit zur Spieltheorie. Thema: Rationalisierbarkeit und Wissen Seminararbeit zur Spieltheorie Thema: Rationalisierbarkeit und Wissen Westfälische-Wilhelms-Universität Münster Mathematisches Institut Dozent: Prof. Dr. Löwe Verfasst von: Maximilian Mümken Sommersemester

Mehr

Zwischenklausur 2006 VWL C. Gruppe B

Zwischenklausur 2006 VWL C. Gruppe B Otto-von-Guericke-Universität Magdeburg Fakultät für Wirtschaftswissenschaft Zwischenklausur 006 VWL C Gruppe B Name, Vorname: Fakultät: Matrikelnummer Prüfer: Datum: Anleitung Die Klausur besteht aus

Mehr

12. Vorlesung. 19. Dezember 2006 Guido Schäfer

12. Vorlesung. 19. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 6. JANUAR 007 Vorlesung: Einführung in die Spieltheorie WS 006/007. Vorlesung 9. Dezember 006 Guido Schäfer 4 Bayesian Games Wir haben bisher immer angenommen, dass jeder Spieler vollständige

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

(a)... ein Spieler eine Entscheidung treffen muss... (b)... der andere Spieler (Experte) über private...

(a)... ein Spieler eine Entscheidung treffen muss... (b)... der andere Spieler (Experte) über private... 1 KAP 19. Expertenberatung Wir betrachten eine Modell, in dem... (a)... ein Spieler eine Entscheidung treffen muss... (b)... der andere Spieler (Experte) über private...... entscheidungsrelevante Information

Mehr

3.2 Unabhängigkeitsstrukturen

3.2 Unabhängigkeitsstrukturen 80 3.2 Unabhängigkeitsstrukturen Unser Ziel ist der Nachweis, daß in Vektorräumen, also in Moduln über Körpern, Basen existieren und zwei endliche Basen gegebenenfalls von derselben Ordnung sind. (Basen

Mehr

3.4 von Neumannsche Theorie kooperativer Spiele

3.4 von Neumannsche Theorie kooperativer Spiele 3.4 von Neumannsche Theorie kooperativer Spiele Gliederung Die charakteristische Funktion eines Spieles Der Wert eines Spieles und Strategische Äquivalenz Der von Neumannsche Lösungsbegriff Definition

Mehr

Nicht-archimedische Zahlen

Nicht-archimedische Zahlen Skript zur Vorlesung Nicht-archimedische Zahlen Wintersemester 2012/13 Frankfurt am Main Prof. Dr. Annette Werner Inhaltsverzeichnis 1 Einleitung 1 2 Nicht-archimedische Absolutbeträge 2 1 Einleitung In

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2007 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus vier Vorfragen und drei Hauptfragen, von denen jeweils zwei zu bearbeiten sind. Sie haben für die Klausur

Mehr

Mikroökonomik B 5. Informationsökonomik

Mikroökonomik B 5. Informationsökonomik Mikroökonomik B 5. Informationsökonomik Paul Schweinzer 16. Juni 2009. 1 / 11 Literaturangaben Jehle, G. und P. Reny (2001), Kapitel 8.1 Varian, H. (2007), Kapitel 36 Bolton, P. & M. Dewatripont (2005),

Mehr

Industrieökonomik Sommersemester Vorlesung,

Industrieökonomik Sommersemester Vorlesung, Industrieökonomik Sommersemester 2007 12. Vorlesung, 06.07.2007 PD Dr. Jörg Naeve Universität des Saarlandes Lehrstuhl für Nationalökonomie insbes. Wirtschaftstheorie mailto:j.naeve@mx.uni-saarland.de

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Übung zur Vorlesung Multiagentensysteme

Übung zur Vorlesung Multiagentensysteme Ludwig-Maximilians-Universität München SS 2007 Institut für Informatik Aufgabenblatt 1 Dr. Brandt / Fischer & Harrenstein 23. April 2007 Übung zur Vorlesung Multiagentensysteme Tutorübung: 25. April 2007

Mehr

Sprechstunde : Mi. 10:00 12:00 könnte sich noch einmal verändern bleibt aber am Mittwoch.

Sprechstunde : Mi. 10:00 12:00 könnte sich noch einmal verändern bleibt aber am Mittwoch. Vorstellung : - Persönlich : PG Zi.03, akroökonomie insbes. Außenhandel - Übung ikroökonomie : erst nach der Vorlesung, damit wir inhaltlich nicht der Vorlesung vorweggreifen - Walras Auktionator, Wieso

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die Konvergenz

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Klausur zur Vorlesung Spieltheorie Musterlösung

Klausur zur Vorlesung Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe Sommersemester 2001 Klausur zur Vorlesung Spieltheorie Musterlösung Die Klausur besteht aus vier Vorfragen, von denen drei zu beantworten sind sowie drei Hauptfragen, von denen

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Mathematik I. Vorlesung 19. Metrische Räume

Mathematik I. Vorlesung 19. Metrische Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 19 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines Vektors

Mehr

Vorlesung 6: Alternativen zur Erwartungsnutzentheorie

Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 1 / 21 1.

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer LETZTE ÄNDERUNG: 15. NOVEMBER 2006 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 2. Vorlesung 24. Oktober 2006 Guido Schäfer 1.3 Beste-Antwort Funktion Notation: Definiere A i := j N\{i} A j.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

8 Summen von Quadraten

8 Summen von Quadraten 8 Summen von Quadraten A. Summen von zwei Quadraten. Sei p eine Primzahl. Beispiele. = 1 + 1, 5 = 1 +, 13 = + 3 Aber 3 und 7 sind nicht Summen von zwei Quadraten. 8.1 Satz. Genau dann ist p Summe von zwei

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).

Mehr

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2 II. Basis und Dimension ================================================================= 2.1 Linearkombination und Basis -----------------------------------------------------------------------------------------------------------------

Mehr

Topologische Begriffe

Topologische Begriffe Kapitel 3 Topologische Begriffe 3.1 Inneres, Rand und Abschluss von Mengen Definition (innerer Punkt und Inneres). Sei (V, ) ein normierter Raum über K, und sei M V eine Menge. Ein Vektor v M heißt innerer

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

2. Teilbarkeit. Euklidischer Algorithmus

2. Teilbarkeit. Euklidischer Algorithmus O. Forster: Einführung in die Zahlentheorie 2. Teilbarkeit. Euklidischer Algorithmus 2.1. Wir benutzen die folgenden Bezeichnungen: Z = {0, ±1, ±2, ±3,...} Menge aller ganzen Zahlen N 0 = {0, 1, 2, 3,...}

Mehr

Vorlesung 1: Einleitung

Vorlesung 1: Einleitung Vorlesung 1: Einleitung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 1, FS 12 Einleitung 1/17 1.1 Motivation In der Vorlesung Intermediate Microecoomics haben

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

10. Vorlesung Spieltheorie in der Nachrichtentechnik

10. Vorlesung Spieltheorie in der Nachrichtentechnik 10. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Kooperative Spiele - Stabile Paarungen Wir studieren Märkte mit zweiseitigen

Mehr

Analysis II. Vorlesung 44. Partielle Ableitungen

Analysis II. Vorlesung 44. Partielle Ableitungen Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 44 Sei f: K n K eine durch Partielle Ableitungen (x 1,...,x n ) f(x 1,...,x n ) gegebene Abbildung. Betrachtet man für einen fixierten Index

Mehr

VWL IV-Klausur zur Veranstaltung Einführung in die Finanzwissenschaft

VWL IV-Klausur zur Veranstaltung Einführung in die Finanzwissenschaft VWL IV-Klausur zur Veranstaltung Einführung in die Finanzwissenschaft Wirtschafts- und Sozialwissenschaftliche Fakultät der Universität Rostock Lehrstuhl für Finanzwissenschaft Prof. Dr. Robert Fenge Sommersemester

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

3. Betriebswirtschaftliche Entscheidungslehre 3.1 Einleitung

3. Betriebswirtschaftliche Entscheidungslehre 3.1 Einleitung 3.1 Einleitung Auf Basis von Zielvorstellungen sollen die Konsequenzen von Handlungsalternativen ermittelt werden deskriptive Entscheidungstheorie: beschreibt, wie in der Realität Entscheidungen in konkreten

Mehr

Markt oder Staat: Wann sollte der Staat eingreifen? Prof. Dr. Hanjo Allinger Technische Hochschule Deggendorf

Markt oder Staat: Wann sollte der Staat eingreifen? Prof. Dr. Hanjo Allinger Technische Hochschule Deggendorf Markt oder Staat: Wann sollte der Staat eingreifen? Prof. Dr. Hanjo Allinger Technische Hochschule Deggendorf 0 Erster Hauptsatz der Wohlfahrtsökonomik Bei vollkommenem Wettbewerb ist jedes Marktgleichgewicht

Mehr

Graduiertenseminar Spieltheorie

Graduiertenseminar Spieltheorie Syddansk Universitet 6. 8. Mai 2009 Informationen 1 Einführung, Motivation Koordinaten Phone: +45 6550 2152 E-mail: psu@sam.sdu.dk URL: http://www.sam.sdu.dk/staff/psu Auf meiner Homepage unter dem Link

Mehr

Von Skalarprodukten induzierte Normen

Von Skalarprodukten induzierte Normen Von Skalarprodukten induzierte Normen Niklas Angleitner 4. Dezember 2011 Sei ein Skalarproduktraum X,, gegeben, daher ein Vektorraum X über C bzw. R mit einer positiv definiten Sesquilinearform,. Wie aus

Mehr

Kapitel 5: Kollektive Entscheidungen

Kapitel 5: Kollektive Entscheidungen Kapitel 5: Kollektive Entscheidungen WAHLSITUATIONEN 1. Direkte Wahl Direkte Demokratie (Schweiz, CA, MA)! Referenden, Volksbegehren und -entscheid 2. Delegierte Entscheidung Repräsentative Demokratie!

Mehr

Definition: Die Menge der Imputationen ist die Menge I aller Nutzenallokationen, die erreichbar und individuell rational sind.

Definition: Die Menge der Imputationen ist die Menge I aller Nutzenallokationen, die erreichbar und individuell rational sind. Spieltheorie Sommersemester 2007 1 Der Kern Sei I = {1, 2,...,n} und Γ = (I, v). Definition: Die Menge der Imputationen ist die Menge I aller Nutzenallokationen, die erreichbar und individuell rational

Mehr

Maße auf Produkträumen

Maße auf Produkträumen Maße auf Produkträumen Es seien (, Ω 1 ) und (X 2, Ω 2 ) zwei Meßräume. Wir wollen uns zuerst überlegen, wie wir ausgehend davon eine geeignete σ-algebra auf X 2 definieren können. Wir betrachten die Menge

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Die Quadratur des Kreises

Die Quadratur des Kreises Die Quadratur des Kreises Häufig hört man Leute sagen, vor allem wenn sie vor großen Schwierigkeiten stehen, so was wie hier wird die Quadratur des Kreises versucht. Was ist mit dieser Redewendung gemeint?

Mehr

2.2.4 Logische Äquivalenz

2.2.4 Logische Äquivalenz 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Die Firmen maximieren den Gewinn durch Wahl von y unter der Nebenbedingung der Produktionsmöglichkeiten f (y) 0

Die Firmen maximieren den Gewinn durch Wahl von y unter der Nebenbedingung der Produktionsmöglichkeiten f (y) 0 Firmen Die Situation der Firmen wird sehr allgemein (und gewöhnungsbedürftig) beschrieben. Von den n Gütern die in der Ökonomie existieren benutzen die Firmen einen Teil zur Produktion (also als Input)

Mehr

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 8 Angeordnete Körper Definition 8.1. Ein Körper K heißt angeordnet, wenn es eine totale Ordnung auf K gibt, die die beiden Eigenschaften

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul

Mehr

Es gibt eine Heuristik, mit der sich die Primzahldichte

Es gibt eine Heuristik, mit der sich die Primzahldichte Es gibt eine Heuristik, mit der sich die Primzahldichte 1 ln(x) für großes x N plausibel machen lässt. Die Idee besteht darin, das Änderungsverhalten der Primzahldichte bei x zu untersuchen. Den Ansatz

Mehr

Lösungsvorschläge Blatt Z1

Lösungsvorschläge Blatt Z1 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt Z1 Zürich, 2. Dezember 2016 Lösung zu Aufgabe Z1 Wir zeigen L qi /

Mehr

... mit interdependenten Wertschätzungen.... nicht nur von seinem eigenen Typen t i ab,... ihr Verhalten auf Information konditionieren,...

... mit interdependenten Wertschätzungen.... nicht nur von seinem eigenen Typen t i ab,... ihr Verhalten auf Information konditionieren,... 1 KAP 17. Adverse Selektion Wir betrachten nun statische Spiele unvollständiger Information...... mit interdependenten Wertschätzungen Das heißt, der Nutzen eines Spielers i hängt...... nicht nur von seinem

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

1 Loesungen zu Analysis 1/ 1.Uebung

1 Loesungen zu Analysis 1/ 1.Uebung Loesungen ausgewaehlter Beispiele zu Analysis I, G. Bergauer, Seite 1 1 Loesungen zu Analysis 1/ 1.Uebung 1.1 Einleitung Gegeben Mengen X, A mit A X. Sei die Menge durch A = {a X : a erfuellt B} gegeben,

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 5 22

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 5 22 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 5 22 Der Ansatz von Goodman und Markowitz GOODMAN und MARKOWITZ [1952] sind der Ansicht, daß die 2. Bedingung von ARROW bei realen Entscheidungen

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

max{ x i a i : 1 i n} max{ x p a p, x r a r } max{a p x p, x r a r } d 2.

max{ x i a i : 1 i n} max{ x p a p, x r a r } max{a p x p, x r a r } d 2. Erster Tag 5. Juli 007 Aufgabe 1. Gegeben seien eine positive ganze Zahl n und reelle Zahlen a 1, a,..., a n. Für jedes i (1 i n) sei d i = max{a j : 1 j i} min{a j : i j n} und sei d = max{d i : 1 i n}.

Mehr

Kapitel 4: Gemischte Strategien. Literatur: Tadelis Chapter 6

Kapitel 4: Gemischte Strategien. Literatur: Tadelis Chapter 6 Kapitel 4: Gemischte Strategien Literatur: Tadelis Chapter 6 Idee In vielen Spielen gibt es kein Nash Gleichgewicht in reinen Strategien (und auch kein Gleichgewicht in dominanten Strategien) Darüber hinaus

Mehr

Vorlesung 2: Risikopräferenzen im Zustandsraum

Vorlesung 2: Risikopräferenzen im Zustandsraum Vorlesung 2: Risikopräferenzen im Zustandsraum Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie VL 2, FS 12 Risikopräferenzen im Zustandsraum 1/29 2.1 Motivation

Mehr

Übersicht. 1 Nachhaltigkeit: Idee und ökonomische Definitionen. 2 Motivation von Nachhaltigkeit. 3 Nachhaltigkeit in klimaökonomischen Modellen

Übersicht. 1 Nachhaltigkeit: Idee und ökonomische Definitionen. 2 Motivation von Nachhaltigkeit. 3 Nachhaltigkeit in klimaökonomischen Modellen Vorlesung 9: Nachhaltigkeit und Klimaökonomie 1/20 Übersicht 1 Nachhaltigkeit: Idee und ökonomische Definitionen 2 Motivation von Nachhaltigkeit 3 Nachhaltigkeit in klimaökonomischen Modellen 4 Nachhaltigkeit

Mehr

Mathematik III. Produkt-Präringe

Mathematik III. Produkt-Präringe Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 66 Es ist unser Ziel zu zeigen, dass auf der Produktmenge von Maßräumen unter recht allgemeinen Voraussetzungen ein Maß definiert ist,

Mehr

Probeklausur zur Mikroökonomik II

Probeklausur zur Mikroökonomik II Prof. Dr. Robert Schwager Wintersemester 005/006 Probeklausur zur Mikroökonomik II Dezember 005 Name: Matrikelnr.: Bei Multiple-Choice-Fragen ist das zutreffende Kästchen (wahr bzw. falsch) anzukreuzen.

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A.

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A. Lineare Hülle Def A sei eine nichtleere Teilmenge des Vektorraums (V,+, ) Die lineare Hülle von A (Bezeichung: span(a)) ist die Menge aller Linearkombinationen der Elemente aus A { k } span(a) := λ i v

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Mikroökonomik 6. Vorlesungswoche

Mikroökonomik 6. Vorlesungswoche Mikroökonomik 6. Vorlesungswoche Tone Arnold Universität des Saarlandes 27. November 2007 Tone Arnold (Universität des Saarlandes) 6. Vorlesungswoche 27. November 2007 1 / 90 Angebot Die Angebotsfunktion

Mehr

Von den rationalen zu den reellen Zahlen

Von den rationalen zu den reellen Zahlen Skript zur Schülerwoche 016, zweiter Tag: Von den rationalen zu den reellen Zahlen Dr. Mira Schedensack 1. September 016 1 Einführung Dieser Vorlesung geht von der Menge der rationalen Zahlen aus und definiert

Mehr

Die alternierende harmonische Reihe.

Die alternierende harmonische Reihe. Die alternierende harmonische Reihe Beispiel: Die alternierende harmonische Reihe k k + = 2 + 3 4 + konvergiert nach dem Leibnizschen Konvergenzkriterium, und es gilt k k + = ln2 = 06934 für den Grenzwert

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

Analysis II. Vorlesung 52. Diffeomorphismen

Analysis II. Vorlesung 52. Diffeomorphismen Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 52 Diffeomorphismen Der Satz über die lokale Umkehrbarkeit gibt Anlass zu folgender Definition. Definition 52.1. EsseienV 1 undv 2 endlichdimensionalereellevektorräume

Mehr