Numerisches Programmieren, Übungen

Größe: px
Ab Seite anzeigen:

Download "Numerisches Programmieren, Übungen"

Transkript

1 Technische Universität München SoSe 8 Institut für Informatik Prof. Dr. Thomas Huckle Michael Rippl Fabio Gratl Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt: Gaußelimination mit Pivotsuche, LR-Zerlegung, Matrixnorm ) Gauß-Elimination und Pivotsuche a) Gauß-Elimination ohne Pivotsuche und mit exakter Arithmetik: ( ) ( ) x = = , x = (x ) = ( ) x = b) Gauß-Elimination ohne Pivotsuche und mit Rundungsfehlern (3 Stellen): ( ) ( ) ( ) ( ) x =. Runden Der zweite Eintrag x ist in Ordnung, aber x ist komplett falsch! c) Gauß-Elimination mit Pivotsuche und mit Rundungsfehlern (3 Stellen): ( ) ( ) ( ) ( ) Runden x =, x = x / =.5 ( ).5 x =. Diesmal ist x für beide Einträge in der passen Größenordnung (vgl. i)).

2 ) LR-Zerlegung Zunächst folgt eine kleine Einführung zur LR-Zerlegung. Zuerst wird die Matrix A in ein Produkt zweier Matrizen zerlegt, einmal in die linke untere Dreiecksmatrix L mit -ern auf der Diagonalen, und die rechte obere Dreiecksmatrix R. Daraufhin wird mit der Vorwärts- und der Rückwärtssubstitution das lineare Gleichungssystem gelöst. Eine mögliche Umsetzung der drei Abschnitte in Pseudocode sieht folgermaßen aus:. LR-Zerlegung: A = LR for i =:n % Fuer j e d e Z e i l e i for k=: i % Berechne Elemente L [ i, k ] L [ i, k ] := A[ i, k ] ; for j =:k L [ i, k ] := L [ i, k] L [ i, j ] R[ j, k ] ; L [ i, k ] := L [ i, k ] /R[ k, k ] ; for k=i : n % Berechne Elemente R[ i, k ] R[ i, k ] := A[ i, k ] ; for j =: i R[ i, k ] := R[ i, k] L [ i, j ] R[ j, k ] ;. Vorwärtssubstitution: Ly = b for i =:n y [ i ] := b [ i ] ; for j =: i y [ i ] := y [ i ] L [ i, j ] y [ j ] ; 3. Rückwärtssubstitution: Rx = y for i=n: : x [ i ] := y [ i ] ; for j=i +:n x [ i ] := x [ i ] R[ i, j ] x [ j ] ; x [ i ] := x [ i ] /R[ i, i ] ; Die Grundidee ist für die Algorithmen Gaußelimination und LR-Zerlegung natürlich die gleiche: Bringe A durch Zeilenumformungen auf Zeilenstufenform. Der Gauß-Algorithmus eliminiert sukzessive Einträge in einer Spalte i (äußere Schleife), geht also spaltenweise vor. Dagegen berechnet unser LR-Algorithmus für jedes i der äußeren Schleife die Einträge von L und R in der Zeile i; er arbeitet also zeilenweise. Die zweite Schleife über k läuft dementsprech über

3 die nötigen Spaltenindizes von L und R. Um zu verstehen, warum der LR-Algorithmus die angegebene Form hat, betrachten wir die Zerlegung genauer. A = L R bedeutet in Indexnotation A ik = n L ij R jk, j= i, k =,..., n wobei n die Dimension der Matrix A ist. Die Einträge A ik können in solche unterhalb bzw. oberhalb der Diagonalen aufgesplittet und getrennt betrachtet werden. i > k: Einträge unterhalb der Diagonalen: Zeile mal Spalte im Produkt L R ergibt aufgrund der Nullen eine Summe, die nur bis k läuft (kleinerer der beiden Indizes): A ik = n L ij R jk = j= L ik = k L ij R jk = j= k L ij R jk + L ik R kk j= ( ) k A ik L ij R jk /R kk. j= i k: Einträge oberhalb der Diagonalen: Die Summe läuft nur bis i (kleinerer der beiden Indizes): A ik = n L ij R jk = j= R ik = i L ij R jk = j= i L ij R jk + L ii R ik j= ( ) i A ik L ij R jk / L ii. }{{} j= = Damit erhalten wir exakt die Formeln der LR-Zerlegung aus dem angegebenen Algorithmus. Man macht sich leicht klar, dass aufgrund des zeilenweisen Durchlaufs der äußeren Schleife (über i) stets alle nötigen Werte schon vorhanden sind, um die neuen Einträge L ik und R ik zu berechnen. a) Lösungsschritte bei Anwung von Gauß-Elimination auf das Problem Ax = b / / / 5/ x = / / 3 4 3

4 b) Für die Berechnung der Zerlegung (.) von A = stellen wir zwei Möglichkeiten zur Verfügung: Die erste basiert auf den Algorithmen wie oben beschrieben und damit der Gaußelimination, die zweite auf dem Lösen von Gleichungen aus der Gleichung A = LR. LR-Zerlegung basier auf Gaußelimination Die Matrizen L und R denken wir uns mit lauter Nulleinträgen vorbelegt. Neu hinzukomme Einträge werden mit einer Box gekennzeichnet. i=: L : for k = : nichts zu tun (empty) R : for k = : 3 R[, k] = A[, k]; for j = : empty R = i=: L : for k = : R : for k = : 3 L[, ] = A[, ] = ; for j = : empty L[, ] = L[, ]/R[, ] = /4; L = R[, k] = A[, k]; for j = : R[, k] = R[, k] L[, ] R[, k]; / k = : R[, ] = R[, ] L[, ] R[, ] = / = ; k = 3 : R[, 3] = R[, 3] L[, ] R[, 3] = / 3 = /; R = -/

5 i=3: L : for k = : L[3, k] = A[3, k]; R : for k = 3 : 3 for j = : k k = : empty k = : L[3, ] = L[3, ] L[3, ] R[, ] = ; L[3, k] = L[3, k]/r[k, k]; L = / / R[3, 3] = A[3, 3]; for j = : R[3, 3] = R[3, 3] L[3, j] R[j, 3]; j = : R[3, 3] = / 3 = /; j = : R[3, 3] = / ( /); R = / Damit haben wir unsere gesuchte Zerlegung: A = L R = / / /.

6 Wir beginnen mit allen uns be- LR-Zerlegung basier auf Matrixmultiplikation kannten Informationen über die LR-Zerlegung von A: = Wir sehen 9 Unbekannte auf der rechten Seite, und für jeden der 9 Einträge in A entsteht eine Gleichung. Diese Gleichungen werden wir nun nacheinander (von oben nach unten oder von links nach rechts) durchgehen, und jedes Mal nach der fehlen Unbekannten auflösen. Beginnen wir mit dem Feld (, ):. =. Es gilt: A = 4! = R + + R = 4. Das Gleiche machen wir mit Feld (,): und damit = 4 A =! = L L =. Verfolgen wir dieses Vorgehen weiter, erhalten und lösen wir nacheinander folge Gleichungen: (, ) 4 = R R = 4 (, ) = L 4 L = (3, ) = L 3 4 L 3 = (, ) = R R = (, ) = + R R = (3, ) = + L 3 L 3 = (, 3) 3 = R 3 R 3 = 3 (, 3) (3, 3) = 3 + R 3 = R 33 R 3 = R 33 = Damit ergibt sich dann die selbe Lösung wie oben.

7 c) Substitution: Vorwärtssubstitution Ly = b: / / y y y 3 Rückwärtssubstitution Rx = y: / = x x x y = (5, /, 3) T. = 5 / 3 x = (, 4, 3) T. d) Die Zerlegung ist bereits bekannt, daher müssen zur Lösung von Ax = c lediglich Vorwärts- und Rückwärtssubstitution durchgeführt werden. Der Aufwand hierfür ist O(n ) Operationen (vergleiche O(n 3 ) Operationen für die Berechnung der Zerlegung bei der Lösung von Ax = b). Substitution: Vorwärtssubstitution Lỹ = c: / / Rückwärtssubstitution Rx = ỹ: / x x x 3 y y y 3 = = ỹ = (,, ) T. x = ( /, /, ) T.

8 3) Matrixnorm a) D d jj. Sei e j der Vektor mit an der Stelle j und an alle andere Stellen:. e j =. j. e j ist ein Eigenvektor zu Eigenwert d jj : De j = d jj e j. Dann: Dx D = sup De j x x e j = d jje j = d jj e j = d jj b) D d jj : Dx D = sup x x = sup x sup x = sup x = sup d jj x = d jj. x d + x d x nd nn x x n x d jj + x d jj x nd jj x x n x x n d jj x x n Zum Schluss: D d jj, D d jj, dann muss D = d jj gelten.

9 4) Orthogonale Matrizen a) det Q = ±: = det I = det(qq T ) = det Q det Q T = (det Q). Die Gleichung x = hat nur ± als Lösungen. b) Q = : Qx Q = sup x x = sup x xt Q T Qx xt x = sup x xt Ix xt x = sup xt x x xt x = sup = x Zusatz:.5 det(d) = det(d) = - D = orthogonale.5 d d Unter diagonale Matrizen gibt es 4 orthogonale: ( ) ( ) ( ) ( ),,,.

10 Zusatzaufgabe: Image Stitching mit Gauß-Elimination Gegeben seien zwei Merkmalpunkte x = [3 ] T und x = [4 3] T im Bild I und deren korrespondiere Punkte x = [ ] T und x = [ 4] T im anderen Bild I. Wie bereits erwähnt, lässt sich der Zusammenhang zwischen korrespondieren Punkten über die Transformation x = H x ausdrücken. Nun gilt es die Einträge der Homography-Matrix zu finden. Notieren wir zunächst den bekannten Zusammenhang für das erste Paar korrespondierer Punkte: x ( ) = H ( x ) ( ) h h = 3 h h x ( ) 4 = H ( x ) h h = h h ( ) 4 3 Nach der Matrix-Vektor-Multiplikation erhalten wir ein System mit vier Gleichungen mit den vier Unbekannten h, h, h, h. 3h + h = 3h + h = 4h + 3h = 4h + 3h = 4 Durch Tauschen der zweiten und dritten Gleichung erhalten wir das folge (lineare) Gleichungssystem, das wir mittels Gauß-Elimination lösen: 3 h 3 A h = b 4 3 h 3 h = h Die Gauß-Elimination erfolgt wie folgt: / / Damit lässt sich leicht h = 4, h =, h =, h = berechnen.

11 Weiterer Lösungsweg: Hx = x und Hx = x lässt sich schreiben als H [ ] [ ] x x = x x T [ ] [ ] T T x H T x = Gauß : und damit folgt die Lösung H = x T x T ( ) ( ) 3 H T = ( ) ( ) ( ). 4 H T = 4 ( 4 ),

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 7 / 8 Institut für Informatik Univ.-Prof. Dr. Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen Musterlösung 8. Übungsblatt:

Mehr

4. Großübung. Lösung linearer Gleichungssysteme

4. Großübung. Lösung linearer Gleichungssysteme 4. Großübung Lösung linearer Gleichungssysteme Gesucht x, x, x 3, x 4 R, sodass gilt. mit A R 4 4, x R 4, b R 4 x x + 3x 3 + x 4 = 5 6x 3x 7x x 4 = 5 4x + 4x + 5x 3 5x 4 = 3 8x + x + x 3 + x 4 = 8 3 x

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein System von m linearen Gleichungen in n Unbekannten besteht aus einer Menge von algebraischen Relationen der Form n a ij x j = b i, i =,...,m, j= wobei a ij R, i m, j n, die

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2011 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dr. Slobodan Ilic Numerisches Programmieren, Übungen 4. Übungsblatt: Gauß-Elimination,

Mehr

Numerisches Programmieren

Numerisches Programmieren Informatics V - Scientific Computing Numerisches Programmieren Tutorübung 3 Jürgen Bräckle, Christoph Riesinger 16. Mai 2013 Tutorübung 3, 16. Mai 2013 1 Gauß-Elimination und Pivotsuche LR-Zerlegung QR-Zerlegung

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

Numerik für Informatiker und Bioinformatiker. Daniel Weiß

Numerik für Informatiker und Bioinformatiker. Daniel Weiß Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,

Mehr

Lineare Gleichungssysteme, LR-Zerlegung

Lineare Gleichungssysteme, LR-Zerlegung Prof Thomas Richter 2 Juni 27 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomasrichter@ovgude Material zur Vorlesung Algorithmische Mathematik II am 22627 Lineare Gleichungssysteme,

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Schriftlicher Test zu C (90 Minuten) VU Einführung ins Programmieren für TM. 1. Oktober 2012

Schriftlicher Test zu C (90 Minuten) VU Einführung ins Programmieren für TM. 1. Oktober 2012 Familienname: Vorname: Matrikelnummer: Aufgabe 1 (2 Punkte): Aufgabe 2 (3 Punkte): Aufgabe 3 (2 Punkte): Aufgabe 4 (3 Punkte): Aufgabe 5 (2 Punkte): Aufgabe 6 (1 Punkte): Aufgabe 7 (2 Punkte): Aufgabe

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Elektrischer Schaltkreis lin. Gleichungssystem

Elektrischer Schaltkreis lin. Gleichungssystem Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) Beispiel : Elektrischer Schaltkreis I R

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr

Inhalt Kapitel II: Lineare Gleichungssysteme

Inhalt Kapitel II: Lineare Gleichungssysteme Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II1 Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) 1 Beispiel 1: Elektrischer Schaltkreis

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Gegeben seien die folgenden geordneten Basen B = (v, v, v, v ) und C = (w, w,

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen.

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen. Kapitel 4 Lineare Gleichungssysteme 4 Problemstellung und Einführung In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen Lineares Gleichungssystem: Gesucht ist

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Vorlesungsskript HM-Numerik (SS 4): Kapitel Version: 9 Mai 4 Lineare Gleichungssysteme Gegeben: A R n n mit det(a) b R n Gesucht: x R n mit Ax = b Zeilenäquilibrierung Möchten zunächst die Kondition des

Mehr

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme 3 Lineare Gleichungssysteme 3 Fortsetzung des Matrizenkalküls Als erstes beweisen wir einen einfachen Satz über den Rang von Matrizenprodukten Satz 3 (a) Für Matrizen A : Ã l m, B : Ã m n gilt rang AB

Mehr

Linear Systems and Least Squares

Linear Systems and Least Squares Linear Systems and Least Squares Vortragender: Gelin Jiofack Nguedong Betreuer: Prof. Dr. Joachim Weickert Proseminar: Matrixmethoden in Datenanalyse und Mustererkennung Wintersemester 2015/2016 18. November

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( ) Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für

Mehr

Mathematik IT 2 (Lineare Algebra)

Mathematik IT 2 (Lineare Algebra) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Numerisches Programmieren Lineare Gleichungssysteme Nikola Tchipev 8..4 NumPro, 8..4 Folien von Professor Huckle, SoSe 4 NumPro, 8..4 Folien von Professor Huckle, SoSe 4 (mit Einschub) NumPro, 8..4 Übersicht

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Numerik SS Musterlösung zu Hausaufgabenblatt 1

Numerik SS Musterlösung zu Hausaufgabenblatt 1 PROF DR BERND SIMEON CHRISTIAN GOBERT THOMAS MÄRZ Numerik SS 2009 Musterlösung zu Hausaufgabenblatt Aufgabe Links- und Rechtseigenpaare (20 P) Definition: Sei A C n n Ein Vektor 0 = x C n heißt (Rechts-)eigenvektor

Mehr

4.2.5 Das Cholesky-Verfahren

4.2.5 Das Cholesky-Verfahren S. Ulbrich: Mathematik IV für Elektrotechnik, Mathematik III für Informatik 34 4.2.5 Das Cholesky-Verfahren Für allgemeine invertierbare Matrizen kann das Gauß-Verfahren ohne Pivotsuche zusammenbrechen

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MNUM Mathematik: Numerische Methoden Herbstsemester 17 Dr Christoph Kirsch ZHAW Winterthur Aufgabe 1 : Lösung Semesterendprüfung Wir schreiben zuerst die Gleichungen f(x i ; a, a 1, a y i, i 1,,, 1, als

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

D-CHAB Frühlingssemester 2018 A I = 1 2 A.

D-CHAB Frühlingssemester 2018 A I = 1 2 A. D-CHAB Frühlingssemester 08 Grundlagen der Mathematik II Dr. Marcel Dettling Lösung 5 ) Das Invertierungsverfahren für die Matrix A ergibt A I 0 0 0 0 0 0 0 0 und damit Für die Matrix B erhalten wir A

Mehr

2. Direkte Verfahren zur Lösung. linearer Gleichungssysteme

2. Direkte Verfahren zur Lösung. linearer Gleichungssysteme 2. Direkte Verfahren zur Lösung linearer Gleichungssysteme 1 Einleitung (1) Eine zentrale Rolle bei numerischen Berechnungen spielen lineare Gleichungssysteme Es sind die am häufigsten auftretenden numerischen

Mehr

Direkte Verfahren für Lineare Gleichungssysteme

Direkte Verfahren für Lineare Gleichungssysteme Kapitel 1 Direkte Verfahren für Lineare Gleichungssysteme 11 Einführung (mündlich) 12 Das Gaußsche Eliminationsverfahren Es sei A IK n n eine invertierbare Matrix und b IK n ein gegebener Vektor Gesucht

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

1.4 Stabilität der Gauß-Elimination

1.4 Stabilität der Gauß-Elimination KAPIEL 1. LINEARE GLEICHUNGSSYSEME 18 1.4 Stabilität der Gauß-Elimination Bezeichne x die exakte Lösung von Ax = b bzw. ˆx die mit einem (zunächst beliebigen Algorithmus berechnete Näherungslösung (inklusive

Mehr

Matrizenoperationen mit FORTRAN

Matrizenoperationen mit FORTRAN Kapitel 2 Matrizenoperationen mit FORTRAN 21 Grundlagen Bei vielen Anwendungen müssen große zusammenhängende Datenmengen gespeichert und verarbeitet werden Deshalb ist es sinnvoll, diese Daten nicht als

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

B - 8 Gauß - Elimination (1850) Lineare Systeme in zwei Variablen

B - 8 Gauß - Elimination (1850) Lineare Systeme in zwei Variablen B - 8 Die Grundlage dieses Verfahrens ist die Beobachtung, daß für zwei Funktionen f (x) und g(x) eines Vektors x und jeden beliebigen Skalar λ gilt: f (x) = 0 f (x) = 0 g(x) = 0 g(x) λf (x) = 0 } {{ }

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Der Gaußsche Algorithmus und Varianten Vorlesung vom

Der Gaußsche Algorithmus und Varianten Vorlesung vom Der Gaußsche Algorithmus und Varianten Vorlesung vom 17114 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus Achtung: Durchführbarkeit nur bei nichtverschwindenden

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 018 Prof Dr N Hungerbühler Serie 8: Online-Test Schicken Sie Ihre Lösung bis spätestens Freitag, den 3 November um 14:00 Uhr ab Diese Serie besteht nur aus Multiple-Choice-Aufgaben

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Kapitel 5. LU Zerlegung. 5.1 L- und U-Matrizen

Kapitel 5. LU Zerlegung. 5.1 L- und U-Matrizen Kapitel 5 LU Zerlegung In vielen Fällen interessiert uns die inverse Matrix A 1 gar nicht. Stattdessen suchen wir die Lösung der Matrixgleichung Ax = b bzw. x = A 1 b 5.1) für einen oder wenige Vektoren

Mehr

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18.

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18. Goethe-Universität Frankfurt Institut für Mathematik Lineare Algebra Wintersemester 218/19 Prof Dr Jakob Stix Martin Lüdtke Übungsblatt 11 15 Januar 219 Aufgabe 1 (5=1+1+1,5+1,5 Punkte) Berechnen Sie die

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

QR-Algorithmus. Proseminar - Numerische Mathematik Sommersemester Universität Hamburg Fachbereich Mathematik geleitet von Prof.

QR-Algorithmus. Proseminar - Numerische Mathematik Sommersemester Universität Hamburg Fachbereich Mathematik geleitet von Prof. QR-Algorithmus Proseminar - Numerische Mathematik Sommersemester 2005 - Universität Hamburg Fachbereich Mathematik geleitet von Prof. Wolf Hofmann 1 Im Laufe der Jahre wurde immer wieder versucht, die

Mehr

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix MAV-NUM Applied Numerics Frühlingssemester 08 Dr. Evelyne Knapp ZHAW Winterthur Serie 4 Aufgabe (LR Zerlegung Theorie): (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix 3 0 0 0 (b) Lösen Sie mit

Mehr

Der Gaußsche Algorithmus und Varianten Vorlesung vom

Der Gaußsche Algorithmus und Varianten Vorlesung vom Der Gaußsche Algorithmus und Varianten Vorlesung vom 15.1.16 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus. Achtung: Durchführbarkeit nur bei

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B R. Käppeli T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Prüfung Winter 2016 Typ B Name a a Note Vorname Leginummer Datum 03.02.2017 1 2 3

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Kondition linearer Gleichungssysteme Vorlesung vom

Kondition linearer Gleichungssysteme Vorlesung vom Kondition linearer Gleichungssysteme Vorlesung vom 8.1.16 Konvergenz in normierten Räumen Definition: x (ν) x x x (ν) 0, für ν Satz: Die Konvergenz in R n und R n,n ist äquivalent zur komponentenweise

Mehr

EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2010

EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2010 Prof. Dr. O. Junge, P. Koltai, K. Tichmann Zentrum Mathematik - M3 Technische Universität München EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2 Tutorübungen T6 (Schur-Komplement) (a) Es sei

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Höhere Ableitungen Interpolationsbedingungen d k Φ dx k (x j) = y (k) j, ( j =,,..., n; k =,,..., c j ) bestimmen das Hermite Interpolationspolynom Φ Π r mit r + = n ( + c j ). j= 2 Lineare Gleichungssysteme

Mehr

Cramersche Regel. Satz 2.26

Cramersche Regel. Satz 2.26 ramersche Regel Satz 6 Es sei A R n n eine quadratische Matrix mit det(a) 6= Für das LGS Ax = b sei A j := (a,,a j, b, a j+,,a n ), also die Matrix, die entsteht, wenn in A die j-te Spalte durch den Vektor

Mehr

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A =

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A = 3 Determinanten Man bestimmt Determinanten nur von quadratischen Matrizen Wir werden die Berechnung von Determinanten rekursiv durchfuhren, dh wir denieren wie man eine 2 2-Determinante berechnet und fuhren

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis Prof. Dr. Wolfgang Arendt Manuel Bernhard Wintersemester 5/6 Probeklausur Lineare Algebra Achten Sie auf vollständige, saubere und schlüssige Argumentation! Punkte sind %. Inhaltsverzeichnis Aufgabe Aufgabe

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr