Einführung in PROLOG
|
|
|
- Ewald Rothbauer
- vor 8 Jahren
- Abrufe
Transkript
1 Einführung in PROLOG 1.Einfache Beispiele Es gibt nur drei Konstrukte in PROLOG. Fakts (Fakten), rules (Regeln) und queries. Eine Sammlung von Fakten und Regeln nennt man knowledge base. Beim Programmieren in PROLOG geht es fast nur darum knowledge bases zu beschreiben. Wie benutzt man ein PROLOG-Programm? Indem man queries eingibt, also indem man Fragen über die Informationen stellt, die in der knowledge base stehen. 1.1 Knowledge Base 1(KB1) musik(klassik). musik(rock). musik(schlager). musik(country). laut(rock). Beachten Sie bitte, dass die Namen klassik, rock,schlager, country und die Eigenschaften musik und laut kleingeschrieben sind. Das ist wichtig. Später sehen wir, warum. Wie benutzen wir nun KB1? Indem wir queries starten! Nachdem wir die Datei KB1.ecl complieliert haben, können wir z.b. fragen, ob Rock laut ist:?- laut(rock). Wir drücken auf RUN und PROLOG wird antworten: yes, da dieser Fakt in KB1 explizit enthalten ist (Das Fragezeichen und der Strich sind übrigens der prompt vom Eclipse-PROLOG. Wir geben nur die Querie und einen Punkt ein) Auf?- laut(klassik) erhalten wir no, denn über diesen Fakt steht keine Aussage in KB1. Die Queries?- laut(hiphop) wird ebenfalls mit no beantwortet, da PROLOG keine Informationen über hiphop hat, schließt es, dass der Fakt nicht aus KB1 abgeleitet werden kann.?- schnell(country) führt sogar zu einem abort, da die Eigenschaft schnell überhaupt noch nicht definiert wurde.
2 1.2. Knowledge base 2 (KB2) gitarrenlastig(grunge). mag(sam,musik) :- gitarrenlastig(musik). KB2 enthält nur einen Fakt und eine Regel. Regeln enthalten Informationen, die bedingt war sein können. Sam mag Musik, wenn es gitarrenlastige Musik ist. Beachten Sie, dass Musik groß geschrieben ist, denn es ist eine Variable in dieser Regel. Wenn wir jetzt fragen:?- mag(sam,grunge). wird PROLOG mit yes antworten, zwar steht dieser Fakt nicht in KB2, aber aus der Rule mag(sam,musik) :- gitarrenlastig(musik). und dem Fakt gitarrenlastig(grunge). kann PROLOG mithilfe von Resolution schließen, dass mag(sam,grunge). Wie das genau funktioniert betrachten wir später Knowledge base 3 (KB3) musik(klassik). musik(rock). musik(schlager). musik(country). laut(rock). mag(sam,etwas):- musik(etwas), laut(etwas). mag(sam,schlafen). Unsere erste Regel über die Vorlieben von Sam hat hier zwei Aussagen in ihrem Körper, oder um mit PROLOG zu sprechen, zwei goals. Entscheidend ist das Komma zwischen musik(etwas)und laut(etwas). Es entspricht einer logischen Konjunktion, also einem und in PROLOG. Also mag Sam etwas nur, wenn es Musik ist und wenn es laut ist. Also ergibt:?- mag(sam,country). ein No, da KB3 nicht die Information enthält, laut(country). Die beiden Aussagen sind ein Beispiel für eine Disjunktion, da sie beide Aussagen über die Sachen machen, die Sam mag. Er mag also laute Musik oder Schlafen. Regeln, die den gleichen Kopf haben werden also durch oder verknüpft. Eine andere Möglichkeiten eine Disjunktion auszudrücken wäre: mag(sam,musik) :- schnell(musik); laut(musik). Sie sehen also, PROLOG hat etwas mit Logik zu tun. Ein :- bedeutet Implikation, ein, Konjunktion und ein ; (oder zwei Regeln mit der gleichen Folgerung) Disjunktion. Außerdem spielt ein klassisches logisches Beweisgesetz (Resolution) eine große Rolle im PROLOG Programmieren. Und tatsächlich: PROLOG bedeutet Programmieren in Logik.
3 1.4. Knowledge base 4 (KB4) chinesisch(chow_mein). chinesisch(chop_suey). chinesisch(suess_sauer). mag(sam,chips). mag(sam,chow_mein). mag(peter,chow_mein). mag(qu,chop_suey). Eine sehr langweilige Knowledge base. Interessant sollen hier die queries sein. Wir möchten gerne erstmalig Variablen benutzen.?- chinesisch(x). Das X ist eine Variable (Alle Wörter mit großen Anfangsbuchstaben sind das) Die query fragt also PROLOG, sag mir, welches Essen, das Dir bekannt ist, chinesisch ist. Dazu arbeitet sich PROLOG durch KB4 von oben nach unten durch und versucht die Information chinesisch(x) mit den Informationen von KB4 in Übereinstimmung zu bringen. PROLOG bindet dann (instaziiert) X und chow_mein und antwortet uns: X = chow_mein Nicht nur, dass es Informationen über chinesisches Essen in KB4 gibt, (kein simples yes ) uns wird sogar eine Instanziierung, bzw. Variablen-Bindung gezeigt. Aber Variablen können für verschieden Dinge stehen, und es gibt Information über weiteres chinesiches Essen in KB4, denn Eclipse schreibt More in die Ausgabe. Wir drücken auf die Taste More. Dieses entspricht also der querie: Gibt es noch weiteres? Antwort: X = chop_suey Nach einer weiteren Nachfrage: X = suess_sauer Nun steht kein more mehr in der Ausgabe, da es keine weiteren Ergebnisse gibt.. Versuchen wir eine kompliziertere Querie:?- mag(sam,x), chinesisch(x). Also gibt es Essen, dass Sam mag und das chinesisch ist? Ja, Prolog kann es finden: X = chow_mein Variablen an Informationen in einer Knowledge base zu binden ist der Kern von PROLOG.
4 1.5. Knowledge base 5 (KB5) liebt(othello,desdemona). liebt(desdemona,jago). liebt(romeo,julia). liebt(julia,romeo). eifersuechtig(x,y) :- liebt(x,z), liebt(z,y). Hiermit wird ein Konzept von eifersuechtig definiert. Das ist eine generelle Aussage. Also:?- eifersuechtig(othello,p). gibt es ein Individuum P, so daß Othello eifersuechtig auf P ist? P = jago
5 Aufgabe: 1. Betrachten Sie KB5. Gibt es weitere eifersüchtige-individuen in KB5? Mit welcher Querie würde uns PROLOG alle eifersüchtigen-individuen in KB5 nennen? 2.Repräsentieren Sie folgendes in PROLOG: a) Rincwind ist ein Zauberer b) Zwerge und Elben mögen sich nicht c) Wenn zwei verheiratet sind, mögen sie sich. d) Otto mag niemanden, der ihn dämlich nennt und Engländer ist. e) Hobbits essen alles, was nahrhaft oder schmackhaft ist 3. Wir haben folgende knowledge base: wizard(ron). haswand(harry). quidditchplayer(harry). wizard(x) :- hasbroom(x),haswand(x). hasbroom(x) :- quidditchplayer(x). Was antwortet PROLOG auf folgende Queries? a) wizard(ron). b) witch(ron). c) wizard(hermione). d) witch(hermione). e) wizard(harry). f) wizard(y). g) witch(y).
Prolog 1. Kapitel: Fakten, Regeln und Anfragen
Prolog 1. Kapitel: Fakten, Regeln und Anfragen Dozentin: Wiebke Petersen Kursgrundlage: Learn Prolog Now (Blackburn, Bos, Striegnitz) Petersen Prolog: Kapitel 1 1 Allgemeines Prolog (aus dem franz. Programming
PROLOG Syntax. Einführung in PROLOG II. Atome. Variablen. Es gibt vier Arten von Termen: Atome. Zahlen. Variablen. Komplexe Terme
PROLOG Syntax Es gibt vier Arten von Termen: Atome Variablen Atome Zahlen Variablen Komplexe Terme 1. uni, uni_hannover 2. KI Kurs, $ % 45 3. @=, ====> 1. X, Y 2. Variable, Output 3. _tag, _head 4. X_256
Künstliche Intelligenz Logische Agenten & Resolution
Künstliche Intelligenz Logische Agenten & Resolution Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Inferenz-Algorithmus Wie könnte ein
Logische Programmierung
Logische Programmierung Einleitung Elmar Eder () 1 / 27 Verschiedene Paradigmen der Programmierung Imperative Programmierung Einfache imperative Programmierung Prozedurale Programmierung Objektorientierte
Fakten, Regeln und Anfragen
Fakten, Regeln und Anfragen Prolog Grundkurs WS 99/00 Christof Rumpf [email protected] 18.10.99 GK Prolog - Fakten, Regeln und Anfragen 1 Programmieren = Problemlösen Prolog ist eine deklarative
Path Finding with Prolog. AAI Projekt Thien-An Bui und Marlene Wittwer FHNW Brugg-Windisch, HS 2014
Path Finding with Prolog AAI Projekt Thien-An Bui und Marlene Wittwer FHNW Brugg-Windisch, HS 2014 Ziel Grundlagen von Prolog vermitteln Beispiel Path Finding Zugstrecken erklären Ablauf 1. Allgemeines
Prolog Tutorial Norbert E. Fuchs Institut für Informatik Universität Zürich
Prolog Tutorial Norbert E. Fuchs Institut für Informatik Universität Zürich Inhalt Vom deklarativen Wissen zum prozeduralen Programm Vom Programm zur Berechnung Elemente eines Prolog-Programms Zugverbindungen
Summen- und Produktzeichen
Summen- und Produktzeichen Ein großer Vorteil der sehr formalen mathematischen Sprache ist es, komplizierte Zusammenhänge einfach und klar ausdrücken zu können. Gerade auch diese Eigenschaft der Mathematik
Grundlagen der Theoretischen Informatik
FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski
Einführung in Prolog. Simon Bischof. IPD Snelting
Einführung in Prolog Simon Bischof IPD Snelting KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Terme id := [a-z][a-za-z0-9]*
Logisches und funktionales Programmieren
Prof. Dr. Christoph Beierle, Dr. Harald Ganzinger, Prof. Dr. Michael Hanus Kurs 01816 Logisches und funktionales Programmieren LESEPROBE Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten
Übungen zu Kognitive Systeme I
Übungen zu Kognitive Systeme I Stephan Weller ([email protected]) Kognitive Systeme / WIAI / Uni Bamberg 19. Oktober 2005 Inhalt Intro Was ist Prolog? Wie funktioniert Prolog? Rekursion
Kapitel. Platzhalter. Was sind Platzhalter?
Kapitel 3 Was sind? sind ganz wichtige Elemente bei der Programmierung. Alle Programme, die du schon kennst (wie beispielsweise die Textverarbeitung WORD oder ein Programm zum Verschicken von E-Mails),
Gliederung. Programmierparadigmen. Einführung in Prolog: Einführung in Prolog: Programmieren in Prolog. Einführung Syntax Regeln Listen Relationen
Gliederung Programmierparadigmen Programmieren in Prolog D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg 1 Sommer 2011, 26. April
Vorlesung. Beweise und Logisches Schließen
Vorlesung Beweise und Logisches Schließen Der folgende Abschnitt dient nur zur Wiederholung des Stoffes der ersten Vorlesung und sollten nur genannt bzw. Teilweise schon vor der Vorlesung angeschrieben
Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10
Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige
Mathematische Grundlagen I Logik und Algebra
Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte
Programmiersprache Prolog
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 6.2 Logikprogrammierung Prolog 240 Programmiersprache Prolog Prolog-Programm ist Liste von Fakten (einelementige Hornklausel) und Regeln (mehrelementige
Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren)
Was bisher geschah Wissensrepräsentation und -verarbeitung in Logiken klassische Aussagenlogik klassische Prädikatenlogik: Wiederholung Syntax, Semantik Normalformen: bereinigt Pränex Skolem ( -Eliminierung)
Logik (Prof. Dr. Wagner FB AI)
Logik (Prof. Dr. Wagner FB AI) LERNZIELE: Über die Kenntnis und das Verständnis der gegebenen Definitionen hinaus verfolgt dieser Teil der Lehrveranstaltung die folgenden Lernziele: Bei gegebenen sprachlichen
Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik
Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Grundbegriffe der Aussagenlogik 1 Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen
Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.
Logische Operationen Logische ussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. ezeichnung Schreibweise (Sprechweise) wahr, genau dann wenn Negation (nicht ) falsch
Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1
Grundbegriffe der Aussagenlogik 1 Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation
Vorlesung. Logik und Beweise
Vorlesung Logik und Beweise Der folgende Abschnitt dient nur zur Wiederholung des Stoffes der ersten Vorlesung und sollte nur genannt bzw. teilweise schon vor der Vorlesung angeschrieben werden. Wiederholung
Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht
Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion
Aussagenlogik. Aussagen und Aussagenverknüpfungen
Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,
Einführung in PROLOG IV Listen
Einführung in PROLOG IV Listen Beispiele für Listen in PROLOG: 1. [mia, vincent, jules, yolanda] 2. [mia, robber(honey_bunny), X, 2, mia] 3. [] 4. [mia, [vincent, jules], [butch, girlfriend(butch)]] 5.
»Leichte Sprache «Ein Überblick. Florian Ritter 2016, Landesverband Baden-Württemberg der Lebenshilfe für Menschen mit Behinderung e. V.
»Leichte Sprache «Ein Überblick Florian Ritter 2016, Landesverband Baden-Württemberg der Lebenshilfe für Menschen mit Behinderung e. V. Leichte Sprache? Was ist Leichte Sprache? Leichte Sprache ist eine
Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14
Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine
Aussagenlogische Kalküle
Aussagenlogische Kalküle Ziel: mit Hilfe von schematischen Regeln sollen alle aus einer Formel logisch folgerbaren Formeln durch (prinzipiell syntaktische) Umformungen abgeleitet werden können. Derartige
Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie
Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Grundlegende Beweisstrategien Induktion über
Teil 7. Grundlagen Logik
Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also
Vorkurs Mathematik 2016
Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK1 vom 8.9.2016 VK1: Logik Die Kunst des Schlussfolgerns Denition 1: Eine Aussage ist ein sprachliches
Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung
Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches Was folgt logisch aus dieser Theorie? Deduktion: aus
Deduktion in der Aussagenlogik
Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht
Künstliche Intelligenz Hornklauseln & Prolog
Künstliche Intelligenz Hornklauseln & Prolog Stephan Schwiebert WS 2007/2008 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Terminologie (A B C) E Rumpf einer Klausel
Tilman Bauer. 4. September 2007
Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 [email protected] Zimmer 504, Einsteinstr. 62 (Hochhaus)
Einführung in PROLOG III Rekursion
Einführung in PROLOG III Rekursion Betrachten wir die folgende Knowledge Base: teurer(x,y):- kostet_etwas_mehr(x,y). teurer(x,y):- kostet_etwas_mehr(x,z), teurer(z,y). kostet_etwas_mehr(big_mac,pommes).
Vorkurs Mathematik für Informatiker 5 Logik, Teil 1
5 Logik, Teil 1 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 5: Logik, Teil 1 1 Aussagenlogik Rechnen mit Wahrheitswerten: true und false Kap. 5: Logik, Teil 1 2 Aussagenlogik Rechnen
Logik. III Logik. Propädeutikum Holger Wuschke. 19. September 2018
III Propädeutikum 2018 19. September 2018 III λoγóς="das Wort" (math.) befasst sich mit Denition Aussage Eine Aussage p ist ein sinnvolles sprachliche Gebilde mit der Eigenschaft, entweder wahr oder falsch
3. Exkurs in weitere Arten der Programmierung
3. Exkurs in weitere Arten der Programmierung Inhalt: Objektorientierte Programmierung in C++ Funktional-Logische Programmierung in Prolog Funktional-logische Programmierung in Prolog Prolog Programming
Grundlagen der Programmierung
GdP4 Slide 1 Grundlagen der Programmierung Vorlesung 4 vom 04.11.2004 Sebastian Iwanowski FH Wedel Grundlagen der Programmierung 1. Einführung Grundlegende Eigenschaften von Algorithmen und Programmen
Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren
Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an [email protected]
3 Vom Zählen zur Induktion
7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,
Grundlagen der Theoretischen Informatik
FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie 1 Grundlagen der Theoretischen Inormatik Sebastian Ianoski FH Wedel Kap. 2: Logik, Teil 2.1: Aussagenlogik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie
Logische und funktionale Programmierung
Logische und funktionale Programmierung Vorlesung 11: Logikprogramme Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 19. Dezember 2016 1/55 WIEDERHOLUNG: HORN-KLAUSELN
Repräsentation und Umgang mit unsicherem Wissen (SoSe 2010) Fuzzy Logic I. Alexander Fabisch und Benjamin Markowsky. Universität Bremen
Repräsentation und Umgang mit unsicherem Wissen (SoSe 2010) Fuzzy Logic I Alexander Fabisch und Benjamin Markowsky Universität Bremen 25.05.2010 Alexander Fabisch und Benjamin Markowsky (Universität Bremen)
Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik
Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable
Einführung in die mathematische Logik
Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen
Brückenkurs Mathematik 2015
Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass
Einführung in die Fuzzy Logic
Einführung in die Fuzzy Logic Entwickelt von L. Zadeh in den 60er Jahren Benutzt unscharfe (fuzzy) Begriffe und linguistische Variablen Im Gegensatz zur Booleschen Logik {0,} wird das ganze Intervall [0,]
Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser
Informatik A Prof. Dr. Norbert Fuhr [email protected] auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische
Answer Set Programming
Answer Set Programming mit Answer Set Prolog (A-Prolog) Wangler Thomas Logikprogrammierung Institut für Computerlinguistik Universität Heidelberg Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis
Logik. Aufgaben in: Barwise, Etchemendy. The language of first-order logic. CSLI, ) S. 119 A3 2) S. 131 A15 3) S. 143 A28
Logik Aufgaben in: Barwise, Etchemendy. The language of first-order logic. CSLI, 1992. 1) S. 119 A3 2) S. 131 A15 3) S. 143 A28 Gliederung: Aufgabe 1) S. 2 Aufgabe 2) S. 5 Aufgabe 3) S. 7 1 Aufgabe 1)
SS2010 BAI2-LBP Gruppe 1 Team 07 Entwurf zu Aufgabe 4. R. C. Ladiges, D. Fast 10. Juni 2010
SS2010 BAI2-LBP Gruppe 1 Team 07 Entwurf zu Aufgabe 4 R. C. Ladiges, D. Fast 10. Juni 2010 Inhaltsverzeichnis 4 Aufgabe 4 3 4.1 Sich mit dem Programmpaket vertraut machen.................... 3 4.1.1 Aufgabenstellung.................................
Logische Äquivalenz. Definition Beispiel 2.23
Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt
Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen
Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification
2.3 Deduktiver Aufbau der Aussagenlogik
2.3 Deduktiver Aufbau der Aussagenlogik Dieser Abschnitt beschäftigt sich mit einem axiomatischen Aufbau der Aussagenlogik mittels eines Deduktiven Systems oder eines Kalküls. Eine syntaktisch korrekte
Normalformen der Prädikatenlogik
Normalformen der Prädikatenlogik prädikatenlogische Ausdrücke können in äquivalente Ausdrücke umgeformt werden Beispiel "X (mensch(x) Æ sterblich(x)) "X (ÿ mensch(x) sterblich(x)) "X (ÿ (mensch(x) Ÿ ÿ
Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur
Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die
Zwei Klappentexte informieren über das Sams Lernarrangement: Paul Maar und das Sams Klasse: 3/4
Lernaufgabe: Zwei Klappentexte informieren über das Sams Lernarrangement: Paul Maar und das Sams Klasse: 3/4 Bezug zum Lehrplan Bereich des Faches Schwerpunkt Kompetenzerwartung Lesen mit Texten und Medien
Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014
egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs
Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:
Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht
Vorlesung Diskrete Strukturen Rechnen mit 0 und 1
Vorlesung Diskrete Strukturen Rechnen mit 0 und 1 Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung
Kapitel 1: Grundbegriffe
Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2
Logische und funktionale Programmierung
Logische und funktionale Programmierung Vorlesung 9: Prolog - Das Prädikat CUT Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 9. Dezember 2016 1/31 Läßt sich nämlich
Logik für Informatiker
Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische
b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente
II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der
Vorlesung 3: Logik und Mengenlehre
28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung
Allgemeingültige Aussagen
Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt
Modelltheorie (Einige Impulse)
Modelltheorie (Einige Impulse) Formale Systeme werden oft entworfen, um mathematische Strukturen zu beschreiben. In der Modelltheorie geht es um das Studium der Beziehungen zwischen formalen Systemen und
Deutsche Kinderuni im Koffer Fakultät Mensch Das Gehör. Werner von Siemens FAKULTÄT MENSCH DAS GEHÖR. WERNER VON SIEMENS
FAKULTÄT MENSCH DAS GEHÖR. WERNER VON SIEMENS Zielgruppe - Kinder zwischen 8 und 12 Jahren - Niveaustufe: A1 Sprachliche Ziele Die Kinder können - neue Wörter und Ausdrücke zum Thema kennen lernen und
Grundlagen der Logik
Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl
1 K-Rahmen und K-Modelle
Seminar: Einführung in die Modallogik (WS 15/16) Lehrender: Daniel Milne-Plückebaum, M.A. E-Mail: [email protected] Handout: K-Rahmen, K-Modelle & K-Wahrheitsbedingungen Im Folgenden werden wir uns
2.1 Zufallsspiel: 10er Würfel
2.1 Zufallsspiel: 10er Würfel Gib pxt.calliope.cc in einen Browser ein. Gehe auf und starte ein. Lösche die angezeigten Blöcke. Wir programmieren einen Würfel, der eine zufällige Zahl zwischen 0 und 9
Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung
Tobias Krähling email: Homepage: 13.10.2012 Version 1.2 Zusammenfassung Die Aussagenlogik ist sicherlich ein grundlegendes mathematisches Gerüst für weitere
Binäre Suchbäume (binary search trees, kurz: bst)
Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.
Logische Programmierung
Logische Programmierung B-82 Deklaratives Programmieren in Prädikatenlogik: Problem beschreiben statt Algorithmus implementieren (idealisiert). Grundlagen: Relationen bzw. Prädikate (statt Funktionen);
mathe plus Aussagenlogik Seite 1
mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet
Tutorium: Diskrete Mathematik
Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau 2. Vorlesung Roland Gunesch Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 1 / 21 Themen heute 1
