Physikalisches Praktikum
|
|
|
- Elsa Beutel
- vor 8 Jahren
- Abrufe
Transkript
1 Physikalisches Praktikum Versuch 4: Prismenspektralapparat UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 05
2 Versuch 4 Prismenspektralapparat Für Spektroskopie im Bereich des sichtbaren Lichtes verwendet man alternativ zum Gitterspektrometer das Prismenspektrometer. Sinnvoll ist der Einsatz eines Prismenspektrometers insbesondere, wenn man mit wenig apparativem Aufwand ein Spektrum direkt betrachten will. In der Chemie werden z.b. Prismenspektralapparate von der Größe eines Kugelschreibers verwendet, um durch Betrachtung der Flamme einer brennenden Substanz auf die Art der Substanz zu schließen.. Lernziele dieses Versuchs Die Studierenden sollen. sich an die Vorlesungsinhalte zum Bohrschen Atommodell erinnern.. die Emission und Absorption von Photonen bei Übergängen im Atom beschreiben können..3 die Funktionsweise eines Prismas beschreiben können..4 die Entstehung von Emissions- und Absorptionsspektren erklären können.. Voraussetzungen Vorlesungsstoff zu den Themen: Photonen und ihre Eigenschaften, elektromagnetische Strahlung, Brechungsgesetz, einfache Beispiele aus der geometrischen Optik, Prismen, Dispersion, Bohrsches Atommodell, Spektrallinien Selbststudium zu den Themen: verschiedene Spektren des Lichts (z.b. Absorptions- und Emissionsspektrum) und deren Entstehung (physikalische Erklärung, Planck sches Strahlungsgesetz, Wiensches Verschiebungsgesetz. 3. Literatur Hering, Martin, Stohrer, Physik für Ingenieure,. Auflage, S (als.pdf-datei über die Uni-Bibliothek downloadbar) Mitschrift zur Vorlesung Physik
3 3 4. Versuchsbeschreibung In diesem Versuch wird zunächst ein Prismenspektralapparat (schematisch in Abbildung ) mit Hilfe des Emissionsspektrums einer Spektrallampe ohne Filter mit bekannten Wellenlängen kalibriert, um anschließend die Wellenlängen einer Spektrallampe eines unbekannten Elements zu bestimmen und auf die in der Lampe verwendete Substanz zu schließen. Zum Schluß betrachten wir noch ein kontinuierliches Spektrum ohne Filter. Bild : Prinzipskizze eines Prismenspektralapparates. Bild : Foto eines Prismenspektralapparates.
4 4 5. Vorbereitungsfragen 5. Fertigen Sie zu Anfang Ihres Praktikumsprotokolls eine Versuchsskizze mit kurzer Versuchsbeschreibung an. 5. Informieren Sie sich über das Snelliussche Brechungsgesetz. Fertigen Sie eine Prinzipskizze und schreiben Sie die Formel in Ihr Praktikumsprotokoll. Welche Übungsaufgabe aus der Physikvorlesung fällt Ihnen dazu ein? 5.3 Zeichnen Sie den Strahlengang von weißem Licht durch ein Prisma (n=,5). 5.4 Wie ist der Strahlenverlauf für den minimalen Ablenkungswinkel des Prismas? 5.5 Was versteht man unter Dispersion? 5.6 Welche Arten von Spektren können mit einem Prisma zerlegt werden? 5.7 Warum entsteht im Prismenspektrometer aus dem Licht einer He-Lampe ein Linienspektrum und aus dem Licht einer Glühbirne ein kontinuierliches Spektrum? 5.8 Welche Lichtquellen emittieren generell ein kontinuierliches Spektrum? 6. Versuchsdurchführung Richten Sie das Fernrohr zuerst auf einen weit entfernten Punkt und stellen das Linsensystem speziell auf Ihr Auge ein. Fokussieren Sie nun den beleuchteten Spalt, (Tipp: Spalt muss schmal genug sein!) und peilen Sie mit dem Fadenkreuz den Spalt an. Arretieren Sie dann die Noniusskala auf Null (Feststellschraube links unten am Prismenspektrometer). Setzen Sie nun das Prisma ein (Basis ist mit B gekennzeichnet) und suchen Sie die Spektrallinien. Drehen Sie das Tischchen, um das Minimum in der Ablenkung zu finden (Tipp: Spektrallinie im mittleren Wellenlängenbereich beobachten). Das Minimum zeichnet sich dadurch aus, dass sich die Bewegungsrichtung der Linien, bei gleichbleibender Drehrichtung des Tisches, umkehrt. 6. Vermessen Sie die Emissionslinien der bekannten Spektrallampe (meist Helium) mit Hilfe der Noniusskala (Angabe in Grad und Minuten, NICHT in z. B. 35,8 ). 6. Vermessen Sie das Spektrum der unbekannten Lampe. 6.3 Betrachten Sie nun das Spektrum der Glühlampe. Schätzen Sie mit Hilfe der Noniusskala die linke und die rechte Grenze des Spektrums ab. Welchen Wellenlängen entsprechen diese Grenzen?
5 5 7. Auswertung 7. Fertigen Sie mit den in 6. aufgezeichneten Wertepaaren (bekannte Wellenlänge, gemessener Winkel) eine Kalibrierkurve auf Millimeterpapier an. Tipp: Kalibrierkurven müssen KEINE Geraden sein! Tipp: Nutzen Sie Ihr in Versuch 0 erlangtes Wissen für die Angabe von Messunsicherheiten! 7. Tragen Sie in Ihre Kalibrierkurve die Messwerte aus 6. für die unbekannte Kurve ein und bestimmen Sie graphisch die dazugehörenden Wellenlängen. Tragen Sie wenn möglich auch die in 6.3 gemessenen Werte ein. 7.3 Schätzen Sie nun den von Ihnen gemachten Fehler bei der Versuchsdurchführung ab. Zeichnen Sie die Fehlerbalken in Ihre Kurve ein und geben das unter 7. ermittelte Ergebnis richtig an. (Tipp: Der Fehler in der Wellenlänge ergibt sich aus der Projektion des Winkelfehlers auf Ihre Kalibrierkurve (Bild 3), ist also abhängig von der Steigung der Kurve. Er kann NICHT über den gesamten Wellenlängenbereich konstant sein!). Die Wahl von Abszisse und Ordinate bleibt Ihnen überlassen. Winkeλ [ ] λ [nm] Bild 3: Zur Bestimmung des Fehlers in der Wellenlänge 7.4 Bestimmen Sie aus der mitgelieferten Tabelle das Element, das in der Spektrallampe verwendet wird. Begründen Sie eventuell auftretende Abweichungen vom beobachteten Verlauf.
6 6 Tabelle: Spektrallinien einiger Elemente. Element λ [nm] Farbeindruck Helligkeitseindruck Wasserstoff (H) Rot Stark Blaugrün Mittel Violett Mittel 40.7 Violett Schwach Helium (He) Dunkelrot Schwach Rot Stark Gelb sehr stark Grün Schwach Grün Mittel 49.9 Blaugrün Mittel 47.3 Blau Schwach Blau Stark Violett Schwach Lithium (Li) Rot Stark Gelbrot Mittel Blau Schwach Natrium (Na) Gelbrot Mittel 65.4 Gelbrot Mittel Gelb Stark Gelb Mittel Gelbgrün Schwach Gelbgrün Schwach Kalium (K) Dunkelrot Stark Dunkelrot Stark Violett Mittel Violett Mittel Cadmium (Cd) Rot Stark Gelbrot Schwach Grün Stark Blaugrün Stark Blau Stark Blau Mittel Quecksilber (Hg) Gelb sehr stark Gelb sehr stark Grün Stark Blaugrün Mittel Blau Stark Violett Mittel Violett Mittel Zink (Zn) Rot Stark 58.0 Grün Mittel Blaugrün Stark 47. Blau Stark Blau Stark Blau Schwach
7 7 8. Anhang: Grundlagen zur Lichtbeugung Betrachten wir ein Prisma mit Brechungsindex n umgeben von Luft mit einem Brechungsindex von ca. (siehe Bild 4). Ein von P kommender Strahl wird zweimal gebrochen, am Punkt Q und am Punkt R. Verwenden wir die Nomenklatur wie in Bild 4, so erhalten wir mit Hilfe des Snellius schen Brechungsgesetzes und der in Dreiecken gültigen Identitäten folgende Beziehungen: sin ε ' = n sin ε, () sin ε ' = n sin ε, () ε + ε = α, (3) δ = ε ' + ε ' α. (4) δ ist dabei der gesamte Ablenkwinkel. Zur Kalibrierung eines Prismenspektralapparates verwendet man zweckmäßigerweise einen Strahlendurchgang durch das Prisma, der eindeutig und reproduzierbar ist. Der Strahlengang der die minimale Ablenkung δ min des eintreffenden Strahls liefert ist dafür geeignet. Die Bedingung für ein Minimum ist, dass die Ableitung nach dem Einfallswinkel ε ' gleich Null wird (4). dd dε ' min dε' = + = 0 (5) dε ' Berechnet man mit Hilfe der Gleichungen () und () die Differentiale dε ' und dε ', so erhält man: Weiterhin folgt aus (3): cos ε ' dε ' = n cosε dε (6) cos ε ' dε ' = n cos ε dε (7) dε = dε (8) Ersetzt man die Differentiale dε ' und dε ' durch die aus (6) und (7) folgenden Ausdrücke und verwendet darüber hinaus die Beziehung (8), so findet man: oder nach Umformung: dε' cosε cos ε' = = dε ' cosε cos ε ' (9) cos ε' cosε = cos ε ' cosε (0) Quadriert man nun die Gleichung (0), ersetzt man cos ε durch (-sin ε) und verwendet die Beziehungen () und () ein zweites Mal so erhält man:
8 8 n n sin sin ε ε = sin sin Diese Gleichung kann nur erfüllt sein, wenn n= ist (das ist der triviale Fall, dass das Prisma den gleichen Brechungsindex hat wie das umgebende Medium) oder ε =ε. Mit (0) erhält man weiterhin ε '=ε ' und damit den symmetrischen Strahlengang durch das Prisma. Für den minimalen Ablenkwinkel δ min findet man: ε ε () Bild 4: Strahlengang durch ein Prisma. α δ min = αrcsin( n sin ) α () Aus dieser Gleichung ist ersichtlich, dass der minimale Ablenkungswinkel δ min vom Brechungsindex abhängt. Nun kommt der Begriff der Dispersion ins Spiel. Als Dispersion bezeichnet man die Wellenlängenabhängigkeit des Brechungsindex. Das Auflösungsvermögen des Prismenspektralapparates ist gegeben durch: λ λ = d dn d λ. (3) d ist dabei die Basisbreite des voll ausgeleuchteten Prismas. Das Auflösungsvermögen des Prismenspektralapparates ist also einerseits durch die Basisbreite d des Prismas und andererseits durch die Dispersion gegeben.
PHY. Brechzahlbestimmung und Prismenspektroskop Versuch: 17. Brechzahlbestimmung und Prismenspektroskop
Testat Brechzahlbestimmung und Prismenspektroskop Versuch: 17 Mo Di Mi Do Fr Datum: Abgabe: Fachrichtung Sem. Brechzahlbestimmung und Prismenspektroskop 1. Aufgabenstellung 1.1. Für eine vorgegebene Wellenlänge
PRISMEN - SPEKTRALAPPARAT
Grundpraktikum der Physik Versuch Nr. 20 PRISMEN - SPEKTRALAPPARAT Versuchsziel: Bestimmung der Winkeldispersionskurve und des Auflösungsvermögens von Prismen. brechende Kante Ablenkwinkel einfallendes
Lichtbrechung / Lichtbeugung
Lichtbrechung / Lichtbeugung 1. Aufgaben 1. Über die Beugung an einem Gitter sind die Wellenlängen ausgewählter Spektrallinien von Quecksilberdampf zu bestimmen. 2. Für ein Prisma ist die Dispersionskurve
Physikalisches Praktikum
Physikalisches Praktikum Versuch 17: Lichtbeugung Universität der Bundeswehr München Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 Versuch 17: Lichtbeugung Im Modell
D05 Emissionsspektren
D05 Emissionsspektren Ziele In diesem Versuch werden Sie verschiedene Lichtquellen mit einem Prismenspektrometer untersuchen. Wie sehen die Spektren von Glühlampe, Neonröhre, Leuchtdiode oder Laserpointer
Physikalisches Grundpraktikum Technische Universität Chemnitz
Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A3 - Atomspektren - BALMER-Serie» Martin Wolf Betreuer: DP Emmrich Mitarbeiter: Martin Helfrich
O 6 Prismenspektrometer
Physikalisches Grundpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig O 6 Prismenspektrometer Aufgaben 1 Ermitteln Sie den brechenden Winkel ε eines Prismas! 2 Messen Sie die Dispersionskurve
5. Die gelbe Doppellinie der Na-Spektrallampe ist mit dem Gitter (1. und 2. Ordnung) zu messen und mit dem Prisma zu beobachten.
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum O Gitter/Prisma Geräte, bei denen man von der spektralen Zerlegung des Lichts (durch Gitter bzw. Prismen) Gebrauch macht, heißen (Gitter-
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.2: Wellenlängenbestimmung mit dem Gitter- und Prismenspektrometer Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD Optik Brechungszahl eines Prismas Durchgeführt am 17.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer II Inhaltsverzeichnis 1
1. Versuchsbeschreibung
PROTOKOLL ZUM VERSUCH: JUSTIERUNG EINES GONIOMETERS UND PRISMA CHRIS BÜNGER Betreuer: Dr. Enenkel 1.1. Ziel: 1. Versuchsbeschreibung Erarbeiten der Grundlagen einer optischen Justage Erarbeitung des Begris
Dispersion von Prismen (O2)
Dispersion von Prismen (O) Ziel des Versuches Für drei Prismen aus verschiedenen Glassorten soll durch die Methode der Minimalablenkung die Dispersion, d. h. die Abhängigkeit der Brechungsindizes von der
1. Aufgabe a) Beschreibe den Schülerversuchsaufbau zur Dispersion von Licht. Notiere insbesondere die Namen und Aufgaben der einzelnen Objekte.
1. Aufgabe a) Beschreibe den Schülerversuchsaufbau zur Dispersion von Licht. Notiere insbesondere die Namen und Aufgaben der einzelnen Objekte. Linie Wellenlänge /nm eigene Beobachtung Flint Kron Quarz
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 5.6: Bestimmung der Balmerserie Gruppe 2, Mittwoch: Patrick Lipinski, Sebastian Schneider Patrick Lipinski, Sebastian Schneider Seite 1 / 5 1.
Versuch 33 Prismenspektrometer
Versuch 33 Prismenspektrometer II Literatur W. Walcher, Praktikum der Physik, B.G.Teubner Stuttgart, Standardwerke der Physik: Gerthsen, Bergmann-Schäfer, Tipler. Justierschraube für Spaltbreite Kollimator
Physikalisches Praktikum 3
Datum: 0.10.04 Physikalisches Praktikum 3 Versuch: Betreuer: Goniometer und Prisma Dr. Enenkel Aufgaben: 1. Ein Goniometer ist zu justieren.. Der Brechungsindex n eines gegebenen Prismas ist für 4 markante
Spektroskopie. Einleitung
Spektroskopie Einleitung Schon der Name Quantenphysik drückt aus, dass auf der Ebene der kleinsten physikalischen Objekte (z.b. Atome, Protonen, Neutronen oder Elektronen), bestimmte physikalische Gröÿen
Versuche zur Dispersion
Versuche zur Dispersion. August 006 1 Grundlagen 1.1 Historische Angaben Das Brechungsgesetz wurde zuerst von WILLIBROD SNELL VAN ROYEN (SNELLIUS) 161 entdeckt und von RENE DESCARTES (CARTESIUS) 163 in
Physikalisches Praktikum Prof. Dr. Peterseim / Dipl.-Ing. M. Gilbert
Physikalisches Praktikum Prof. Dr. Peterseim / Dipl.-Ing. M. Gilbert.08.008 Monochromatische Lichtquellen - Prismenspektrometer Versuch Nr. O 03 (Pr_EX_O03_Prismenspektrometer) Praktikum: FB 0 Plätze:
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I Name: Brechungsindexbestimmung mit dem Prismen- Spektralapparat Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat:
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I O20 Name: Brechungsindexbestimmung mit dem Prismenspektrometer Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat:
Protokoll: Grundpraktikum II O3/O4 Prismen- und Gitterspektrometer
Protokoll: Grundpraktikum II O3/O4 Prismen- und Gitterspektrometer Sebastian Pfitzner 14. März 2014 Durchführung: Anna Andrle (550727), Sebastian Pfitzner (553983) Arbeitsplatz: Platz 3 Betreuer: Heike
Physikalisches Praktikum Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik MSc. M. Gilbert
Physikalisches Praktikum Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik MSc. M. Gilbert O03 Optik: Prismenspektrometer (Pr_EX_O03_Prismenspektrometer_6, 30.8.009). Name Matr. Nr.
Prismenspektrometer (DL)
Prismenspektrometer (DL) 1. Aufgabenstellung 1. Man führe mindestens 3 Goniometermessungen zur Bestimmung des brechenden Winkels ε eines vorgegebenen Glasprismas aus! Wie groß ist ε? Wie groß sind hierbei
Abiturprüfung Physik, Grundkurs
Seite 1 von 6 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer Bedeutung.
Physikalisches Praktikum
MI2AB Prof. Ruckelshausen Versuch 3.3: Bestimmung von Brechzahlen Gruppe 2, Mittwoch: Patrick Lipinski, Sebastian Schneider Patrick Lipinski, Sebastian Schneider Seite 1 von 4 Inhaltsverzeichnis 1. Versuchsbeschreibung
Gitter. Schriftliche VORbereitung:
D06a In diesem Versuch untersuchen Sie die physikalischen Eigenschaften eines optischen s. Zu diesen za hlen insbesondere die konstante und das Auflo sungsvermo gen. Schriftliche VORbereitung: Wie entsteht
Lösung zum Parabolspiegel
Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2
Brechungsindexbestimmung mit dem Prismen- Spektralapparat O20. Matrikelnummer: Versuchsziel und Versuchsmethode:
O20 Name: Brechungsindexbestimmung mit dem Prismen- Spektralapparat Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem
1.1 Auflösungsvermögen von Spektralapparaten
Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.1 Auflösungsvermögen von Spektralapparaten Sitchwörter: Geometrische Optik, Wellenoptik, Auflösungsvermögen, Rayleigh Kriterium, Spektrograph,
Protokoll. optische Spektroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum
Protokoll optische Spektroskopie zum Modul: Physikalisches Grundpraktikum 2 bei Prof. Dr. Heyne Sebastian Baum am Fachbereich Physik Freien Universität Berlin Ludwig Schuster und Florian Conrad (Gruppe
OW_01_02 Optik und Wellen GK/LK Beugung und Dispersion. Grundbegriffe der Strahlenoptik
OW_0_0 Optik und Wellen GK/LK Beugung und Dispersion Unterrichtliche Voraussetzungen: Grundbegriffe der Strahlenoptik Literaturangaben: Optik: Versuchsanleitung der Fa. Leybold; Hürth 986 Verfasser: Peter
PROTOKOLL ZUM VERSUCH REFRAKTOMETRIE. Inhaltsverzeichnis
PROTOKOLL ZUM VERSUCH REFRAKTOMETRIE CHRIS BÜNGER Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgabe 1 1.3. Das Abbé-Refraktometer 1 2. Versuchsdurchführung 3 2.1. Bestimmung der Brechungsindizes
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Protokoll zum Physikalischen Praktikum Versuch 7 - Justierung einer Goniometers Versuch 8 - Prisma
Protokoll zum Physikalischen Praktikum Versuch 7 - Justierung einer Goniometers Versuch 8 - Prisma Experimentator: Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 3.11.004 Inhaltsverzeichnis 1 Ziel
NG Brechzahl von Glas
NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes
Lösung: a) b = 3, 08 m c) nein
Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter
Spektralapparat und Absorptionsspektrum
Ziele Spektralapparat und Absorptionsspektrum Das ist die Idee: Jeder Stoff absorbiert Licht auf bestimmten, für ihn charakteristischen Wellenlängen. Mit einem Spektralapparat ermittelt man diese Wellenlängen
Prismenspektrometer. Physik-Labor INHALT
Physik-Labor Prismenspektrometer INHALT - Einführung - Versuchsaufbau - Aufgabenstellung 1. Kalibrierung des Prismenspektrometers 2. Bestimmung von Wellenlängen 3. Bestimmen des Brechungsindex 4. Bestimmung
Praktikum GI Gitterspektren
Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings
1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen
Klausur Klasse 2 Licht als Wellen (Teil ) 26..205 (90 min) Name:... Hilfsmittel: alles verboten. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Lichtstrahls durch eine Glasplatte, bei dem Reflexion
Physikalisches Grundpraktikum Abteilung Optik
O14 Physikalisches Grundpraktikum Abteilung Optik Optische Spektralanalyse 1 Lernziele Entstehung elektromagnetischer Strahlung, Grundbegriffe der Spektroskopie, Auflösungsvermögen optischer Instrumente,
Versuch P2-13: Interferenz. Auswertung. Von Jan Oertlin und Ingo Medebach. 3. Mai 2010
Versuch P2-13: Interferenz Auswertung Von Jan Oertlin und Ingo Medebach 3. Mai 2010 Inhaltsverzeichnis 1 Newtonsche Ringe 2 1.1 Krümmungsradius R einer symmetrischen sphärischen Bikonvexlinse..........
Abiturprüfung Physik, Grundkurs. a) Skizzieren Sie den Versuchsaufbau und beschreiben Sie das Experiment.
Seite 1 von 8 Abiturprüfung 2008 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Spektralröhre In dieser Aufgabe geht es um die Identifizierung eines unbekannten Elementes, das in Form eines Gases in einer
Abiturprüfung Physik, Leistungskurs
Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer
Weißes Licht wird farbig
B1 Experiment Weißes Licht wird farbig Das Licht, dass die Sonne oder eine Glühlampe aussendet, bezeichnet man als weißes Licht. Lässt man es auf ein Glasprisma fallen, so entstehen auf einem Schirm hinter
Versuch 23 Prismen- und Gitterspektrometer
Physikalisches Praktikum Versuch 3 Prismen- und Gitterspektrometer Praktikanten: Johannes Dörr Gruppe: 14 [email protected] physik.johannesdoerr.de Datum: 9.09.006 Katharina Rabe Assistent: Sebastian
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.6: Beugung am Gitter Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1 Bestimmung des Gitters mit der kleinsten Gitterkonstanten
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD 6. Atom- und Molekülphysik 6.7 - Photoeffekt Durchgeführt am 29.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Sarah Dirk Marius Schirmer [email protected]
Grundpraktikum II. O3/O4 - Prismen und -Gitterspektrometer
Mathematisch-Naturwissenschaftliche Fakultät Institut für Physik Grundpraktikum II O3/O4 - Prismen und -Gitterspektrometer Julien Kluge 10. März 2016 Student: Julien Kluge (564513) [email protected]
Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen
Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.
Physik-Praktikum: BUB
Physik-Praktikum: BUB Einleitung Während man Lichtbrechung noch mit einer Modellvorstellung von Licht als Teilchen oder als Strahl mit materialabhängiger Ausbreitungsgeschwindigkeit erklären kann, ist
Physik 4, Übung 2, Prof. Förster
Physik 4, Übung, Prof. Förster Christoph Hansen Emailkontakt 4. April 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.
4.3. Dispersion und Balmerserie
4.3 Dispersion und Balmerserie 341 4.3. Dispersion und Balmerserie Ziel Zunächst wird die Dispersion eines Prismas anhand von Helium-Spektrallinien untersucht. In einem zweiten Schritt werden dann die
7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom
phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -
Spektralapparat. Schriftliche VORbereitung:
Das ist die Idee: Jeder Stoff absorbiert Licht auf bestimmten, für ihn charakteristischen Wellenlängen. Mit einem ermittelt man diese Wellenlängen und kann so den Stoff identifizieren. In diesem Versuch
Gitter- und Prismenspektralapparat
Versuch 22 27 Gitter- und Prismenspektralapparat 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche 20-23 1.2 Reflexions- und Brechungsgesetz, Totalreflexion, Dispersion Lit.: HAMMER 7.1.1.3-7.1.1.6
Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation
Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation Es gibt zwei Möglichkeiten, ein Objekt zu sehen: (1) Wir sehen das vom Objekt emittierte Licht direkt (eine Glühlampe, eine Flamme,
Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums
Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums Ein weiterer Zugang zur Physik der Atome, der sich als fundamental erweisen sollte, ergab sich aus der Analyse der elektromagnetischen
Abiturprüfung Physik, Grundkurs
Seite 1 von 5 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Farbstoffmoleküle In der Spektroskopie unterscheidet man zwei grundsätzliche Typen von Spektren: Emissionsspektren, wie sie
Versuch 33 Prismenspektrometer
Versuch Prismen- und Gitterspektrometer II Literatur W. Walcher, Praktikum der Physik, B.G.Teubner Stuttgart, Standardwerke der Physik: Gerthsen, Bergmann-Schäfer, Tipler. Okular Justierschraube für Spaltbreite
Das Wasserstoffatom Energiestufen im Atom
11. 3. Das Wasserstoffatom 11.3.1 Energiestufen im Atom Vorwissen: Hg und Na-Dampflampe liefern ein charakteristisches Spektrum, das entweder mit einem Gitter- oder einem Prismenspektralapparat betrachtet
Bestimmung des Planckschen Wirkungsquantums h mit Hilfe des Fotoelektrischen Effektes
Versuchsdurchführung Bestimmung des Planckschen Wirkungsquantums h mit Hilfe des Fotoelektrischen Effektes Auf einer optischen Bank sind eine Quecksilberniederdrucklampe, ein verstellbarer Spalt, eine
Vorlesung Allgemeine Chemie (CH01)
Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut
SPEKTRALANALYSE. entwickelt um 1860 von: GUSTAV ROBERT KIRCHHOFF ( ; dt. Physiker) + ROBERT WILHELM BUNSEN ( ; dt.
SPEKTRALANALYSE = Gruppe von Untersuchungsmethoden, bei denen das Energiespektrum einer Probe untersucht wird. Man kann daraus schließen, welche Stoffe am Zustandekommen des Spektrums beteiligt waren.
Prismenspektrometer. 1. Prinzip des Prismenspektrometers. 2. Ablenkwinkel
Prismenspektrometer 1 Prinzip des Prismenspektrometers Ein Prisma ist ein durchsichtiger Körper (beispielsweise aus Glas oder Plexiglas), der zwei nicht parallele Begrenzungsflächen besitzt Von der Seite
Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe
Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt
I GEOMETRISCHE OPTIK. Physik PHB3/4 (Schwingungen, Wellen, Optik) 1 Grundlagen und Grundbegriffe
0_GeomOptikEinf1_BA.doc - 1/8 I GEOMETRISCHE OPTIK 1 Grundlagen und Grundbegriffe Optik ist die Lehre von der Ausbreitung elektromagnetischer Wellen (üblicherweise beschränkt auf den sichtbaren Bereich)
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (8 Punkte) Ein
PRISMEN- UND GITTERSPEKTROMETER
O3/O4 PRISMEN- UND GITTERSPEKTROMETER PHYSIKALISCHE GRUNDLAGEN Grundbegriffe: Brechung am Prisma, Dispersion, Fresnel-Huygenssches-Prinzip, Beugung am Gitter, Spektrometer, Kohärenz, Auflösungsvermögen.
Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2
Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll
Versuch P3: Spektroskopie
Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Name Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden die
IO2. Modul Optik. Refraktion und Reflexion
IO2 Modul Optik Refraktion und Reflexion In der geometrischen Optik sind die Phänomene der Reflexion sowie der Refraktion (Brechung) von enormer Bedeutung. Beide haben auch vielfältige technische Anwendungen.
Physikalisches Praktikum
Physikalisches Praktikum UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik September 2016 2 Versuch 24 Beugung von Röntgenstrahlung Röntgenstrahlen
Spektralapparat. Schriftliche VORbereitung:
Das ist die Idee: Jeder Stoff absorbiert Licht auf bestimmten, für ihn charakteristischen Wellenlängen. Mit einem ermittelt man diese Wellenlängen und kann so den Stoff identifizieren. In diesem Versuch
9. GV: Atom- und Molekülspektren
Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während
Thema heute: Aufbau der Materie: Das Bohr sche Atommodell
Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte
Laboranten Labormethodik und Physikalische Grundlagen
0.09.06 Brechung Trifft Licht auf die Grenzfläche zweier Stoffe, zweier Medien, so wird es zum Teil reflektiert, zum Teil verändert es an der Grenze beider Stoffe seine Richtung, es wird gebrochen. Senkrecht
Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)
Aufnahme und Abgabe von Energie (Licht) 1. Was versteht man unter einem Elektronenvolt (ev)? 2. Welche physikalische Größe wird in Elektronenvolt gemessen? Definiere diese Größe und gib weitere Einheiten
Protokoll zum Physikalischen Praktikum Versuch 11 - Refraktometrie
Protokoll zum Physikalischen Praktikum Versuch 11 - Refraktometrie Experimentator: Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 09.11.2004 Inhaltsverzeichnis 1 Ziel des Versuches 1 2 Vorüberlegungen
Versuch 52 a. Brechungsindex Minimalablenkung durch ein Prisma
Physikalisches Praktikum für Anfänger Versuch 52 a Brechungsindex Minimalablenkung durch ein Prisma Aufgabe Messung des Winkels der brechenden Kante eines Glasprismas Messung der Dispersionskurve eines
Entstehung des Lichtes und Emissionsspektroskopie
Entstehung des Lichtes und Emissionsspektroskopie Entstehung des Lichtes Abb. 1 Entstehung des Lichtes Durch Energiezufuhr von Aussen (z.b. Erhitzen) kann die Lage der Elektronen in einem Atom verändert,
Die Lichtbrechung am gleichseitigen Prisma bei Totalreflexion an der zweiten Grenzfläche (Verfasser: Prof. Dr. Klaus Dräger)
Die Lichtbrechung am gleichseitigen Prisma bei Totalreflexion an der zweiten Grenzfläche (Verfasser: Prof. Dr. Klaus Dräger) Roger Bacon : de multiplicatone specierum Klassenstufe Oberthemen Unterthemen
Versuch 14: Das Lambert-Beersche Gesetz / Prismenspektrometer
Versuch 14: Das Lambert-Beersche Gesetz / Prismenspektrometer In diesem Versuch werden verschiedene Materialien bezüglich ihrer brechenden und absorbierenden Eigenschaften gegenüber elektromagnetischen
18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler
Spektrum elektromagnetischer Wellen Licht Ausbreitung von Licht Verschiedene Beschreibungen je nach Größe des leuchtenden (oder beleuchteten) Objekts relativ zur Wellenlänge a) Geometrische Optik: Querdimension
Grundlagen. Dies bedeutet, dass die Elektronenemission unabhängig von der Lichtintensität und unabhängig von der Bestrahlungsdauer. A.
Grundlagen Die Wissenschaft beschäftigte sich lange mit der Frage um die Natur des Lichts. Einerseits besitzt Licht viele Welleneigenschaften, weshalb es häufig als solche betrachtet wird. Doch andererseits
O3/O4 Prismen- und Gitterspektrometer
Physikalische Grundlagen Grundbegriffe Brechung am Prisma Dispersion Fresnel-Huygenssches-Prinzip Beugung am Gitter Spektrometer Kohärenz Auflösungsvermögen dienen der Wellenlängenmessung im sichtbaren
FK Ex 4 - Musterlösung Dienstag
FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu
Versuch 21: Das Lambert-Beersche Gesetz und Grundlagen optischer Spektroskopie
Versuch 21: Das Lambert-Beersche Gesetz und Grundlagen optischer Spektroskopie Verschiedene Materialien sollen bezüglich ihrer brechenden und absorbierenden Eigenschaften gegenüber elektromagnetischen
Praktikumsprotokoll. Versuch Nr. 605 Die Spektren der Alkali-Atome. Frank Hommes und Kilian Klug
Praktikumsprotokoll Versuch Nr. 605 Die Spektren der Alkali-Atome und Durchgeführt am: 16 Februar 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 3 Physikalische Methoden 4 4 Durchführung
PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe
1.9.08 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: O 2 - Linsensysteme Literatur Eichler, Krohnfeld, Sahm: Das neue physikalische Grundpraktikum, Kap. Linsen, aus dem Netz der Universität http://dx.doi.org/10.1007/3-540-29968-8_33
Die Natriumlinie. und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz
Die Natriumlinie und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz Absorption & Emissionsarten Absorption (Aufnahme von Energie) Atome absorbieren Energien, z.b. Wellenlängen,
Examensaufgaben - STRAHLENOPTIK
Examensaufgaben - STRAHLENOPTIK Aufgabe 1 Ein Prisma mit einem brechenden Winkel von 60 hat eine Brechzahl n=1,5. Berechne den kleinsten Einfallswinkel, für welchen noch ein Strahl auf der anderen Seite
