Lineare Gleichungssysteme
|
|
|
- Lukas Blau
- vor 8 Jahren
- Abrufe
Transkript
1 Lineare Gleichungssysteme 6. Vorlesung Numerische Methoden I Clemens Brand 25. März 2010 Nachträge
2 Gliederung Nachträge it Nachträge
3 Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten Vorlesung Lösbarkeit: Drei Fälle sind möglich Rang der (erweiterten) Matrix, Determinante MATLAB-Befehle, rank, det Berechnen der Lösung in MATLAB: wann wie? mit x=a\b mit ([A,b]) mit Pseudoinverser: x=pinv(a)*b was liefert null(a)? warum löst man nicht in der Form x = A 1 b? Nachträge
4 Wichtige Begriffe Eine Zusammenfassung der Folien der letzten Vorlesung : misst, wie empfindlich die Lösung von kleinen Fehlern in Matrix rechter Seite abhängt. Zum Verständnis notwendige Begriffe: Matix- Vektornorm Schlecht konditionierte Matrix; numerisch singuläre Matrix Nachträge
5 Eine Zusammenfassung der Folien der letzten Vorlesung Jacobi Gauß-Seidel SOR (successive overrelaxation) Wichtig Die unterschiedlichen Formulierungen: anschauliche Erklärung, Index- Matrix-Schreibweise. Nachträge
6 Gridee: matrix splitting Spalte Matrix auf in einfache Näherung + Rest. A = Ã+E Wenn Gleichungssystem mit Matrix A nicht leicht lösbar ist, ersetze A durch eine Matrix Ã, mit der es leichter geht. Forme um, so dass nur System mit à zu lösen ist der Rest auf der anderen Seite steht Fixpunkt-Gleichung! Ax = b (Ã+E)x = b Ãx+Ex = b Ãx = b E x diese Gleichung lösen! Nachträge Jacobi- wählt à = D Gauß-Seidel- wählt à = L SOR- wählt à = L+( 1 ω 1)D
7 Iteration, Grschema Ablaufschema einer Iteration in einem Rechenprogramm Diese Formulierung entspricht nicht ganz der Fixpunkt-Form der vorigen Folie, ist aber mathematisch äquivalent. Vorteil: Residuum (Rest-, Fehlervektor) Änderung werden in jedem Schritt mitberechnet) Beginne mit Startvektor x (0) setze r (0) = b Ax (0) iteriere für k = 0, 1, 2,... löse Ãd (k+1) = r (k) setze x (k+1) = x (k) + d (k+1) setze r (k+1) = r (k) Ad (k+1) bis r (k+1) < ǫ Ergebnis: Näherungslösung x (k+1) Nachträge
8 Gleichungslöser wichtige Grideen uns fehlt die Zeit, genauer drauf einzugehen, aber wenigstens sehen Sie hier einige Schlagwörter... gute Splittings Präkonditionierer Skript Minimieren des Residuums Skript Orthogonalisieren. Klassische CG GMRES Skript Mehrgitter- Nachträge
9 Gleichungssysteme mit sind direkt auflösbar Beispiel für n = 4: Linke untere rechte obere Dreiecksmatrix r 11 r 12 r 13 r 14 L = l l 31 l , R = 0 r 22 r 23 r r 33 r 34 l 41 l 42 l r 44 Vorwärts- bzw. Rückwärts-Substitution löst Gleichungssysteme mit Dreiecksform. Rechenaufwand bei einem n n-system beträgt jeweils n 2 /2+O(n) Punktoperationen. Nachträge
10 Klassische transformiert ein Gleichungssystem auf obere Dreiecksform (sofern bei der Pivot-Berechnung immer a kk 0!) Für alle Spalten k = 1,...n 1 in Spalte k: für Zeilen unterhalb des Diagonalelements Zeilenindex i = k + 1,...,n setze p = a ik /a kk (Pivot-Koeffizient) subtrahiere das p-fache derzeile k von Zeile i: Für die Spalten j = k,...n von Zeile i a ij = a ij pa kj Für rechte Seite: b i = b i pb k Nachträge Rechenaufwand beträgt n 3 /3+O(n 2 ) Punktoperationen
11 Beispiel Lösung eines Gleichungssystems durch Elimination Das Gaußsche Eliminationsverfahren transformiert sofern bei der Pivot-Berechnung immer a kk 0! die erweiterte Koeffizientenmatrix auf Dreiecksgestalt [Ab] = Rücksubstitution liefert Lösung. Nachträge
12 Warnhinweis If anything can go wrong, it will! Das Eliminationsverfahren in der oben angegebenen einfachen Form bricht zusammen, wenn in seinem Verlauf a kk = 0 auftritt. Division durch Null bei der Berechnung des Pivot-Koeffizienten. Abhilfe! Pivot = Dreh-, Angelpunkt. Nachträge
13 Systematisches Vertauschen von Gleichungen Unbekannten verhindert vorzeitige Division durch a kk = 0 im Eliminationsverfahren. vollständige Sucht betragsgrößtes Element unter allen Einträgen in den Positionen von a kk bis a nn bringt es an die kk-position. Vertauscht Gleichungen Unbekannte. Spalten- Sucht nur in der k-ten Spalte, vom Element a kk an abwärts. Vertauscht nur Geichungen, behält Reihenfolge der Unbekannten. Standardverfahren!. Zusatz-Nutzen verringert Rungsfehler bei der Elimination. Nachträge
14 Lösbarkeit Mögliche Fälle nach Abschluss des Eliminationsverfahrens mit vollständiger oder Zeilen-Pivotsuche transformiert die Originalmatrix A rechte Seite b auf ein System in : In jeder Zeile verringert sich die Zahl der Unbekannten um mindestens eine, die dann auch in den darauffolgenden Zeilen nicht mehr vorkommt. Nach Transformation auf Es treten Nullzeilen in A auf alle entsprechenden Einträge in b sind ebenfals Null: unendlich viele Lösungen Es treten Nullzeilen in A auf, aber zumindest ein entsprechender Eintrage in b ist nicht Null: keine Lösung Es treten keine Nullzeilen in A auf: eindeutige Lösung Nachträge
15 Gauß-Jordan- Eine erweiterte Variante der Standard- Das Gauß-Jordan- transformiert die erweiterte Koeffizientenmatrix auf reduzierte (reduced row echelon form). Die Lösung ist direkt ablesbar [Ab] = , ([A,b]) /20 21/10 [Ab] = , ([A,b]) 0 1 9/8 3/ /20 0 [Ab] = , ([A,b]) 0 1 9/
Lineare Gleichungssysteme: direkte Verfahren
Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme
Lineare Gleichungssysteme
Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,
Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung
Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten
Matrix-Zerlegungen, überbestimmte Systeme, iterative Löser
Matrix-Zerlegungen, überbestimmte Systeme, iterative Löser 5. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 22. März 2018 Matrix-Zerlegungen, überbestimmte
Zeilenstufenform eines Gleichungssystems
Zeilenstufenform eines Gleichungssystems Ein lineares Gleichungssystem mit einer m n-koeffizientenmatrix lässt sich mit Gauß-Transformationen auf Zeilenstufenform (Echelon-Form) transformieren: Ax = b...
5 Lineare Gleichungssysteme und Determinanten
5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von
Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung
Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,
Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n
Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander
Numerik für Informatiker und Bioinformatiker. Daniel Weiß
Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,
Überbestimmte Gleichungssysteme
Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare
Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...
Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den
2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren
2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;
bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR
LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine
In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen.
Kapitel 4 Lineare Gleichungssysteme 4 Problemstellung und Einführung In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen Lineares Gleichungssystem: Gesucht ist
Lineare Gleichungssysteme, LR-Zerlegung
Prof Thomas Richter 2 Juni 27 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomasrichter@ovgude Material zur Vorlesung Algorithmische Mathematik II am 22627 Lineare Gleichungssysteme,
A2.3 Lineare Gleichungssysteme
A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen
D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10
D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)
Der Gaußsche Algorithmus und Varianten Vorlesung vom
Der Gaußsche Algorithmus und Varianten Vorlesung vom 17114 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus Achtung: Durchführbarkeit nur bei nichtverschwindenden
Der Gaußsche Algorithmus und Varianten Vorlesung vom
Der Gaußsche Algorithmus und Varianten Vorlesung vom 19.1.18 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus. Achtung: Durchführbarkeit nur bei
3 Lineare Gleichungssysteme, direkte Verfahren
3 Lineare Gleichungssysteme, direkte Verfahren Wir verwenden die Standard-Notation für ein System linearer Gleichungen: Ax = b, worin A die Koeffizientenmatrix, b die rechte Seite und x den Lösungsvektor
Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix
Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das
Lineare Gleichungssysteme und Matrizen
Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x
Lineare Algebra 1. Roger Burkhardt
Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition
Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching
Lineare Algebra. Übungsstunde Steven Battilana [email protected] battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n
Der Gaußsche Algorithmus und Varianten Vorlesung vom
Der Gaußsche Algorithmus und Varianten Vorlesung vom 15.1.16 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus. Achtung: Durchführbarkeit nur bei
Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24
Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt
Cramersche Regel. Satz 2.26
ramersche Regel Satz 6 Es sei A R n n eine quadratische Matrix mit det(a) 6= Für das LGS Ax = b sei A j := (a,,a j, b, a j+,,a n ), also die Matrix, die entsteht, wenn in A die j-te Spalte durch den Vektor
3 Matrizenrechnung. 3. November
3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige
Lineare Gleichungen. Mathematik-Repetitorium. 3.1 Eine Unbekannte. 3.2 Zwei oder drei Unbekannte. 3.3 Allgemeine lineare Gleichungssysteme
Lineare Gleichungen 3.1 Eine Unbekannte 3.2 Zwei oder drei Unbekannte 3.3 Allgemeine lineare Gleichungssysteme Lineare Gleichungen 1 Vorbemerkung zu Kapitel 1 Gleichungen (Unbekannte) (Variablen, Parameter)
3 Lineare Algebra Vektorräume
3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +
Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )
Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der
6 Lineare Gleichungssysteme
6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α
05. Lineare Gleichungssysteme
05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a
Lineare Gleichungssysteme
Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x +... + a n x n = b a x + a x +... + a n x n = b. +. +... +. =. a m x + a m x +... + a mn x n = b m heißt lineares Gleichungssystem
Determinanten. I. Permutationen
Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch
Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya
Lineare Gleichungssysteme 1-E Ma 1 Lubov Vassilevskaya Systeme linearer Funktionen und Gleichungen y = a 1 a 2... a n lineare Funktion Funktion ersten Grades,,..., unabhängige Variablen y abhängige Variable
Corinne Schenka Vorkurs Mathematik WiSe 2012/13
4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:
Lineare Gleichungssysteme
Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.
Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen
3. Lineare Gleichungssysteme
3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren
Determinanten. I. Permutationen
Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch
Das Lösen linearer Gleichungssysteme
Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n
1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4
Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Numerische Lineare Algebra
Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)
Überbestimmte Systeme
5 Überbestimmte Systeme Ein lineares Gleichungssystem Ax = b mit mehr Gleichungen als Unbekannten heißt überbestimmt. In so einem Fall ist A eine n m-matrix mit n > m, also rechteckig, mit mehr Zeilen
9 Lineare Gleichungssysteme
9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der
Lineare Gleichungssysteme Seite 98. Spaltenorientiert. Zeilenorientiert. 1. Vorgegeben: 1 kg Mehl, 2 kg Zucker
Definition und Beispiele Definition und Beispiele Im linearen Gleichungssystem Seite 98 a x + a x + + a n = b a x + a x + + a n = b a m x + a m x + + a mn = b m sind die Koeffizienten a ij und die rechten
Lineare Algebra 1. Roger Burkhardt
Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und
5.4 Basis, Lineare Abhängigkeit
die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)
Der Gaußsche Algorithmus
Der Gaußsche Algorithmus Der Gaußsche Algorithmus beinhaltet das Vertauschen der Zeilen der erweiterten Koeffizientenmatrix (A, b) und das Additionsverfahren. Ziel ist es, möglichst viele Nullen unterhalb
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche
Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49
Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.
Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49
Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.
Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I
Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):
7 Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme Gauß-Algorithmus Anwendungen Determinanten
7 Lineare Gleichungssysteme und Determinanten Lineare Gleichungssysteme Gauß-Algorithmus Anwendungen Determinanten 7.1 Dreiecks- und Diagonalmatrizen Linke untere bzw. rechte obere Dreiecksmatrizen sind
LR Zerlegung. Michael Sagraloff
LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten
2.2 Lineare Gleichungssysteme (LGS)
2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +
Mathematik IT 2 (Lineare Algebra)
Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme
1 Transponieren, Diagonal- und Dreiecksmatrizen
Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix
Tutorium: Analysis und Lineare Algebra
Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218
Numerisches Programmieren, Übungen
Technische Universität München SoSe 8 Institut für Informatik Prof. Dr. Thomas Huckle Michael Rippl Fabio Gratl Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt: Gaußelimination mit Pivotsuche,
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter
2 Matrizenrechnung und Lineare Gleichungssysteme
Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der
Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung
D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen
38 Iterative Verfahren für lineare Gleichungssysteme
38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige
Test 2, Musterlösung. Name, Klasse: Semester: 1 Datum: Teil ohne Matlab
Test 2, Musterlösung Lineare Algebra [email protected] Institut für Mathematik und Physik Name, Klasse: Semester: Datum: 2..26. Teil ohne Matlab. Lineare Abbildungen Zeigen Sie, dass die folgenden Abbildungen
3 Lineare Gleichungen
Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a
4. Großübung. Lösung linearer Gleichungssysteme
4. Großübung Lösung linearer Gleichungssysteme Gesucht x, x, x 3, x 4 R, sodass gilt. mit A R 4 4, x R 4, b R 4 x x + 3x 3 + x 4 = 5 6x 3x 7x x 4 = 5 4x + 4x + 5x 3 5x 4 = 3 8x + x + x 3 + x 4 = 8 3 x
Überbestimmte Gleichungssysteme, Regression
Überbestimmte Gleichungssysteme, Regression 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas MUL 16. Mai 2013 C. Brand, E. Hausenblas 8. Vorlesung 1 / 19 Gliederung 1 Überbestimmte
Lineare Gleichungssystem
Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen
4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT
ME Lineare Algebra HT 2008 86 4 Determinanten 4. Eigenschaften der Determinante Anstatt die Determinante als eine Funktion IC n n IC durch eine explizite Formel zu definieren, bringen wir zunächst eine
3 Lineare Gleichungssysteme
Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren
