Übungsblatt Matlab-Zentralübung Musterlösung

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt Matlab-Zentralübung Musterlösung"

Transkript

1 Einführung in die Numerik Sommersemester 2011 Übungsblatt Matlab-Zentralübung Musterlösung Lösung 1 (Givens-Rotationen für Wilkinson Matrix) a) function [Q,R] = qr_givens (A) % [Q,R] = qr_givens(a) berechnet die QR Zerlegung einer % rechteckigen Matrix A. Die Matrix R i s t die % gesuchte oberen Dreiecksmatrix, Q i s t eine orthogonale % Matrix. % Groesse von A ermitteln n = size (A, 1); m = size (A, 2); % Q i n i t i a l i s i e r e n Q = eye(n ) ; % Schleife ueber die Spalten von A for k = 1:m % Schleife ueber die Zeilen von A bis zur Diagonale for i = n: 1:k+1 % I nitialisierung der Givens Rotation G = speye(n ) ; % i s t eine Drehung notwig? if (A( i, k) ~= 0) % Berechnung von sin, cos und r r = sqrt (A( i 1,k).^2 + A( i, k ).^2); s = A( i, k)/ r ; c = A( i 1,k)/ r ; % Aufstellen der Givens Rotation G( i 1,i 1) = c ; G( i, i ) = c ; G( i 1, i ) = s ; G( i, i 1) = s ; % Update von A A = G A; % Update von Q Q = G Q; %Q 1

2 % Rueckgabe definieren Q = Q ; R = A; b) function [W, b ] = my_wilk(n) % Erzeugt die Wilkinson Matrix der % Groesse nxn und die rechte Seite % b mit b( i )=(i 1)/n, b(n)=1. b = zeros(n, 1); W = eye(n ) ; W( :, n) = ones (n, 1); for i = 1:n W( i, [ 1 : i 1]) = ones (1, i 1); b( i ) = ( i 1)/n ; b(n) = 1; c) clear all ; close all ; % maximale Anzahl von Iterationen kmax = 50; % I nitialisierung der Fehlervektoren n = zeros(kmax, 1 ) ; error = zeros(kmax, 1 ) ; errorqr = zeros(kmax, 1 ) ; for i = 1:kmax n( i ) = i ; x = zeros(n( i ), 1); % Angabe der exakten Loesung exact = 1/n( i ) ones (n( i ), 1); exact (n( i )) = 1/n( i ) ; % Definition der Matrix und der rechten Seite [W, b ] = my_wilk(n( i ) ) ; % Berechnen der LU Zerlegung A = my_lu(w) ; % Ermittlung der unteren Dreiecksmatrix L L = eye(n( i )) + tril (A, 1); % Ermittlung der oberen Dreiecksmatrix U U = triu (A, 0 ) ; % Vorwaertssubstitution x = s o l v e l t r i (L, b ) ; % Rueckwaertssubstitution x = solveutri (U, x ) ; 2

3 % Berechnung des relativen Fehlers error ( i ) = norm(x exact )/norm( exact ) ; % Berechnen der QR Zerlegung [Q,R] = qr_givens (W) ; % Berechnung der rechten Seite x = Q b ; % Rueckwaertssubstitution x = solveutri (R, x ) ; % Berechnung des relativen Fehlers errorqr ( i ) = norm(x exact )/norm( exact ) ; % grafische Ausgabe des Fehlers in Abhaengigkeit von n semilogy (n, error, n, errorqr, LineWidth,3); set (gca, FontSize,14); leg ( LU, QR,2); xlabel ( n ) ; ylabel ( Fehler ) ; Dies ergibt die folge Ausgabe: LU QR Fehler n Im Gegensatz zu der LU-Zerlegung, bei der κ(u) κ(a) auftreten kann, gilt für die QR-Zerlegung stets κ(r) = κ(a). Damit ist die Rückwärtssubstitution gut konditioniert und verstärt eventuelle Rundungsfehler nicht so stark wie die LU- Zerlegung. Lösung 2 (Halbwertszeit & Normalengleichung) Man schreibt die Gesetzmäßigkeit um durch Logarithmieren: ln(y(t)) = ln(y(0))+αt 3

4 Man erhält das folge lineare Gleichungssystem: ln(25.9) [ ] ln(y(0)) ln(22.7) = α ln(20.3) ln(17.7) ln(15.6) Mit Matlab berechnet man dann die Halbwertszeit wie folgt: % Gleichungssystem aufstellen >> A = [1 1.5; 1 4.0; 1 6.5; 1 9.0; ]; >> b = [25.9; 22.7; 20.3; 17.7; 15.6]; >> logb = log(b); % Lösen der Normalengleichung >> x = (A *A)\(A *log(b)) x = % Berechnung des Anfangsgewichts y_0 >> y_0 = exp(x(1)) y_0 = % Berechnung von alpha >> alpha = x(2) alpha = % Berechnung der Halbwertszeit: >> t_halb = (log(y_0/2)-log(y_0))/alpha % Alternativ: Berechnung der Halbwertszeit, falls log in der passen basis (hier e): >> t_halb = -log(2) / alpha t_halb = % log. loesung des ausgleichsproblems tausgleich = linspace(0,12,1200); ylogausgleich = log(y_0) + alpha.*tausgleich; yausgleich = y_0 * exp(alpha.*tausgleich); 4

5 figure(1); % log. plot plot(a(:,2),logb, x,tausgleich,ylogausgleich); xlabel( t ); ylabel( ln(y) ); figure(2) % normaler plot plot(a(:,2),b, x,tausgleich,yausgleich); xlabel( t ); ylabel( y ); ln(y) Zeit y Zeit Abbildung 1: Links: Lösung des linearen Ausgleichsproblems. Rechts: Rücktransformation auf die ursprüngliche exponentielle Problemstellung. Lösung 3 (Nichtlineares Ausgleichsproblem) a) function [ x, k ] = gauss_newton ( t, b, Ft, dft, x0, maxit, tol ) x = x0 ; for k = 1: maxit % compute local Jacobian Jac = feval (dft, t, x ) ; % compute system matrix of normal equation given by DF^T DF M = Jac Jac ; % compute right hand side DF^T F r = Jac eval (Ft ) ; % solve normal equation of linearized problem dx = M\r ; % compute update x = x + dx ; % stop i f requested accuracy is achieved if norm(dx)/norm(x0) < tol 5

6 break ; b) function Jac = dft(t, x) F1 = i n l i n e ( exp( (x_2.^2 + x_3^2). t ). sinh (x_3.^2. t )/x_3^2,... x_1, x_2, x_3, t ) ; F2 = i n l i n e ( 2 x_2. t. x_1. exp( (x_2.^2 + x_3^2). t ). sinh (x_3.^2. t )/x_3^2,. x_1, x_2, x_3, t ) ; F3 = i n l i n e ( 2 x_3. t. x_1. exp( (x_2.^2 + x_3^2). t ). sinh (x_3.^2. t )/x_3^2 + 2 x_1, x_2, x_3, t ) ; m = length ( t ) ; n = length (x ) ; Jac = zeros (m, n ) ; Jac ( :, 1) = F1(x (1), x (2), x (3), t ) ; Jac ( :, 2) = F2(x (1), x (2), x (3), t ) ; Jac ( :, 3) = F3(x (1), x (2), x (3), t ) ; % set i n i t i a l value x0 = [ 80; 0.055; ; ] ; % choose tolerance tol = 1e 10; % measurements t = [ ] ; b = [ ] ; %csvwrite ( Messdaten. txt, [ t, b ]) % write data to tabulator spaced f i l e %dlmwrite ( Messdaten. txt, [ t, b ], \ t ) % read data from tabulator spaced f i l e % not needed i f t %f i l e i n p u t = dlmread ( Messdaten. txt, \ t ) ; % check i f f i l e io worked correctly %filecheck = max( abs ( f i leinput (:,1) t ) + abs ( f i l e i n put (:,2) b )) % function phi ( t, x) phit = x(1) exp( (x(2)^2 + x(3)^2) tvec ). sinh (x(3)^2 tvec )/x(3)^2 ; % function F( t, x) Ft = x(1) exp( (x(2)^2 + x(3)^2) t ). sinh (x(3)^2 t )/x(3)^2 b ; % discret times for plot tvec = linspace (6, 180, 200); hold of f ; for k = 1:6 % gauss_newton step [ x, k ] = gauss_newton ( t, b, x0, k, tol ) %evaluate phit fvec = eval ( phit ) ; 6

7 plot ( tvec, fvec, linewidth, 2); hold on ; text(182+k, fvec (), num2str(k ), f ontsize, 12); plot ( t, b, r+, linewidth, 2, markersize, 12); set (gca, f ontsize, 12);

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics Numerische Methoden für ITET und MATL 2016 ETH Zürich, Seminar for Applied Mathematics Dr. S. May, D. Devaud Frame 2 MATLAB Auf ETH Computer vorinstalliert Auf Heim PC: von www.ides.ethz.ch herunterladen

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 4 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 4 Aufgabe 4 Multiple Choice: Online abzugeben 4a) Wir betrachten

Mehr

Numerische Analysis - Matlab-Blatt 5

Numerische Analysis - Matlab-Blatt 5 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 05 Numerische Analysis - Matlab-Blatt 5 Lösung (Besprechung

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

Elektrischer Schaltkreis lin. Gleichungssystem

Elektrischer Schaltkreis lin. Gleichungssystem Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) Beispiel : Elektrischer Schaltkreis I R

Mehr

Inhalt Kapitel II: Lineare Gleichungssysteme

Inhalt Kapitel II: Lineare Gleichungssysteme Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II1 Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) 1 Beispiel 1: Elektrischer Schaltkreis

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

QR-Zerlegung mit Householder-Transformationen

QR-Zerlegung mit Householder-Transformationen 1/ QR-Zerlegung mit Householder-Transformationen Numerische Mathematik 1 WS 011/1 Orthogonales Eliminieren / Sei x R n ein Vektor x = 0. Ziel: Ein orthogonales H R n;n bestimmen, sodass Hx = kxke 1 ; ein

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Numerische Lineare Algebra - Matlab-Blatt 1

Numerische Lineare Algebra - Matlab-Blatt 1 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Wintersemester 2014/2015 Numerische Lineare Algebra - Matlab-Blatt 1 Lösung

Mehr

Gaußsche Ausgleichsrechnung

Gaußsche Ausgleichsrechnung Kapitel 6 Gaußsche Ausgleichsrechnung 6. Gaußsche Methode der kleinsten Fehlerquadrate Die Gaußsche Methode der kleinsten Fehlerquadrate wurde 89 von C.F. Gauß in dem Aufsatz Theorie der Bewegung der Himmelkörper

Mehr

Numerical Analysis II 1

Numerical Analysis II 1 Numerical Analysis II 1 Prof. Grohs, Exam Summer 2015 Dies ist keine offizielle Musterlösung, wer Fehler findet, darf sie behalten ;), erstellt von Andreas Mono Aufgabe 1 ( k1 ( 1 ) ) a) k 1 = λy n + λh

Mehr

Numerische Methoden 4. Übungsblatt

Numerische Methoden 4. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 0 Institut für Analysis Prof. Dr. Michael Plum Dipl.-Math.techn. Rainer Mandel Numerische Methoden 4. Übungsblatt Aufgabe 9: QR-Verfahren (Bearbeitung bis Do,.05.)

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

MND Projekt 2. Zur Veranschaulichung werden die einzelnen Phis graphisch dargestellt.

MND Projekt 2. Zur Veranschaulichung werden die einzelnen Phis graphisch dargestellt. AUFGABENSTELLUNG MND Projekt 2 Das Ziel dieses Projekts war es ein Anfangswertproblem mit Hilfe des klassischen Runge-Kutta Verfahrens und dem Levenberg-Marquardt-Verfahren zu lösen. AUFGABE 1 In der Ersten

Mehr

Numerische Lineare Algebra - Matlab-Blatt 2

Numerische Lineare Algebra - Matlab-Blatt 2 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Wintersemester 014/015 Numerische Lineare Algebra - Matlab-Blatt Lösung (Besprechung

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Kurze Einführung in Octave

Kurze Einführung in Octave Kurze Einführung in Octave Numerische Mathematik I Wintersemester 2009/2010, Universität Tübingen Starten von Octave in einer Konsole octave eintippen (unter Linux) Octave als Taschenrechner Beispiele:

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei L R N N eine normierte untere Dreiecksmatrix und b R N. Dann ist L invertierbar und das Lineare Gleichungssystem (LGS) Ly = b ist mit O(N 2

Mehr

Matlab: eine kurze Einführung

Matlab: eine kurze Einführung Matlab: eine kurze Einführung Marcus J. Grote Christoph Kirsch Mathematisches Institut Universität Basel 4. April 2 In dieser Einführung zu Matlab sind die im Praktikum I erworbenen Kenntnisse zusammengefasst.

Mehr

MATLAB-Toolskurs HS17

MATLAB-Toolskurs HS17 7 Analysis 1. Programmieren Sie für folgendes Polynom eine MATLAB Funktion oder eine anonyme Funktion: y(x) = 0.001x 5 + 0.05x 4 + 0.2x 3 x 2 0.8x + 4 Die Variable x ist der Eingabeparameter und y der

Mehr

Tipps und Tricks für Matlab

Tipps und Tricks für Matlab Tipps und Tricks für Matlab J. Schweitzer Sommersemester 2012 Inhalt Matlab als Taschenrechner Datenformate M-files Schleifen und Abfragen 2D Plots Matlab als Taschenrechner Prompt Elementare Rechnungen

Mehr

6. Übungsblatt Aufgaben mit Lösungen

6. Übungsblatt Aufgaben mit Lösungen 6. Übungsblatt Aufgaben mit Lösungen Exercise 6: Find a matrix A R that describes the following linear transformation: a reflection with respect to the subspace E = {x R : x x + x = } followed by a rotation

Mehr

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den D-ITET. D-MATL, RW Lineare Algebra HS 7 Dr. V. Gradinaru T. Welti Online-Test Einsendeschluss: Sonntag, den..7 : Uhr Dieser Test dient, seriös bearbeitet, als Repetition des bisherigen Vorlesungsstoffes

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 1.2: Vektoren & Matrizen II, Funktionen, Indizierung Dr. Lorenz John Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 04.10.2016 Theorie 1.2: Inhalt 1

Mehr

LABORÜBUNG MATLAB/OCTAVE

LABORÜBUNG MATLAB/OCTAVE LABORÜBUNG MATLAB/OCTAVE 1. Riemannsche Summen mit MATLAB/Octave Riemannsche Summen lassen sich sehr einfach mit MATLAB/Octave berechnen. Das Vorgehen ist das folgende: (i) die Breite x der Teilintervallen

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 1.2: Vektoren & Matrizen II, Funktionen, Indizierung Dr. Laura Scarabosio Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 04.10.2017 Theorie 1.2: Inhalt

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Diplom VP Numerik 13. September 004 Aufgabe 1 10 0 40 Gegeben sei die Matrix A = 80 10 10. 10 5 5 (6 Punkte) a) Skalieren (Zeilenäquilibrierung)

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

2.2. Übung. Einführung in die Programmierung (MA 8003)

2.2. Übung. Einführung in die Programmierung (MA 8003) Technische Universität München M2 - Numerische Mathematik Dr. Laura Scarabosio 2.2. Übung. Einführung in die Programmierung (MA 8003) Hinweis: Ab jetzt werden Schleifen benötigt. Aufgabe 2.2.1: Verändern

Mehr

Digitale Audioeekte in Matlab - Limiter

Digitale Audioeekte in Matlab - Limiter Audiotechnik II Digitale Audiotechnik: 12. Übung Prof. Dr. Stefan Weinzierl 22.01.2015 Musterlösung: 21. Januar 2015, 16:40 Digitale Audioeekte in Matlab - Limiter Ein Limiter ist ein Eekt, der gewährleisten

Mehr

Einführung in MATLAB zur Veranstaltung Einführung in die Numerik

Einführung in MATLAB zur Veranstaltung Einführung in die Numerik Einführung in MATLAB zur Veranstaltung Einführung in die Numerik Christian Stohrer Mathematisches Institut der Universität Basel FS 2011 MATLAB Einführung zur Veranstaltung Einführung in die Numerik Bitte

Mehr

Lösung Übungsblatt 7

Lösung Übungsblatt 7 M4 Numerik für Physiker Lösung Übungsblatt 7 SoSe 008 Lösung Übungsblatt 7 Aufgabe 1: Lineare Ausgleichsrechnung Ein mehrdimensionales, lineares Ausgleichungsproblem lässt sich folgendermaßen darstellen:

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch. Musterlösung 6. x A 1 b. A 1 b A 1. x A ( A. gestört: x A 1 =

D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch. Musterlösung 6. x A 1 b. A 1 b A 1. x A ( A. gestört: x A 1 = D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch Musterlösung 6 1. a b exakt: x = c Die Inverse von A lautet x = A 1 b x = A 1 b x A 1 b x A 1 b x A 1 b A x b x κ A b x b 3 1 A 1 = gestört:

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 1

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 1 D-MAVT NUMERISCHE MATHEMATIK FS 4 K. Nipp, A. Hiltebrand Lösung vom Test. Sei eps die Maschinengenauigkeit in Matlab. Dann gilt: eps/4 = Richtig / Falsch + eps/2 = Richtig / Falsch 8 + eps = 8 Richtig

Mehr

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

Der Gaußsche Algorithmus und Varianten Vorlesung vom

Der Gaußsche Algorithmus und Varianten Vorlesung vom Der Gaußsche Algorithmus und Varianten Vorlesung vom 19.1.18 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus. Achtung: Durchführbarkeit nur bei

Mehr

Copyright by Hildegard Heilmann IAG 13.03.2004. Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung.

Copyright by Hildegard Heilmann IAG 13.03.2004. Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung. MTEquationSection;Flächenintegrale mit Derive Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung. Einige Anleitungen zum Arbeiten mit Derive: Befehle: VECTOR, ITERATES,

Mehr

Einführung in MATLAB Blockkurs DLR:

Einführung in MATLAB Blockkurs DLR: Einführung in MATLAB Blockkurs DLR: 19.4-22.4.2004 Tag 2, 2.Teil Programmieren mit MATLAB II 20.4.2004 Dr. Gerd Rapin grapin@math.uni-goettingen.de Gerd Rapin Einführung in MATLAB p.1/25 Programmieren

Mehr

D-ITET, D-MATL Numerische Methoden FS 2013 Prof. Dr. A. Jentzen M. Sprecher. Musterlösung 4

D-ITET, D-MATL Numerische Methoden FS 2013 Prof. Dr. A. Jentzen M. Sprecher. Musterlösung 4 D-ITET, D-MATL Numerische Methoden FS 2013 Prof. Dr. A. Jentzen M. Sprecher Musterlösung 4 1. a) function [ x] = bisect(g,a,b,tol) %bisect finds root of G(x) in the interval [a,b] with tolerance tol Ga=G(a);

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg SS 7 Institut für Numerische Simulation Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 7. Juli 7 Sie haben 9 Minuten Zeit zum Bearbeiten

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13 D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys Serie 13 1. Um einen Tisch sitzen 7 Zwerge. Vor jedem steht ein Becher mit Milch. Einer der Zwerge verteilt seine Milch gleichmässig auf alle

Mehr

Der Gaußsche Algorithmus und Varianten Vorlesung vom

Der Gaußsche Algorithmus und Varianten Vorlesung vom Der Gaußsche Algorithmus und Varianten Vorlesung vom 17114 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus Achtung: Durchführbarkeit nur bei nichtverschwindenden

Mehr

Zusammenfassung Numerische Mathematik für Elektrotechniker

Zusammenfassung Numerische Mathematik für Elektrotechniker Zusammenfassung Numerische Mathematik für Elektrotechniker RWTH Aachen, SS 2006, Prof. Dr. W. Dahmen c 2006 by Sebastian Strache, Ralf Wilke Korrekturen bitte an Ralf.Wilke@rwth-aachen.de 27. August 2006

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

MATLAB-Toolskurs HS17

MATLAB-Toolskurs HS17 4 Kontrollstrukturen 1. Gegeben sei der Vektor x = [1 8 3 9 0 1]. Erstellen Sie kurze Kommandos, die: (for) Die Summe aller Elemente bilden (Kontrolle mit sum) (length) x = [1 8 3 9 0 1] s = 0; for k =

Mehr

Einführung in Python Teil II Bibliotheken für wissenschaftliches Rechnen

Einführung in Python Teil II Bibliotheken für wissenschaftliches Rechnen Einführung in Python Teil II Bibliotheken für wissenschaftliches Rechnen Valentin Flunkert Institut für Theoretische Physik Technische Universität Berlin Fr. 28.5.2010 Nichtlineare Dynamik und Kontrolle

Mehr

Musterlösung zum 8. Übungsblatt der praktischen Übungen zur Vorlesung Einführung in die Numerik

Musterlösung zum 8. Übungsblatt der praktischen Übungen zur Vorlesung Einführung in die Numerik Musterlösung zum 8. Übungsblatt der praktischen Übungen zur Vorlesung Einführung in die Numerik > restart; > with(linalg): Warning, new definition for norm Warning, new definition for trace Aufgabe 1:

Mehr

Einführung Matlab Aufgabenkatalog

Einführung Matlab Aufgabenkatalog Einführung Matlab Aufgabenkatalog Übungen 1............................... Einführung Tipp: Erstellen Sie gleich zu Beginn eine Script-Datei für diese Übungen wie im ersten Lösungsbeispiel, z.b. mit edit

Mehr

Aufgabe 2: Anzahl Erdbeben als Funktion der Zeit

Aufgabe 2: Anzahl Erdbeben als Funktion der Zeit Übung 2 Analyse von Zeitreihen in der Umweltphysik und Geophysik 1 Aufgabe 2: Anzahl Erdbeben als Funktion der Zeit In dieser Übung wollen wir der Frage nachgehen, was war die Anzahl Erdbeben mit M>1 pro

Mehr

Lineare Algebra. 10. Übungsstunde. Steven Battilana.

Lineare Algebra. 10. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch November 3, 26 Erinnerung Gram-Schmidt Verfahren Sei V ein euklidischer/unitärer Vektorraum mit dim(v ) n < Gegeben: W span{v,...,

Mehr

Skalarprodukte (Teschl/Teschl Kap. 13)

Skalarprodukte (Teschl/Teschl Kap. 13) Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

Wima 1 - Praktikum (Woche 6)

Wima 1 - Praktikum (Woche 6) Wima 1 - Praktikum (Woche 6) Lernziele In diesem Praktikum sollen Sie üben und lernen: Erzeugung von Function Handles Umgang mit Function Handles Am Anfang geben wir Ihnen eine kurze Einführung in Function

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS Matlab: Fortsetzung. Jan Mayer. 4. Mai 2006

Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS Matlab: Fortsetzung. Jan Mayer. 4. Mai 2006 Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS 2006 Matlab: Fortsetzung Jan Mayer 4. Mai 2006 Manipulation von Matrizen und Vektoren [M,N]=size(A); speichert die Dimension einer Matrix bzw.

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 +

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 + Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 4 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön 2 Punkte Sebastian Zanker, Daniel Mendler

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Fundamentale Matrix: 8-Punkte Algorithmus

Fundamentale Matrix: 8-Punkte Algorithmus Übungen zu Struktur aus Bewegung Arbeitsgruppe Aktives Sehen Sommersemester 2003 Prof. Dr-Ing. D. Paulus / S. Bouattour Übungsblatt 5 Fundamentale Matrix: 8-Punkte Algorithmus Gegeben sei eine Menge von

Mehr

Matrixzerlegungen. Überbestimmte Systeme

Matrixzerlegungen. Überbestimmte Systeme Matrixzerlegungen. Überbestimmte Systeme 6. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. März 2014 Gliederung 1 Matrixzerlegungen Links-Rechts-Zerlegung

Mehr

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2 Etra-Mathematik-Übung: 005--9 Aufgabe : Geben Sie die Nullstellen der Funktion f() sin ( * Pi) an! Skizze: Wertetabelle: X - ½ Pi ½ Pi sin ( ½ Pi) -,0-6,0 -,57-7,57-0,96 -,5 -,5 -,57-6,07 + 0, -,0 -,0

Mehr

7. Großübung. Ax =QRx = b Rx =Q 1 b = Q T b. Wir behandeln im Folgenden zwei Verfahren zur Erzeugung der QR-Zerlegung:

7. Großübung. Ax =QRx = b Rx =Q 1 b = Q T b. Wir behandeln im Folgenden zwei Verfahren zur Erzeugung der QR-Zerlegung: 7. Großüung 1 QR-Zerlegung Als QR-Zerlegung wird die Zerlegung A QR der Matrix A R m n in die rechte oere Dreiecksmatrix R R m n und die orthogonale Matrix Q R m m ezeichnet. Die Lösung des Gleichungssystems

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Beispiel.5: Funktion von Runge (V) Beispiel Martin-Luther-Universität Halle-Wittenberg, NWF III, Institut für Mathematik Martin Arnold: Grundkurs Numerische Mathematik (WiS 27/8) Abbildung.3: Interpolation

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Höhere Ableitungen Interpolationsbedingungen d k Φ dx k (x j) = y (k) j, ( j =,,..., n; k =,,..., c j ) bestimmen das Hermite Interpolationspolynom Φ Π r mit r + = n ( + c j ). j= 2 Lineare Gleichungssysteme

Mehr

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Matrixzugriff Wir wollen nun unsere Einführung in die Arbeit mit Vektoren und Matrizen in MATLAB

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

Normalengleichungen. Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b,

Normalengleichungen. Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b, Normalengleichungen Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b, Normalengleichungen 1-1 Normalengleichungen Für eine beliebige

Mehr

Funktionen in Matlab. Lehrstuhl für Angewandte Mathematik Sommersemester und 29. Mai 2008

Funktionen in Matlab. Lehrstuhl für Angewandte Mathematik Sommersemester und 29. Mai 2008 Funktionen in Matlab Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2008 15. und 29. Mai 2008 Funktionen in Matlab Wir kennen schon diverse

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Matrizenoperationen mit FORTRAN

Matrizenoperationen mit FORTRAN Kapitel 2 Matrizenoperationen mit FORTRAN 21 Grundlagen Bei vielen Anwendungen müssen große zusammenhängende Datenmengen gespeichert und verarbeitet werden Deshalb ist es sinnvoll, diese Daten nicht als

Mehr

Übungen zum MATLAB Kurs Teil

Übungen zum MATLAB Kurs Teil Übungen zum MATLAB Kurs Teil 1 29.09.04 Indizierung Erzeugen Sie eine 5 x 5 Matrix A mit der Funktion rand Überlegen und testen Sie die Ergebnisse der folgende Ausdrücke: A([3 5],:) A(2,:) A([3,5]) A(:)

Mehr

Übung 4: Einführung in die Programmierung mit MATLAB

Übung 4: Einführung in die Programmierung mit MATLAB Übung 4: Einführung in die Programmierung mit MATLAB AUFGABE 1 Was bewirkt der Strichpunkt? - Der Strichpunkt (Semikola) unterdrück die Anzeige der (Zwischen-) Resultate. Welche Rolle spielt ans? - Wenn

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

Wir konstruieren eine Wasserrutsche!

Wir konstruieren eine Wasserrutsche! Wir konstruieren eine Wasserrutsche! Teilnehmer: Leo Graumann Anh Vu Ho Yiyang Huang Felix Jäger Charlotte Kappler Wilhelm Mebus Alice Wamser Gruppenleiter: René Lamour Caren Tischendorf Heinrich-Hertz-Oberschule,

Mehr

Diplom VP Numerik 21. März 2005

Diplom VP Numerik 21. März 2005 Diplom VP Numerik. März 5 Aufgabe Gegeben sei das lineare Gleichungssystem Ax = b mit A = 3 3 4 8 und b = 4 5.5 6. ( Punkte) a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung. Geben Sie

Mehr

Einführung in MATLAB

Einführung in MATLAB Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

Matlab - eine kurze Einführung

Matlab - eine kurze Einführung Matlab - eine kurze Einführung Helke Karen Hesse, Thomas Dunne helke.hesse@iwr.uni-heidelberg.de, thomas.dunne@iwr.uni-heidelberg.de 13.11.2006 1 / Gliederung Überblick Grundlegende Syntax Variablen Vektoren

Mehr