Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm

Größe: px
Ab Seite anzeigen:

Download "Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm"

Transkript

1 Charakterisierung der Medizinische Biophysik II. 1 elektroagnetische Strahlung Photonenergie: Diagnostik: kev Therapie: 5-20 MeV Wellenlänge: ~ p Photonenenergie: ev ev kev MeV GeV László Seller Wirkungen: Ionisation Luineszenz (Fluoroskopie, Bildverstärker) cheische (z.b. Photo) biologische (Strahlenschädigung) Entstehung: in der Elektronenhülle Typen Bresstrahlung charakteristische Strahlung Historie 1895 Wilhel Conrad Röntgen X-Strahlung (X-ray) 1896 erste edizinische Anwendung 1901 Nobel Preis (erste Nobel Preis in Physik) heute: D Röntgen-CT

2 Entstehung der Entsteht wenn hochenergetische (beschleunigte) geladene Teilchen ihre Energie abgeben. Geräte zur Erzeugung der Röntgenröhre Teilchenbeschleuniger Röntgenröhre (Diagnostik) Teilchenbeschleuniger (Therapie) Die Röntgneröhre

3 Die Röntgenröhre (1) Anode U Heiz Vakuu Isolator Heizkathode: Heizung (T Erhöhung) Erhöhte therische Energie Elektronen treten aus der Kathode aus. (Glühelektrischer Effekt) Die Röntgenröhre (2) Die Röntgenröhre () U I U I U Heiz U Heiz Anodenspannung(U) (typisch kv): beschleunigt die Elektronen U e = E kin Eleentarladung e=1, C kinetische Energie des beschleunigten Elektrons entsteht wenn die beschleunigten Elektronen auf die Anode prallen. 1. Abbresung (Bresstrahlung) 2. Elektronenausstoß+Elektronenübergang (Charakteristische Str.)

4 Kinetische Energie Bresstrahlung Photonenenergie (Rtg) Therische Energie Ue λ E kin h f E kin hf c Ue h λ hc λ in Ue c h λ Grenzwellenlänge, Duane-Hunt Gesetz λ hc Ue λ λ in in Konst. 120 kv p U nicht SI aber praktische Einheit P in Eissionsspektru der Bresstrahlung U 1 U 2 ax harte weiche Strahlung Anodenspannung in ax E photon härtere Strahlung N photon Leistung P ~ U 2 15 P in Eissionsspektru der Bresstrahlung ax I 1 I 2 U 1 U 2 harte weiche Strahlung Anodenstro in - ax - E photon - härte d. Strahlung - N photon Leistung P ~ I Oh 16

5 U Heiz Regulierung der Anodenstrostärke U I Leistung der P P (gesate Röntgenleistung) P ( 1, 2 ) ehr Heizung ehr Elektronen treten aus größerer Anodenstro (I=Q/t) in P = c Rtg U 2 I Z Anodenspannung Anodenstrostärke Ordnungszahl des Anodenaterials Konst. (1, V -1 ) Wirkungsgrad der Röntgenröhre Wirkungsgrad c Rtg U UI nützliche Leistung investierte Leistung 2 IZ c Rtg UZ Anodenaterial it hoher Ordnungszahl! Praktisch: Wolfra (Z=74) typisches : 1% 99% Wäre! Z blei =82! Aber: T Sch,W 400 C T Sch,Pb 0 C Entstehung der charakteristischen E kin beschleunigtes Elektron aus der Kathode Ato des Anodenaterials

6 Entstehung der charakteristischen Entstehung der charakteristischen leere Stelle Ato des Anodenaterials Ato des Anodenaterials Entstehung der charakteristischen leere Stelle gefüllt Entstehung der charakteristischen E Ato des Anodenaterials charakteristisches Röntgenphoton hf =E Ato des Anodenaterials ev kev M L L K K Linien

7 Spektru der charakteristischen Anwendung der charakteristischen E P fast onochroatische U 1 U 2 U 0 L K Linien -Diagnostik (zb.: Maographie) -Strukturanalyse der Materie (Röntgenbeugung) K L Schwächung der Medizinische Biophysik 11 Grund der Röntgendiagnostik Ähnlich zur Schwächung der -Strahlung Schwächungsgesetz: = 0 e -x 0 (Stoff,ρ,) Z (Stoff,) ρ Massenschwächungskoeffizient x

8 Schwächung der 0 Teilprozesse der Schwächung der Photoeffekt 0 /2 Copton Streuung 0 /4 0 /8 0 D 2D D x = + ( + ) unterschiedliche Stoff(Z)- und (oder E ph ) Abhängigkeit Photoeffekt Copton Streuung hf const Z E E kin Photon =const Z starke Z Abhängigkeit! diagn. Bedeutung! Beispiel: 10% Z Erhöhung 110%=1,1 1,1 =1,1 % Erhöhung! bei weicher Strahlung hf E kin hf =const Z /A praktisch unabhängig von Z! zb: C P Ca Pb Z A Z/A 0,5 0,48 0,5 Schwache Wellenlängenabhängigkeit: ~

9 hf Paarbildung e - E kin e + E kin hf 2 e c 2 1MeV nur bei therap. Rtg. und -Strahlung Photonenenergieabhängigkeit des Schwächungskoeffizienten [c 2 /g] E Photon [kev] Wasser Röntgendiagnostische Verfahren Suationsbild Toographisches Bild - Statische Aufnahe (Filaufnahe) - Gleichzeitiges Bild (Fluoroskopie) CT Spezialitäten: Anwendung von Kontrastitteln, Digitalisierung, Substraktion Röntgenbildentstehung Grundprinzip der Röntgenbildentstehung: Unterschiedliche Strahlungsabsorption der verschiedenen Gewebe. 0 x Luft Wechteilgewebe Knochen

10 Grundprinzip der Suationsaufnahen Absorption von inhoogenen Körper Detektor (fil, ) e e x x 1 x e e 2x2 1x1 2x2 ( 1x1 2x 0 0 x Werte sind addiert (suiert) Suationsbild e 2 ) Photonenenergieabhängigkeit des Massenschwächungskoeffizienten Zusaenfassung der Schwächungsechanisen Massenschwächungskoeffizient [c 2 /g] weiches Gewebe Wasser Knochen Fettgewebe Photonenenergie [kev] Mechanisus Abhängigkeit des Massenschwächungskoeffizienten von E von Z Wichtiger Bereich i Gewebe Photoeffekt ~1 / E ~Z kev Copton- Effekt Nit ab it E unabhängig ~Z/A MeV Paarbildung Nit zu it E ~ Z 2 > 5 MeV Kontrast des Röntgenbildes: Photoeffekt (~Z )

11 Effektive Ordungszahl Bei Verbindungen oder Mischungen: Z eff n i1 w Z Z i Ordnungszahl von i-ten Atotyp w i Elektronenzahlverhältnis zb: Wasser H 2 O 10 Elektronen: 2 von H, 8 von O Z H =1, Z O =8, w H =0,2 w O =0,8 Z eff 0,2 1 i 0,8 8 i 7,4 Waru die unterschiedliche geweben unterschiedlich absorbieren? Effektive Ordungszahl der Gewebe Eleent Z in Fettgewebe % Masse in weiche Gewebe in Knochen H 1 11,2 10,2 8,4 C 6 57, 12, 27,6 N 7 1,1,5 2,7 O 8 0, 72,9 41 P Ca ,7 Effektive Ordnungszahl: 6 7,4 1,8 Kontrast bei der Röntgenaufnahe Ein Beispiel Schwächung durch Photoeffekt:, Knochen Zeff, Knochen 1,8 Z 7,4, weichesgewebe eff, weiches Gewebe 6,5 Schwächung durch Copton Streuung:, weichesgewebe 1 ist Z unabhängig!, Knochen = ρ ρ wg = 1.05 ρ Knochen = 1,7..1,8 wenn,wg =,K

Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm

Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm Charakterisierung der Medizinische Biophysik II. 1 elektromagnetische Strahlung Photonenergie: Diagnostik: -2 kev Therapie: 5-2 MeV Wellenlänge: ~ pm Photonenenergie: mev ev kev MeV GeV László Smeller

Mehr

Die Arten der ionisierenden Strahlen. Strahlenquellen

Die Arten der ionisierenden Strahlen. Strahlenquellen Die Arten der ionisierenden Strahlen. Strahlenquellen Kernstr. Kernstrahlungen (4-21) Röntgenstrahlung (22-43) Anhang 1. Intensität (44) 2. Spektrum (45-47) 3. Atom (48-56) Repetitio est mater studiorum.

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 04/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Spektrum des H-Atoms Energieniveaus der erlaubten Quantenbahnen E n = " m # e4 8 # h 2 # $ 0 2

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

beschleunigtes e- -, beschleunigtes e-:

beschleunigtes e- -, beschleunigtes e-: Strahlentherapie: Anwendung der schädigende Wirkung der ionisierenden Strahlungen für Zerstörung der (hauptsächtlich Tumor-) Geweben. Strahlentherapie Fragen zu besprechen: 1. Welcher Strahlungstyp soll

Mehr

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser 31. Lektion Röntgenstrahlen 40. Röntgenstrahlen und Laser Lerhnziel: Röntgenstrahlen entstehen durch Beschleunigung von Elektronen oder durch die Ionisation von inneren Elektronenschalen Begriffe Begriffe:

Mehr

Strahlenschutzkurs. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie

Strahlenschutzkurs. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie Wechselwirkung der Strahlungen mit der Materie Strahlenschutzkurs für Zahnmediziner 2. Wechselwirkung der Strahlungen mit der Materie. Messung der ionisierenden Strahlungen. osisbegriffe Geladene Teilchen

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

Strahlenschutzkurs für Zahnmediziner. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie

Strahlenschutzkurs für Zahnmediziner. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie Wechselwirkung der Strahlungen mit der Materie Strahlenschutzkurs für Zahnmediziner 2. Wechselwirkung der Strahlungen mit der Materie. Messung der ionisierenden Strahlungen. Dosisbegriffe α β Geladene

Mehr

Die Abbildung zeigt eine handelsübliche Röntgenröhre

Die Abbildung zeigt eine handelsübliche Röntgenröhre Die Röntgenstrahlung Historische Fakten: 1895 entdeckte Röntgen beim Experimentieren mit einer Gasentladungsröhre, dass fluoreszierende Kristalle außerhalb der Röhre zum Leuchten angeregt wurden, obwohl

Mehr

VL Physik für Mediziner 2009/10. Röntgenstrahlung

VL Physik für Mediziner 2009/10. Röntgenstrahlung VL Physik für Mediziner 2009/10 Röntgenstrahlung Peter-Alexander Kovermann Institut für Neurophysiologie Medizinische Hochschule Hannover Kovermann.Peter@MH-Hannover.DE Was ist Röntgenstrahlung und. wer

Mehr

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie Wechselwirkung mit Materie Scanogramm Röntgen- Quelle Detektor ntwicklung Verarbeitung Tomogramm Bohrsches Atommodell M (18e - ) L (8e - ) K (2e - ) Wechselwirkung mit Materie Kohärente Streuung Röntgenquant

Mehr

Röntgen Physik und Anwendung

Röntgen Physik und Anwendung Röntgen Physik und Anwendung Entstehung und Beschreibung von Röntgenstrahlung Was ist der wesentliche Unterschied zwischen Röntgen-Photonen und Photonen, die bei Phosphoreszenz/Lumineszenz entstehen? Begründen

Mehr

Radiographie Abbildung mit Röntgenstrahlen

Radiographie Abbildung mit Röntgenstrahlen Geschichte Radiographie Abbildung mit Röntgenstrahlen Geschichte Die Röntgenstrahlung wurde am 8.11.1895 von Wilhelm Conrad Röntgen entdeckt. Eine Röntgenröhre besteht in ihrer einfachsten Form aus einer

Mehr

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019 Lösungen der Abituraufgaben Physik Harald Hoiß 26. Januar 2019 Inhaltsverzeichnis 1. Wasserstoffatom 1 1.1. Spektren.............................................. 1 2. Anwendungen zum quantenmechanischen

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 19 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 PET: Positronen-Emissions-Tomographie Kernphysik PET Atomphysik Röntgen

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Bildgebung mit Röntgenstrahlen. Erzeugung von Röntgenstrahlung

Bildgebung mit Röntgenstrahlen. Erzeugung von Röntgenstrahlung Erzeugung von Röntgenstrahlung Scanogramm Röntgen- Quelle Detektor Entwicklung Verarbeitung Tomogramm Erzeugung von Röntgenstrahlung: Grundprinzip: Photoelektrischer Effekt - Erzeugung freier Elektronen

Mehr

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1 Abiturprüfung 2003 Vorschlag 2 Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1. Skizziere und beschreibe den Aufbau einer Röntgenröhre. Beschreibe kurz, wie Röntgenstrahlung entsteht.

Mehr

Ionisierende Strahlung

Ionisierende Strahlung 1 Vorlesung zu Q11: Bildgebende Verfahren, Strahlenbehandlung, Strahlenschutz Grundlagen & Bildgebung Prof. Dr. Willi Kalender, PhD Institut für Medizinische Physik Universität Erlangen www.imp.uni-erlangen.de

Mehr

RADIOLOGIE Einführung, Strahlenschutz

RADIOLOGIE Einführung, Strahlenschutz RADIOLOGIE Einführung, Strahlenschutz Nándor Faluhelyi und prof. Péter Bogner Klinik für Radiologie 2018 Was bedeutet Radiologie? Eine Blutprobe ist eigentlich ein Schlüsselloch in den menschlichen Körper

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α =δ0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Optische Aktivität α =δ k d 0

Optische Aktivität α =δ k d 0 Optische Aktivität α = δ 0 k d Flüssigkristalle Flüssigkristall Displays Flüssigkristalle in verschiedenen Phasen - sie zeigen Eigenschaften, die sich zwischen denen einer perfekten Kristallanordnung und

Mehr

Grundkurs Physik: Abiturprüfung 1998 Aufgabe 3 Atommodelle Materiewellen

Grundkurs Physik: Abiturprüfung 1998 Aufgabe 3 Atommodelle Materiewellen Grundkurs Physik: Abiturprüfung 1998 Aufgabe 3 Atoodelle Materiewellen 1. Eine Reihe von grundlegenden Experienten rückte zu Beginn unseres Jahrhunderts den Begriff Ato in den Bereich des physikalisch

Mehr

Röntgendiagnostik. Belichtungszeit damals zwanzig Minuten heute Sekunden für Röntgen-Computer-Tomograpie 29

Röntgendiagnostik. Belichtungszeit damals zwanzig Minuten heute Sekunden für Röntgen-Computer-Tomograpie 29 Röntgendiagnostik Belichtungszeit damals zwanzig Minuten heute Sekunden für Röntgen-Computer-Tomograpie 29 22. Februar 1890 First radiograph Diagnostik Radiograph of coins made by Goodspeed and Jennings

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #46 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #46 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #46 am 19.07.2007 Vladimir Dyakonov Atome und Strahlung 1 Atomvorstellungen J.J. Thomson 1856-1940

Mehr

Versuch O

Versuch O 1 Grundlagen Plancksches Wirkungsquantum Das Plancksche Wirkungsquantum gibt den Zusammenhang zwischen Energie und Frequenz wieder und verknüpft damit die Welleneigenschaft mit der Teilcheneigenschaft.

Mehr

Das Linienspektrum oder charakteristische Spektrum

Das Linienspektrum oder charakteristische Spektrum Das Linienspektrum oder charakteristische Spektrum Ein Linienspektrum weist - im Gegensatz zu einem kontinuierlichen Spektrum - nur bei bestimmten (diskreten) Wellenlängen Intensitätswerte auf. In Abb.9.6

Mehr

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode.

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode. Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O 21 Röntgenstrahlung Aufgaben 1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2-Spektrums unter Verwendung

Mehr

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode.

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode. Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O 21 a Röntgenstrahlung Aufgaben 1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2-Spektrums unter

Mehr

Wechselwirkung zwischen Strahlung und Materie

Wechselwirkung zwischen Strahlung und Materie Wintersemester 2010/2011 Radioaktivität und Radiochemie Wechselwirkung zwischen Strahlung und Materie 11.11.2010 Udo Gerstmann I 0 I I = I. 0 e-µ x Schwächung von Strahlung Energieverlust schwerer geladener

Mehr

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - )

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - ) Grundlagen der Strahlenmesstechnik Atome (Nuklide) Atombausteine Protonen p (1,672 10-24 g; 938 MeV; e + ) Neutronen n (1,675 10-24 g; 939 MeV; 0) Elektronen e - (9,11 10-28 g; 0,511 MeV; e - ) Nuklide

Mehr

Röntgenstrahlung für Nichtmediziner

Röntgenstrahlung für Nichtmediziner 1 Röntgenstrahlung für Nichtmediziner Vorbereitung: Erzeugung von Röntgenstrahlen, Funktionsweise einer Röntgenröhre, spektrale Zusammensetzung von Röntgenstrahlung, Eigenschaften von Röntgenstrahlung,

Mehr

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung VL 20 VL 18 18.1. Mehrelektronensysteme VL 19 19.1. Periodensystem VL 20 20.1. Röntgenstrahlung Wim de Boer, Karlsruhe Atome und Moleküle, 27.06.2013 1 Vorlesung 20: Roter Faden: Röntgenstrahlung Folien

Mehr

Bildgebende Systeme für die medizinische Diagnostik

Bildgebende Systeme für die medizinische Diagnostik Bildgebende Systeme für die medizinische Diagnostik Grundlagen, Technik, Bildgüte Herausgeber Erich Krestel SIEMENS AKTIENGESELLSCHAFT Inhalt Teil 1 Grundlagen 1 Physiologie des Sehens 17 1.1 Allgemeine

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung

VL 20 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung VL 20 VL 18 18.1. Mehrelektronensysteme VL 19 19.1. Periodensystem VL 20 20.1. Röntgenstrahlung Wim de Boer, Karlsruhe Atome und Moleküle, 27.06.2013 1 Vorlesung 20: Roter Faden: Röntgenstrahlung Folien

Mehr

Vorlesung 8: Atome, Kerne, Strahlung

Vorlesung 8: Atome, Kerne, Strahlung Vorlesung 8: Atome, Kerne, Strahlung Georg Steinbrück, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed WS 2016/17 Steinbrück: Physik I/II 1 Größenordnungen

Mehr

Vorlesung 8: Atome, Kerne, Strahlung

Vorlesung 8: Atome, Kerne, Strahlung Vorlesung 8: Atome, Kerne, Strahlung Georg Steinbrück, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed WS 2017/18 Steinbrück: Physik I/II 1 Größenordnungen

Mehr

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4 Röntgenstrahlung Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Jakob Krämer Aktualisiert: am 12. 04. 2013 Röntgenstrahlung Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Röntgenröhre, Hochspannungsquelle (mindestens 20 kv), Röntgenkassette mit Verstärkerfolie

Röntgenröhre, Hochspannungsquelle (mindestens 20 kv), Röntgenkassette mit Verstärkerfolie Illumina-Chemie.de - Artikel Physik Im Jahr 1895 entdeckte Wilhelm Conrad Röntgen die nach ihm benannte (X-Strahlen), die seitdem vor allem in der medizinischen Diagnostik und der Materialprüfung Anwendung

Mehr

Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV)

Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV) TV 3km 300m 30m 3m 30cm Radiowellen (TV, Radio) 300cm 30cm 300µm 3µm 0.7µm 0.5µm 0.3µm 30nm 3mm 0.4µm Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV) Sichtbares Licht UV-Strahlung

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 2 γ-absorption (Ab) 2.1 2.1 Einleitung........................................

Mehr

Abstandsgesetz und Absorption von γ-strahlen

Abstandsgesetz und Absorption von γ-strahlen INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Abstandsgesetz und Absorption von γ-strahlen 1. Einleitung Ähnlich

Mehr

Röntgenstrahlung (RÖN)

Röntgenstrahlung (RÖN) Röntgenstrahlung (RÖN) Manuel Staebel 2236632 / Michael Wack 2234088 1 Einleitung In diesem Versuch wird das Röntgenspektrum einer Molybdänanode auf einem x y Schreiber aufgezeichnet. Dies gelingt durch

Mehr

2.1.3 Wechselwirkung von Photonen in Materie

2.1.3 Wechselwirkung von Photonen in Materie 2.1.3 Wechselwirkung von Photonen in Materie Photo-Effekt (dominant b. kleinen Energien) Compton-Effekt Paarerzeugung (dominant b. großen Energien) Literatur: W.R. Leo, Techniques for Nuclear and Particle

Mehr

Radioökologie und Strahlenschutz

Radioökologie und Strahlenschutz Radioökologie und Strahlenschutz Vorlesung FHH: SS 2017 Ulrich J. Schrewe Themen: Anwendung kernphysikalischer Messverfahren in der industriellen Messtechnik Eigenschaften ionisierender Strahlung Strahlungswirkung

Mehr

Aufgabe 1: Kristallstrukturuntersuchungen

Aufgabe 1: Kristallstrukturuntersuchungen Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums Versuch A05: Bestimmung des Planck'schen Wirkungsquantums 25. April 2016 I Lernziele Entstehung des Röntgen-Bremskontinuums und der charakteristischen Röntgenstrahlung Zusammenhang zwischen Energie, Frequenz

Mehr

Protokoll zum physikalischen Anfängerpraktikum: Absorption von Röntgenstrahlen

Protokoll zum physikalischen Anfängerpraktikum: Absorption von Röntgenstrahlen Protokoll zum physikalischen Anfängerpraktikum: Absorption von Röntgenstrahlen Jan Korger, Studiengang Physik-Diplom, Universität Konstanz Sonja Bernhardt, Studiengang Physik-Diplom, Universität Konstanz

Mehr

Entstehung der Röntgenstrahlung. im Unterschied zur. Entstehung der Gammastrahlung

Entstehung der Röntgenstrahlung. im Unterschied zur. Entstehung der Gammastrahlung Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung 1. Entdeckungsgeschichte 1.1. Der Entdecker Wilhelm Conrad Röntgen 1.2. Wie entdeckte Röntgen die X-Strahlung 2. Erste Reaktionen

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

Nanoplasma. Nano(cluster)plasmen

Nanoplasma. Nano(cluster)plasmen Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik

Mehr

Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung

Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung 1. Entdeckungsgeschichte 1.1. Der Entdecker Wilhelm Conrad Röntgen 1.2. Wie entdeckte Röntgen die X-Strahlung 2. Erste Reaktionen

Mehr

3.7.2 Bremsstrahlung 3.7. WECHSELWIRKUNGEN DER SEKUNDÄRTEILCHEN 61

3.7.2 Bremsstrahlung 3.7. WECHSELWIRKUNGEN DER SEKUNDÄRTEILCHEN 61 3.7. WECHSELWIRKUNGEN DER SEKUNDÄRTEILCHEN 61 de ρdx 1/β 2 ~ log γ + const 1-2 MeV cm /g minimalionisierend 2 γ=3.6 β=0.96 log (E/m= γ) Abbildung 3.12: Die charakteristische Abhängigkeit des mittleren

Mehr

Röntgenstrahlung. SE+ MED 4. Semester. Werner Backfrieder. Backfrieder-Hagenberg. Physik der Röntgenstrahlung

Röntgenstrahlung. SE+ MED 4. Semester. Werner Backfrieder. Backfrieder-Hagenberg. Physik der Röntgenstrahlung Röntgenstrahlung SE+ MED 4. Semester Werner Backfrieder Physik der Röntgenstrahlung C.W. Röntgen entdeckt 1895 x-strahlen, Würzburg, Experimente mit Kathodenstrahlröhre Beginn der modernen Physik Elektron

Mehr

1.2 Wechselwirkung Strahlung - Materie

1.2 Wechselwirkung Strahlung - Materie 1.2 Wechselwirkung Strahlung - Materie A)Wechselwirkung von elektromagnetischer Strahlung mit Materie B)Wechselwirkung von geladenen Teilchen mit Materie C)Wechselwirkung von ungeladenen Teilchen mit Materie

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

Radioökologie und Strahlenschutz

Radioökologie und Strahlenschutz Radioökologie und Strahlenschutz Vorlesung FHH: SS 2017 Ulrich J. Schrewe Themen: Anwendung kernphysikalischer Messverfahren in der industriellen Messtechnik Eigenschaften ionisierender Strahlung Strahlungswirkung

Mehr

Röntgenbeugung. 1. Grundlagen, Messmethode

Röntgenbeugung. 1. Grundlagen, Messmethode Röntgenbeugung 1. Grundlagen, Messmethode Beim Aufprall schneller Elektronen auf ein metallisches Anodenmaterial (hier: Kupfer) entsteht Röntgenstrahlung. Diese wird nach der Drehkristallmethode spektral

Mehr

Lk Physik in 13/1 1. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 13/1 1. Klausur aus der Physik Blatt 1 (von 2) Blatt 1 (von 2) 1. Photoeffekt 1888 bestrahlte W. Hallwachs eine geladene, auf eine Elektroskop sitzende Metallplatte it UV-Licht. 3 BE a) Aus welchen Beobachtungen konnte Hallwachs folgern, dass bei der

Mehr

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen 1.2 Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen Inhaltsvrzeichnis 1.2 Prof. Dr. Christian Blendl 1.2.1 Erzeugung ionisierender

Mehr

Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung. Konventionelles Röntgen

Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung. Konventionelles Röntgen Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung Geschichte Physikalische Prinzip seit 1895 bekannt, entdeckt durch Wilhelm Conrad Röntgen (1845-1923) Anwendung in der Medizin: 1896

Mehr

Wechselwirkung von Photonen mit Materie

Wechselwirkung von Photonen mit Materie Wechselwirkung von Photonen mit Materie Inhalt des 7.Kapitels Allgemeines Schwächung von Photonenstrahlung Photoeffekt Comptoneffekt Paarbildung Kohärente Streuung Kernphotoeffekt Schwächungskoeffizient

Mehr

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1 VI. Quantenphysik VI.1 Ursprünge der Quantenphysik, Atomphysik Physik für Mediziner 1 Mikroskopische Welt Physik für Mediziner 2 Strahlung des Schwarzen Körpers Schwarzer Körper: eintretendes Licht im

Mehr

Lösungen zur Experimentalphysik III

Lösungen zur Experimentalphysik III Lösungen zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. L. Oberauer Blatt 11 19.01.09 Aufgabe 1: a) Die Bedingung für ein Maximum erster Ordnung am Gitter ist: sinα = λ b mit b = 10 3 570

Mehr

Wechselwirkung Strahlung-Materie Kernreaktionen

Wechselwirkung Strahlung-Materie Kernreaktionen Wintersemester 2011/2012 Radioaktivität und Radiochemie Wechselwirkung Strahlung-Materie Kernreaktionen 10.11.2011 Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430

Mehr

Norddeutsches Seminar für Strahlenschutz. Gefahren ionisierender Strahlung

Norddeutsches Seminar für Strahlenschutz. Gefahren ionisierender Strahlung Norddeutsches Seminar für Strahlenschutz Gefahren ionisierender Strahlung Ionisation Entfernen eines oder mehrerer Elektronen aus dem neutralen Atom A A + + e - Aus einem elektrisch neutralem Atom wurden

Mehr

Wechselwirkungen der γ-strahlung

Wechselwirkungen der γ-strahlung Wechselwirkungen der γ-strahlung Die den Strahlungsquanten innewohnende Energie wird bei der Wechselwirkung teilweise oder vollständig an die umgebende Materie abgegeben/übertragen! Erzielbare Wirkungen

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 21/211 13. Übungsblatt - 31. Januar 211 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (2 Punkte) Der Mensch

Mehr

VL 21 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung.

VL 21 VL Mehrelektronensysteme VL Periodensystem VL Röntgenstrahlung. VL 21 VL 19 19.1. Mehrelektronensysteme VL 20 20.1. Periodensystem VL 21 21.1. Röntgenstrahlung. Wim de Boer, Karlsruhe Atome und Moleküle, 05.07.2012 1 Vorlesung 21: Roter Faden: Röntgenstrahlung Folien

Mehr

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2 Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik Sommersemester 018 Vorlesung: Boris Bergues ausgegeben am 1.06.018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 6.06.018 Aufgabe

Mehr

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Sommersemester 2007

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Sommersemester 2007 Name: Gruppennummer: Nummer: Aufgabe 1 2 3 4 5 6 7 8 9 10 insgesamt erreichte Punkte erreichte Punkte Aufgabe 11 12 13 14 15 erreichte Punkte Klausur für die Teilnehmer des Physikalischen Praktikums für

Mehr

WECHSELWIRKUNG STRAHLUNG-STOFF

WECHSELWIRKUNG STRAHLUNG-STOFF Jürgen Henniger Arbeitsgruppe Strahlungsphysik (ASP) des Instituts für Kern- und Teilchenphysik (IKTP) Andreas-Schubert-Bau 409A henniger@asp.tu-dresden.de 0351 463 32479 / 0173 6864000 WECHSELWIRKUNG

Mehr

Röntgenstrahlung & Computertomographie.

Röntgenstrahlung & Computertomographie. Röntgenstrahlung & Computertomographie elektromagnetisches Spektrum Vergleichen Sie die Energie sichtbaren Lichtes und der Röntgenstrahlung miteinander! http://www.physik.uni-kl.de/beigang/forschungsprojekte/

Mehr

Anfängerpraktikum D11 - Röntgenstrahlung

Anfängerpraktikum D11 - Röntgenstrahlung Anfängerpraktikum D11 - Röntgenstrahlung Vitali Müller, Kais Abdelkhalek Sommersemester 2009 1 Messung des ersten Spektrums 1.1 Versuchsaufbau und Hintergrund Es sollte das Spektrum eines Röntgenapparates

Mehr

2.2 Röntgenbeugung Messverfahren. Definition von Netzebenen (Bragg-Beugung):

2.2 Röntgenbeugung Messverfahren. Definition von Netzebenen (Bragg-Beugung): 2.2 Röntgenbeugung 2.2.1 Messverfahren Definition von Netzebenen (Bragg-Beugung): a) Debye-Scherrer- Verfahren: Pulver m. Kristalliten jeder Orientierung Alle Netzebenen (Monochromatisches Licht) Beugungsordnungen

Mehr

10.6. Röntgenstrahlung

10.6. Röntgenstrahlung 10.6. Röntgenstrahlung Am 8. November 1895 entdeckte Wilhelm Conrad Röntgen in Würzburg die Röntgenstrahlung. Seine Entdeckung zählt zu den wohl bedeutendsten Entdeckungen in der Menschheitsgeschichte.

Mehr

I. Geschichte der Röntgenstrahlen

I. Geschichte der Röntgenstrahlen I. Geschichte der Röntgenstrahlen Entdeckung durch Wilhelm Conrad Röntgen 1895 (erhält dafür 1. Nobelpreis 1901): Auslöser der (zufälligen) Entdeckung waren die zu dieser Zeit besonders intensiven Untersuchungen

Mehr

Strahlungsdetektoren Teilchenstrahlungen α, β -, β + n

Strahlungsdetektoren Teilchenstrahlungen α, β -, β + n Strahlungsdetektoren Teilchenstrahlungen α, β -, β + n EMS γ, X Ausschliesslich für den Unterrichtsgebrauch 1 2 Wechselwirkung ionisierender Strahlungen mit der Materie Strahlungsdetektoren DIREKTE IONISATION

Mehr

Wechselwirkung Strahlung-Stoff. Vorlesung 3. des Instituts für Kern- und Teilchenphysik (IKTP) Arbeitsgruppe Strahlungsphysik (ASP)

Wechselwirkung Strahlung-Stoff. Vorlesung 3. des Instituts für Kern- und Teilchenphysik (IKTP) Arbeitsgruppe Strahlungsphysik (ASP) Wechselwirkung Strahlung-Stoff Vorlesung 3 Jürgen Henniger Arbeitsgruppe Strahlungsphysik (ASP) des Instituts für Kern- und Teilchenphysik (IKTP) henniger@asp.tu-dresden.de 0351 463 32479 Andreas-Schubert-Bau

Mehr

Abiturprüfung Hinweise zur Korrektur und Bewertung der Abiturprüfungsarbeiten in PHYSIK. als Grundkursfach. Nicht für den Prüfling bestimmt

Abiturprüfung Hinweise zur Korrektur und Bewertung der Abiturprüfungsarbeiten in PHYSIK. als Grundkursfach. Nicht für den Prüfling bestimmt Abiturprüfung 007 Hinweise zur Korrektur und Bewertung der Abiturprüfungsarbeiten in PHYSIK als Grundkursfach Nicht für den Prüfling bestit Die Korrekturhinweise enthalten keine vollständige ösung der

Mehr

Licht als Teilchenstrahlung

Licht als Teilchenstrahlung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht als Teilchenstrahlung

Mehr

Für die Schwächung von Röntgen- oder Gammastrahlung kann definiert werden [2.1]:

Für die Schwächung von Röntgen- oder Gammastrahlung kann definiert werden [2.1]: Schwächung 2 Für die Schwächung von Röntgen- oder Gammastrahlung kann definiert werden [2.1]: Schwächung bedeutet eine Verringerung der Dosisleistung von Strahlung beim Durchdringen von Materie. Bei der

Mehr

Vorlesung 38/39. Physik. 1. Jahr Block 1 Woche 7. Prof. Fortunat Joos FJ 1. Block 1 KV Elektromagnetische Wellen. Elektromagnetische Wellen

Vorlesung 38/39. Physik. 1. Jahr Block 1 Woche 7. Prof. Fortunat Joos FJ 1. Block 1 KV Elektromagnetische Wellen. Elektromagnetische Wellen FJ 1 Vorlesung 38/39 1. Jahr Block 1 Woche 7 Elektromagnetische Wellen Physik Prof. Fortunat Joos FJ 2 Elektromagnetische Wellen Motivation Elektromagnetische Wellen beschreiben die Ausbreitung von Photonen

Mehr

Übungen zur Physik des Lichts

Übungen zur Physik des Lichts ) Monochromatisches Licht (λ = 500 nm) wird an einem optischen Gitter (000 Striche pro cm) gebeugt. a) Berechnen Sie die Beugungswinkel der Intensitätsmaxima bis zur 5. Ordnung. b) Jeder einzelne Gitterstrich

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2004 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2004 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 004 Aufgabe III Atomphysik 1. Fotoeffekt 1888 bestrahlte W. HALLWACHS eine geladene, auf einem Elektroskop sitzende Metallplatte mit UV-Licht. a) Aus welchen

Mehr

Medizinische Biophysik

Medizinische Biophysik P H Y S I K Physik in der Medizin Medizinische Biophysik Dr. Ferenc Tölgyesi ferenc.tolgyesi@eok.sote.hu Institut für Biophysik und Strahlenbiologie 0 Diagnostik Röntgendiagnostik Sonographie Optische

Mehr

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06 NR - Natürliche Radioaktivität Praktikum Wintersemester 25/6 Alexander Rembold, Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 7. Dezember 25 Theorie und Grundlagen Halbwertszeit

Mehr

Atomphysik für Studierende des Lehramtes

Atomphysik für Studierende des Lehramtes Atomphysik für Studierende des Lehramtes Teil 5 Elektronenladung und Elektronenmasse elektrische Ladungen in magnetischen Feldern aus der Lorentz-Kraft (v x B) folgt eine Kreisbewegung der elektrischen

Mehr