Numerische Lineare Algebra - Matlab-Blatt 1

Größe: px
Ab Seite anzeigen:

Download "Numerische Lineare Algebra - Matlab-Blatt 1"

Transkript

1 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Wintersemester 2014/2015 Numerische Lineare Algebra - Matlab-Blatt 1 Lösung (Besprechung in den Matlab-Tutorien in KW 43/44) Hinweise (i) Bitte melden Sie sich im SLC unter für die Vorlesung an. (ii) Abgabe der Übungsblätter nur zu zweit! (Bis auf max. eine Ausnahme ;) ) (iii) Zulassungskriterium für die Klausur: 50% der Übungspunkte der Matlab- sowie der Theorie-Blätter. (iv) Auf jedem Theorie-Übungsblatt wird es eine auf Englisch gestellte Aufgabe sowie eine Aufgabe, die in L A TEX abgegeben werden muss, geben. Die auf Englisch gestellte Aufgabe kann auf Deutsch beantwortet werden, handschriftliche Lösungen der L A TEX- Aufgabe werden mit 0 Punkten bewertet! (v) Außerdem müssen die *.tex -Dateien der L A TEX-Aufgabe per an numerik1ws14@gmail.com mit dem Betreff Blatt Blattnummer, Name1 Vorname1, Name2 Vorname2 gesendet werden (Nachnamen alphabetisch sortiert!), also z.b für das erste Theorieblatt von Max Maier und Steffen Schneider: Blatt 01, Maier Max, Schneider Steffen Aufgabe 1 (Horner-Schema) (5 Punkte) (i) Schreiben sie eine Matlab-Funktion val = horner(p,x), die zu dem Koeffizienten-Vektor p R n+1 und den Punkten x = (x 1,...,x m ) R m das Polynom f(x) = p n x n + +p 1 x+p 0 = (...(p n x+p n 1 )x+p n 2 )x+...)x+p 0 an den Stellen x i (i = 1,...,m) mit dem Horner-Schema auswertet und als Rückgabewert in einem Spaltenvektor val zurückgibt. (ii) Schreiben Sie eine Matlab-Funktion plotpoly(p,a,b), die das Polynom, das über den Koeffizienten-Vektor p R n+1 gegeben ist, im Intervall [a,b] plottet. Verwenden Sie hierzu die Funktion horner aus Aufgabenteil (i). (iii) Schreiben Sie ein Matlab-Skript, welches Ihre Funktionen für folgende Beispiele testet: p = [1, -4, 4], a=0, b=4 p = [1, 0, -1, 0], a=-2, b=2 p = [1, 2, -3, -4, 4], a=-4, b=3.

2 Lösung: (i) Function horner.m 1 function val = horner(p,x) 2 %*** Polynomgrad bestimmen 3 n = length(p)-1; 4 %*** innerste Klammer berechnen 5 val = p(n+1)*x+p(n); 6 for k=n-1:-1:1 7 %*** alle weiteren Klammern bestimmen 8 val = val.*x + p(k); 9 end Vorsicht in Zeilen 5 und 8: Die Matlab-Indizierung beginnt bei 1 und nicht bei 0, also p 0 = p(1)! (ii) Funktion plotpoly.m 1 function plotpoly(p,a,b) 2 %*** Auswertungspunkte bestimmen 3 x = linspace(a,b,1000); 4 %*** Polynom mit Hoerner- Schema auswerten 5 px = horner(p,x); 6 %*** Polynom plotten 7 plot(x,px) (iii) Testskript: 1 %*** Sollte in jedem Skript stehen! 2 %*** Loescht Command Window, loescht Variablen aus dem Workspace, schliesst 3 %*** Grafiken 4 clc, clear all, close all 5 6 %*** Beispiel definieren 7 % p = [4, -4, 1]; a=0; b=4; 8 % p = [0, -1, 0, 1]; a=-2; b=2; 9 p = [4, -4, -3, 2, 1]; a=-4; b=3; %*** Polynom zeichnen 12 plotpoly(p,a,b); Aufgabe 2 (Ausgleichsproblem) (7 Punkte) Gegeben seien die Messpunkte (x i,f i ) R 2 (i = 1,...,m), die in den Dateien x.dat und f.dat als Spaltenvektoren gespeichert sind. (i) Laden Sie sich das Material von Vorlesungshomepage herunter. Wir wollen nun mit Hilfe eines Ausgleichsproblems ein Polynom 6. Grades mit p(x) = a 6 x 6 +a 5 x 5 +a 4 x 4 +a 3 x 3 +a 2 x 2 +a 1 x+a 0 bestimmen, welches möglichst gut zu den Messpunkten passt. Dazu stellen wir folgendes lineare Gleichungssystem auf: 1 x 1... x 6 1 a 0 f =.. Ax = f, 1 x m... x 6 m a 6 f m wobei die Matrix A als die Transponierte der Vandermonde-Matrix bezeichnet wird. Die zugehörige Normalengleichung A T Ax = A T f

3 liefert dann die Koeffizienten x = (a 0,...,a 6 ) T des Polynoms, das den Ausdruck Ax f 2 2 minimiert. Schreiben Sie ein Matlab-Skript ausgleich.m, welches: (ii) die Vektoren x und f lädt (siehe load-befehl), (iii) die Punkte (x i,f i ) in einem Schaubild darstellt, (iv) die transponierte Vandermonde-Matrix A R m 7 und die Normalengleichung des Ausgleichsproblem aufstellt, A T Ax = A T f (v) die Normalengleichung löst (siehe \ -Operator), (vi) das Ausgleichspolynom im selben Schaubild wie die Punkte plottet (plotpoly aus der vorherigen Aufgabe). Lösung: Das Skript ausgleich.m: 1 clc, clear all, close all 2 3 load( x.dat ); 4 load( f.dat ); 5 %*** plotte Punkte 6 figure(1) 7 plot(x,f, ro ) 8 9 %*** assembliere transponierte Vandermonde- Matrix 10 n = length(x); 11 A = [ones(n,1),x,x.^2,x.^3,x.^4,x.^5,x.^6]; %*** stelle Ausgleichsproblem auf 14 AA = A *A; 15 bb = A *f; %*** l se Ausgleichsproblem 18 xx = AA\bb; %*** plotte das Polynom 21 figure(1) 22 hold on 23 plotpoly(xx,-2,2); 24 %*** Legende einzeichnen 25 legend( Messpunkte, Ausgleichspolynom ) Zeile 1: Sollte in jedem Skript stehen Zeile 3-4: Datensatz laden Zeile 7: Punkte plotten, die Option ro bewirkt, dass die Punkt mit roten o -Markern eingezeichnet werden und nicht verbunden werden. Zeile 10-11: Eine Variante die transponierte Vandermonde-Matrix aufzustellen. Zeile 14-18: Normalengleichung aufstellen und lösen Zeile 21-23: Polynom plotten, der hold on -Befehl bewirk, dass das Polynom in die aktuelle Grafik miteingezeichnet wird. Das Ergebnis zeigt das folgende Schaubild:

4 Messpunkte (x i, f i ) Ausgleichspolynom Wir sehen, dass das Ausgleichspolynom zwar nicht alle Messpunkte (x i,f i ) interpoliert, aber die Tendenz der Messpunkte gut widerspiegelt. Mathematisch formuliert gilt, dass der Fehler in der euklidischen Norm Ax f 2 minimal ist. Aufgabe 3 (LGS mit Dreiecksmatrizen) Gegeben seien die Dreiecksmatrizen 1 a 1 1 L := a n 1 1 b 1 c und R := b n 1 c n 1 b n (8 Punkte) (1) (l i,j = 0 für j > i oder j < i 1 und r i,j = 0 für j < i oder j > i+1), die durch die Vektoren a,c R n 1 und b R n bestimmt sind. (i) Schreiben Sie eine Matlab-Funktion x = Linvb(a,f), die zum gegebenen Vektor a R n 1 und der rechten Seite f R n das LGS Lx = f löst. (ii) Schreiben Sie eine Matlab-Funktion x = Rinvb(b,c,f), die zu den gegebenen Vektoren b R n und c R n 1 und der rechten Seite f das LGS Rx = f löst. Überlegen Sie sich einen geeigneten Algorithmus und verwenden Sie nicht den \ -Operator von Matlab! (iv) Schreiben Sie ein Matlab-Skript testlr.m, welches für n = 10 zufällige Vektoren a,b,c und f erzeugt (siehe rand-funktion von Matlab), die zugehörigen linearen Gleichungssysteme mit den Funktionen Rinvb und Linvb löst zum Vergleich die vollen Matrizen L und R aufstellt und das volle LGS mit dem \ -Operator von Matlab löst (der Matlab-Befehl L=full(spdiags([[a;0],ones(n,1)],[-1,0],n,n)); stellt die Matrix L auf. Überlegen Sie sich einen analogen Matlab-Befehl für die Matrix R.) beide Lösungen miteinander vergleicht, indem der relative Fehler in der l 2 -Norm berechnet wird, also: x Rinv x \ l 2 x Rinv l2 und x Linv x \ l 2 x Linv l2.

5 Lösung: (i) Funktion Linvb.m: 1 function x = Linvb(a,f) 2 %*** initialisiere x 3 n = length(a)+1; 4 x = zeros(n,1); 5 6 %*** V o r w rtsiteration 7 x(1)=f(1); 8 for j=2:n 9 x(j) = f(j) - a(j-1) * x(j-1); 10 end Die Lösung x wird durch Vorwärts-Einsetzen berechnet, d.h. es gilt x 1 = f 1 und x k+1 = f k a k 1 x k 1. (ii) Funktion Rinvb.m: 1 function x = Rinvb(b,c,f) 2 %*** initialisiere x 3 n = length(b); 4 x = zeros(n,1); 5 6 %*** R c h w rtsiteration 7 x(n) = f(n)/b(n); 8 for j = n-1:-1:1 9 x(j) =( f(j)- c(j) * x(j+1)) / b(j); 10 end Die Lösung x wird durch Rückwärts-Einsetzen berechnet, d.h. es gilt x n = bn f n und x k = f k c k x k+1 b k. (iii) Test-Skript testlr.m: Zeile 4-7: Zufallsvektoren der richtigen Größe erzeugen Zeile 11: Matrix L aufstellen (spdiags erzeugt eine Matrix im sparse-format mit den Vektoren [a;0] und ones(n,1) auf der Subdiagonale und der Diagonale (wird durch den Vektor [-1,0] angegeben) mit Dimension n n; der full-befehl konvertiert die Matrix dann ins normale Format.) Zeile 13-14: Lösen des linearen Gleichungssystems Zeile 15: Berechnung des relativen l 2 -Fehlers. Rest analog. 1 clc, clear all, close all 2 n=10; 3 4 a = rand(n-1,1); 5 c = rand(n-1,1); 6 b = rand(n,1); 7 f = rand(n,1); 8 9 %*** Lx=f 10 % Matrix L aufstellen 11 L=full(spdiags([[a;0],ones(n,1)],[-1,0],n,n)); 12 % LGS l sen 13 xl1 = L\f; 14 xl2 = Linvb(a,f); 15 % relativen l_2- Fehler bestimmen 16 sum(abs(xl1-xl2).^2)/sum(abs(xl1).^2) %*** Rx=f 19 % Matrix R aufstellen 20 R=full(spdiags([b,[0;c]],[0,1],n,n)); 21 % LGS l sen 22 xr1 = R\f;

6 23 xr2 = Rinvb(b,c,f); 24 % relativen l_2- Fehler bestimmen 25 sum(abs(xr1-xr2).^2)/sum(abs(xr1).^2) Mehr Informationen zur Vorlesung und den Übungen finden Sie auf

Numerische Lineare Algebra - Matlab-Blatt 2

Numerische Lineare Algebra - Matlab-Blatt 2 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Wintersemester 014/015 Numerische Lineare Algebra - Matlab-Blatt Lösung (Besprechung

Mehr

Numerische Analysis - Matlab-Blatt 5

Numerische Analysis - Matlab-Blatt 5 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 05 Numerische Analysis - Matlab-Blatt 5 Lösung (Besprechung

Mehr

Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS Matlab: Fortsetzung. Jan Mayer. 4. Mai 2006

Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS Matlab: Fortsetzung. Jan Mayer. 4. Mai 2006 Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS 2006 Matlab: Fortsetzung Jan Mayer 4. Mai 2006 Manipulation von Matrizen und Vektoren [M,N]=size(A); speichert die Dimension einer Matrix bzw.

Mehr

Zweiter Teil des Tutorials. Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten

Zweiter Teil des Tutorials. Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten Zweiter Teil des Tutorials Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten Workspace Im Workspace sind die Variablen mit ihrem jeweiligen Wert gespeichert.

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Matlab: eine kurze Einführung

Matlab: eine kurze Einführung Matlab: eine kurze Einführung Marcus J. Grote Christoph Kirsch Mathematisches Institut Universität Basel 4. April 2 In dieser Einführung zu Matlab sind die im Praktikum I erworbenen Kenntnisse zusammengefasst.

Mehr

Einführung in Matlab Was ist MATLAB? Hilfe Variablen

Einführung in Matlab Was ist MATLAB? Hilfe Variablen Einführung in Matlab Was ist MATLAB? MATLAB (Matrix Laboratory) ist eine interaktive Interpreter-Sprache, die einen einfachen Zugang zu grundlegenden numerischen Verfahren - wie beispielsweise der Lösung

Mehr

2.2. Übung. Einführung in die Programmierung (MA 8003)

2.2. Übung. Einführung in die Programmierung (MA 8003) Technische Universität München M2 - Numerische Mathematik Dr. Laura Scarabosio 2.2. Übung. Einführung in die Programmierung (MA 8003) Hinweis: Ab jetzt werden Schleifen benötigt. Aufgabe 2.2.1: Verändern

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Aufgabe 1. Signal Processing and Speech Communication Lab. Graz University of Technology

Aufgabe 1. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 1 Senden Sie die Hausübung bis spätestens 22.4.2015 per Email an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Lineare Gleichungssysteme lösen Aufgabe. Lösen sie jeweils das LGS A x = b mit ( ( a A =, b = b A =, b = 6 Aufgabe. Berechnen Sie für die folgenden

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

10:Exkurs MATLAB / Octave

10:Exkurs MATLAB / Octave 10:Exkurs MATLAB / Octave MATLAB (bzw. Octave als freie Version) ist eine numerische Berechnungsumgebung wurde vorrangig zum Rechnen mit Vektoren und Matrizen entworfen ist interaktiv benutzbar, vergleichbar

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 2 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Mittsemesterprüfung HS, Typ A Name a a Note Vorname Leginummer Datum 29..2 2 4 6 Total

Mehr

Octave/Matlab-Übungen

Octave/Matlab-Übungen Aufgabe 1a Werten Sie die folgenden Ausdrücke mit Octave/Matlab aus: (i) 2 + 3(5 11) (ii) sin π 3 (iii) 2 2 + 3 2 (iv) cos 2e (v) ln π log 10 3,5 Aufgabe 1b Betrachten Sie (i) a = 0.59 + 10.06 + 4.06,

Mehr

Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange.

Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Angewandte Mathematik Ing.-Wiss., HTWdS Dipl.-Math. Dm. Ovrutskiy Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Aufgabe 1 Approximieren Sie cos(x) auf [ /, /] an drei Stützstellen

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 2.1: Relationale und logische Operatoren, Funktionen Dr. Lorenz John Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 05.10.2016 Ablauf Theorie 1.1+1.2

Mehr

Schülerworkshop Computertomographie Mathematik als Schlüsseltechnologie

Schülerworkshop Computertomographie Mathematik als Schlüsseltechnologie Schülerworkshop Computertomographie Mathematik als Schlüsseltechnologie Peter Quiel 1. und 2. Juni 2007 MATLAB-Einführung Überblick Für die nächsten 1 ½ Stunden ist MATLAB unser Thema! Was ist MATLAB,

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

2. Einführung in das Ingenieurtool MATLAB

2. Einführung in das Ingenieurtool MATLAB 2. Einführung in das Ingenieurtool MATLAB MATLAB ist eine numerische Berechnungsumgebung wurde vorrangig zum Rechnen mit Vektoren und Matrizen entworfen ist interaktiv benutzbar, vergleichbar mit einem

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Numerische Verfahren Übungen und Lösungen, Blatt 1

Numerische Verfahren Übungen und Lösungen, Blatt 1 Technische Universität Hamburg-Harburg Institut für Numerische Simulation, E-0 Dr. Jens-Peter M. Zemke Sommersemester 2008 Numerische Verfahren Übungen und Lösungen, Blatt Aufgabe : (Thema: relativer und

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

WiMa-Praktikum 1. Woche 8

WiMa-Praktikum 1. Woche 8 WiMa-Praktikum 1 Universität Ulm, Sommersemester 2017 Woche 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Besonderheiten der For-Schleife in Matlab Wiederholung des Umgangs mit Matrizen und

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 6

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 6 R. Hiptmair S. Pintarelli E. Spindler Herbstsemester 2014 Lineare Algebra und Numerische Mathematik für D-BAUG Serie 6 ETH Zürich D-MATH Einleitung. Diese Serie behandelt nochmals das Rechnen mit Vektoren

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

3 Kurzeinführung in Matlab

3 Kurzeinführung in Matlab 3 Kurzeinführung in Matlab Matlab ist ein sehr leistungsfähiges interaktives Programmpaket für numerische Berechnungen. Nutzen Sie dies parallel zu den Vorlesungen. Sie können damit persönlich erfahren,

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

10. Übung zur Linearen Algebra I -

10. Übung zur Linearen Algebra I - . Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@FU-Berlin.de FU Berlin. WS 29-. Aufgabe 37 i Für welche α R besitzt das lineare Gleichungssystem 4 αx + αx 2 = 4x + α + 2x 2 = α genau eine,

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Einführung in MATLAB Blockkurs DLR:

Einführung in MATLAB Blockkurs DLR: Einführung in MATLAB Blockkurs DLR: 19.4-22.4.2004 Tag 2, 2.Teil Programmieren mit MATLAB II 20.4.2004 Dr. Gerd Rapin grapin@math.uni-goettingen.de Gerd Rapin Einführung in MATLAB p.1/25 Programmieren

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 1.2: Vektoren & Matrizen II, Funktionen, Indizierung Dr. Lorenz John Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 04.10.2016 Theorie 1.2: Inhalt 1

Mehr

TEST MONTAGSGRUPPE: HS 3, Mo., 10:10-10:55, 1. Dezember [TOTAL: 18 Punkte].

TEST MONTAGSGRUPPE: HS 3, Mo., 10:10-10:55, 1. Dezember [TOTAL: 18 Punkte]. TEST MONTAGSGRUPPE: HS 3, Mo., 10:10-10:55, 1. Dezember 2008. [TOTAL: 18 Punkte]. ALLGEMEINE ANLEITUNG: ES geht vor allem um den Rechengang, und die allgemeine Perspektive, d.h. wie man mit Hilfe von Linearer

Mehr

Einführung in MATLAB Blockkurs DLR:

Einführung in MATLAB Blockkurs DLR: Einführung in MATLAB Blockkurs DLR: 19.4-22.4.2004 Tag 2, 1.Teil Programmieren mit MATLAB I 20.4.2004 Dr. Gerd Rapin grapin@math.uni-goettingen.de Gerd Rapin Einführung in MATLAB p.1/24 Programmieren mit

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 1.2: Vektoren & Matrizen II, Funktionen, Indizierung Dr. Laura Scarabosio Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 04.10.2017 Theorie 1.2: Inhalt

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13 D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys Serie 13 1. Um einen Tisch sitzen 7 Zwerge. Vor jedem steht ein Becher mit Milch. Einer der Zwerge verteilt seine Milch gleichmässig auf alle

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 2.2: Schleifen, Vektorisierung, bedingte Ausführung Dr. Lorenz John Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 05.10.2016 Numerische Mathematik M2

Mehr

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2 Fakultät Mathematik WS 27/8 Institut für Mathematische Stochastik / Institut für Analysis Dr. W. Kuhlisch, Dr. F. Morherr Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie

Mehr

8 Polynominterpolation

8 Polynominterpolation 8 Polynominterpolation Interpolations-Aufgabe: Von einer glatten Kurve seien nur lich viele Punktewerte gegeben. Wähle einen lichdimensionalen Funktionenraum. Konstruiere nun eine Kurve in diesem Funktionenraum

Mehr

D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch. Musterlösung 6. x A 1 b. A 1 b A 1. x A ( A. gestört: x A 1 =

D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch. Musterlösung 6. x A 1 b. A 1 b A 1. x A ( A. gestört: x A 1 = D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch Musterlösung 6 1. a b exakt: x = c Die Inverse von A lautet x = A 1 b x = A 1 b x A 1 b x A 1 b x A 1 b A x b x κ A b x b 3 1 A 1 = gestört:

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Programmieren. Aufgabe 1 (Eine erste Datenstruktur)

Programmieren. Aufgabe 1 (Eine erste Datenstruktur) Prof. Dr. S.-J. Kimmerle (Vorlesung) Dipl.-Ing. (FH) V. Habiyambere (Übung) Institut BAU-1 Fakultät für Bauingenieurwesen und Umweltwissenschaften Herbsttrimester 2016 Aufgabe 1 (Eine erste Datenstruktur)

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 2. Aufgabe 2.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 2. Aufgabe 2.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand. Dr. V. Gradinaru D. Devaud A. Hiltebrand Herbstsemester 04 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Multiple Choice: Online abzugeben. Ev. sind mehrere

Mehr

g 1 g = e, (1) (g 1 ) 1 g 1 = e, (2) Unter Verwendung des Assoziativgesetzes ist nach (1), und weil e neutrales Element ist. Nach (2) folgt nun

g 1 g = e, (1) (g 1 ) 1 g 1 = e, (2) Unter Verwendung des Assoziativgesetzes ist nach (1), und weil e neutrales Element ist. Nach (2) folgt nun Stefan K. 1.Übungsblatt Algebra I Aufgabe 1 1. zu zeigen: (g 1 ) 1 = g g G, G Gruppe Beweis: Aus dem Gruppenaxiom für das Linksinverse zu g haben wir und für das Linksinverse zu g 1 Unter Verwendung des

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Matrixzugriff Wir wollen nun unsere Einführung in die Arbeit mit Vektoren und Matrizen in MATLAB

Mehr

Mathematik IT 2 (Lineare Algebra)

Mathematik IT 2 (Lineare Algebra) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme

Mehr

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS 6.. Prüfungsaufgaben zur Lösbarkeit von LGS Aufgabe : Lösbarkeit von LGS () Berechne mit Hilfe des Gauß-Verfahrens die Lösungsmengen der drei folgenden inhomogenen Gleichungssysteme. Gib außerdem die Lösungsmengen

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

KAPITEL 8. Interpolation

KAPITEL 8. Interpolation KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics Numerische Methoden für ITET und MATL 2016 ETH Zürich, Seminar for Applied Mathematics Dr. S. May, D. Devaud Frame 2 MATLAB Auf ETH Computer vorinstalliert Auf Heim PC: von www.ides.ethz.ch herunterladen

Mehr

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Institut für Mathematik Blatt Prof. Dr. B. Martin, H. Süß Abgabe: 0.4. Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Aufgabe : 2 Punkte Stellen Sie die Gleichung der Ebene auf, in

Mehr

Lösung Übungsblatt 7

Lösung Übungsblatt 7 M4 Numerik für Physiker Lösung Übungsblatt 7 SoSe 008 Lösung Übungsblatt 7 Aufgabe 1: Lineare Ausgleichsrechnung Ein mehrdimensionales, lineares Ausgleichungsproblem lässt sich folgendermaßen darstellen:

Mehr

Tutorial: Numerisch Differenzieren

Tutorial: Numerisch Differenzieren (basierend auf dem Skript Numerik für Ingenieure von R. Axthelm) Aufgabenstellung: Von ihrem GPS-Gerät bekommen sie alle 12 Sekunden ihre aktuelle Position zugeschickt. Daraus können sie das unten dargestellte

Mehr

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva,

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, Universität zu Köln SS 009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, mselva@math.uni-koeln.de Numerik I Musterlösung 1. praktische Aufgabe, Bandmatrizen Bei der Diskretisierung von

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Softwarepraktikum. zu Elemente der Mathematik. Carsten Rezny Institut für angewandte Mathematik Universität Bonn

Softwarepraktikum. zu Elemente der Mathematik. Carsten Rezny Institut für angewandte Mathematik Universität Bonn Softwarepraktikum zu Elemente der Mathematik Carsten Rezny Institut für angewandte Mathematik Universität Bonn 18. 20.05.2016 Listen Liste: Aufzählung von beliebigen Objekten liste={2,1.4,"abc"} Einzelnes

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n

Mehr

Analytische Geometrie mit dem Voyage 1

Analytische Geometrie mit dem Voyage 1 Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor

Mehr

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine

Mehr

Klausur zur Mathematik I (Modul: Lineare Algebra I) : Lösungshinweise

Klausur zur Mathematik I (Modul: Lineare Algebra I) : Lösungshinweise Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Wintersemester 202/20 Klausur zur Mathematik I (Modul: Lineare Algebra I 07.02.20: Lösungshinweise Sie haben 60

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 6. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. März 2010 Nachträge Gliederung Nachträge it Nachträge Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

Klausurähnliche Aufgaben

Klausurähnliche Aufgaben Sommersemester 2007/08 Lineare Algebra Klausurähnliche Aufgaben Aufgabe 1 Seien v 1, v 2, v 3, v 4, v 5, v 6 die Vektoren in R 5 mit v 1 = (1, 2, 3, 1, 2), v 2 = (2, 4, 6, 2, 4), v 3 = ( 1, 1, 3, 0, 3),

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Klausur zur Vorlesung Lineare Algebra I

Klausur zur Vorlesung Lineare Algebra I Heinrich-Heine-Universität Düsseldorf 23.7.2 Mathematisches Institut Lehrstuhl für Algebra und Zahlentheorie Prof. Dr. Oleg Bogopolski Klausur zur Vorlesung Lineare Algebra I Bearbeitungszeit: 2 min Bitte

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Klausur zur Vorlesung Lineare Algebra II

Klausur zur Vorlesung Lineare Algebra II Universität zu Köln Sommersemester 06 Mathematisches Institut 9. Juli 06 Prof. Dr. P. Littelmann Dr. Teodor Backhaus Klausur zur Vorlesung Lineare Algebra II Bearbeitungszeit 80 Minuten Bitte geben Sie

Mehr