Numerisches Programmieren, Übungen

Größe: px
Ab Seite anzeigen:

Download "Numerisches Programmieren, Übungen"

Transkript

1 Technische Universität München WiSe 7 / 8 Institut für Informatik Univ.-Prof. Dr. Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen Musterlösung 8. Übungsblatt: Gaußelimination mit Pivotsuche, LR-Zerlegung, Matrixnorm ) Gauß-Elimination und Pivotsuche Lösen Sie das lineare Gleichungssystem ( 3 ) x = ( ) mit der Gauß-Elimination: a) Ohne Spalten-Pivotsuche in exakter Arithmetik (d.h. keine Zeilenvertauschungen und ohne Runden rechnen) b) Ohne Spalten-Pivotsuche und mit Rundungsfehlern (korrektes Runden in dezimaler Gleitkomma-Darstellung mit 3 signifikanten Stellen. Bsp.:.36 =.36 ergibt.4). c) Mit Spalten-Pivotsuche und mit Rundungsfehlern wie in b). Lösung: a) Gauß-Elimination ohne Pivotsuche und mit exakter Arithmetik: ( ) ( ) x = = , x = (x ) = ( ) x = b) Gauß-Elimination ohne Pivotsuche und mit Rundungsfehlern (3 Stellen):

2 ( ) ( ) ( ) ( ) x =. Runden Der zweite Eintrag x ist in Ordnung, aber x ist komplett falsch! c) Gauß-Elimination mit Pivotsuche und mit Rundungsfehlern (3 Stellen): ( ) ( ) ( ) ( ) Runden x =, x = x / =.5 ( ).5 x =. Diesmal ist x für beide Einträge in der passen Größenordnung (vgl. i)). ) LR-Zerlegung In dieser Aufgabe wollen wir den Algorithmus der LR-Zerlegung aus der Vorlesung an Beispielen nachvollziehen und vergleichen. Die LR-Zerlegung zur Lösung eines linearen Gleichungssystems Ax = b besteht aus drei Teilen:. Zerlegung der Matrix A: A = L R. Vorwärtssubstitution: Ly = b 3. Rückwärtssubstitution: Rx = y a) Lösen Sie unter Verwung der Gauß-Elimination das lineare Gleichungssystem Ax = b mit A = b = 3. b) Berechnen Sie die LR-Zerlegung (.) der Matrix A. c) Führen Sie nun zur Lösung von Ax = b die Vorwärts- und Rückwärtssubstitution (.) und (3.) durch. Verwen Sie den Vektor b aus Teilaufgabe a). d) Setzen Sie die LR-Zerlegung ebenfalls zur Lösung von Ax = c mit c = (,, ) T ein. Wie groß ist der zusätzliche Aufwand?

3 Lösung: Zunächst folgt eine kleine Einführung zur LR-Zerlegung. Zuerst wird die Matrix A in ein Produkt zweier Matrizen zerlegt, einmal in die linke untere Dreiecksmatrix L mit -ern auf der Diagonalen, und die rechte obere Dreiecksmatrix R. Daraufhin wird mit der Vorwärtsund der Rückwärtssubstitution das lineare Gleichungssystem gelöst. Eine mögliche Umsetzung der drei Abschnitte in Pseudocode sieht folgermaßen aus:. LR-Zerlegung: A = LR for i =:n % Fuer j e d e Z e i l e i for k=: i % Berechne Elemente L [ i, k ] L [ i, k ] := A[ i, k ] ; for j =:k L [ i, k ] := L [ i, k] L [ i, j ] R[ j, k ] ; L [ i, k ] := L [ i, k ] /R[ k, k ] ; for k=i : n % Berechne Elemente R[ i, k ] R[ i, k ] := A[ i, k ] ; for j =: i R[ i, k ] := R[ i, k] L [ i, j ] R[ j, k ] ;. Vorwärtssubstitution: Ly = b for i =:n y [ i ] := b [ i ] ; for j =: i y [ i ] := y [ i ] L [ i, j ] y [ j ] ; 3. Rückwärtssubstitution: Rx = y for i=n: : x [ i ] := y [ i ] ; for j=i +:n x [ i ] := x [ i ] R[ i, j ] x [ j ] ; x [ i ] := x [ i ] /R[ i, i ] ; Die Grundidee ist für die Algorithmen Gaußelimination und LR-Zerlegung natürlich die gleiche: Bringe A durch Zeilenumformungen auf Zeilenstufenform. Der Gauß-Algorithmus eliminiert sukzessive Einträge in einer Spalte i (äußere Schleife), geht also spaltenweise vor. Dagegen berechnet unser LR-Algorithmus für jedes i der äußeren Schleife die Einträge von L und R in der Zeile i; er arbeitet also zeilenweise. Die zweite Schleife über k läuft dementsprech über die nötigen Spaltenindizes von L und R. Um zu verstehen, warum der LR-Algorithmus die angegebene Form hat, betrachten wir die

4 Zerlegung genauer. A = L R bedeutet in Indexnotation A ik = n L ij R jk, j= i, k =,..., n wobei n die Dimension der Matrix A ist. Die Einträge A ik können in solche unterhalb bzw. oberhalb der Diagonalen aufgesplittet und getrennt betrachtet werden. i > k: Einträge unterhalb der Diagonalen: Zeile mal Spalte im Produkt L R ergibt aufgrund der Nullen eine Summe, die nur bis k läuft (kleinerer der beiden Indizes): A ik = n L ij R jk = j= L ik = k L ij R jk = j= k L ij R jk + L ik R kk j= ( ) k A ik L ij R jk /R kk. j= i k: Einträge oberhalb der Diagonalen: Die Summe läuft nur bis i (kleinerer der beiden Indizes): A ik = n L ij R jk = j= R ik = i L ij R jk = j= i L ij R jk + L ii R ik j= ( ) i A ik L ij R jk / L ii. }{{} j= = Damit erhalten wir exakt die Formeln der LR-Zerlegung aus dem angegebenen Algorithmus. Man macht sich leicht klar, dass aufgrund des zeilenweisen Durchlaufs der äußeren Schleife (über i) stets alle nötigen Werte schon vorhanden sind, um die neuen Einträge L ik und R ik zu berechnen. a) Lösungsschritte bei Anwung von Gauß-Elimination auf das Problem Ax = b / / / 5/ x = / / 3 4 3

5 b) Für die Berechnung der Zerlegung (.) von A = stellen wir zwei Möglichkeiten zur Verfügung: Die erste basiert auf den Algorithmen wie oben beschrieben und damit der Gaußelimination, die zweite auf dem Lösen von Gleichungen aus der Gleichung A = LR. LR-Zerlegung basier auf Gaußelimination Die Matrizen L und R denken wir uns mit lauter Nulleinträgen vorbelegt. Neu hinzukomme Einträge werden mit einer Box gekennzeichnet. i=: L : for k = : nichts zu tun (empty) R : for k = : 3 R[, k] = A[, k]; for j = : empty R = i=: L : for k = : R : for k = : 3 L[, ] = A[, ] = ; for j = : empty L[, ] = L[, ]/R[, ] = /4; L = R[, k] = A[, k]; for j = : R[, k] = R[, k] L[, ] R[, k]; / k = : R[, ] = R[, ] L[, ] R[, ] = / = ; k = 3 : R[, 3] = R[, 3] L[, ] R[, 3] = / 3 = /; R = -/

6 i=3: L : for k = : L[3, k] = A[3, k]; R : for k = 3 : 3 for j = : k k = : empty k = : L[3, ] = L[3, ] L[3, ] R[, ] = ; L[3, k] = L[3, k]/r[k, k]; L = / / R[3, 3] = A[3, 3]; for j = : R[3, 3] = R[3, 3] L[3, j] R[j, 3]; j = : R[3, 3] = / 3 = /; j = : R[3, 3] = / ( /); R = / Damit haben wir unsere gesuchte Zerlegung: A = L R = / / /.

7 Wir beginnen mit allen uns be- LR-Zerlegung basier auf Matrixmultiplikation kannten Informationen über die LR-Zerlegung von A: = Wir sehen 9 Unbekannte auf der rechten Seite, und für jeden der 9 Einträge in A entsteht eine Gleichung. Diese Gleichungen werden wir nun nacheinander (von oben nach unten oder von links nach rechts) durchgehen, und jedes Mal nach der fehlen Unbekannten auflösen. Beginnen wir mit dem Feld (, ):. =. Es gilt: A = 4! = R + + R = 4. Das Gleiche machen wir mit Feld (,): und damit = 4 A =! = L L =. Verfolgen wir dieses Vorgehen weiter, erhalten und lösen wir nacheinander folge Gleichungen: (, ) 4 = R R = 4 (, ) = L 4 L = (3, ) = L 3 4 L 3 = (, ) = R R = (, ) = + R R = (3, ) = + L 3 L 3 = (, 3) 3 = R 3 R 3 = 3 (, 3) = 3 + R 3 R 3 = (3, 3) = R 33 R 33 = Damit ergibt sich dann die selbe Lösung wie oben.

8 c) Substitution: Vorwärtssubstitution Ly = b: / / y y y 3 Rückwärtssubstitution Rx = y: / = x x x y = (5, /, 3) T. = 5 / 3 x = (, 4, 3) T. d) Die Zerlegung ist bereits bekannt, daher müssen zur Lösung von Ax = c lediglich Vorwärts- und Rückwärtssubstitution durchgeführt werden. Der Aufwand hierfür ist O(n ) Operationen (vergleiche O(n 3 ) Operationen für die Berechnung der Zerlegung bei der Lösung von Ax = b). Substitution: Vorwärtssubstitution Lỹ = c: / / Rückwärtssubstitution Rx = ỹ: / x x x 3 y y y 3 = = ỹ = (,, ) T. x = ( /, /, ) T.

9 3) Matrixnorm Die Matrix-Grenzen-Norm- (auch als Spektralnorm bekannt) ist eine der wichtigsten Matrixnormen: Ax A = sup x x wobei die Vektornorm die bekannte Euklidische Länge entspricht: x = x x n. Zeigen Sie, dass für eine diagonale Matrix D gilt: D = max i=,...,n d ii. Hinweis: Sei j so dass d jj = max i=,...,n d ii. Zeigen Sie: a) D d jj (Betrachten Sie ein Eigenvektor zu Eigenwert d jj ), b) D d jj. (Im Allgemeinen, die -Norm von A ist gleich dem größten Singulärwert von A: A = λmax (A T A) = σ max (A).) Lösung: a) D d jj. Sei e j der Vektor mit an der Stelle j und an alle andere Stellen:. e j = j.. e j ist ein Eigenvektor zu Eigenwert d jj : De j = d jj e j. Dann: Dx D = sup De j x x e j = d jje j = d jj e j = d jj b) D d jj :

10 Dx D = sup x x = sup x sup x = sup x = sup d jj x = d jj. x d + x d x nd nn x x n x d jj + x d jj x nd jj x x n x x n d jj x x n Zum Schluss: D d jj, D d jj, dann muss D = d jj gelten. 4) Orthogonale Matrizen Eine Matrix Q heißt Orthogonal, wenn gilt wobei I der Einheitsmatrix entspricht. QQ T = Q T Q = I, Zeigen Sie die folgen Eigenschaften orthogonaler Matrizen: a) det Q = ±, b) Q =. Hinweis: Verwen Sie det(ab) = det A det B und x = x T x. Zusatz: Wie stellen sich diese Eigenschaften für diagonale Matrizen graphisch dar? Zeichnen Sie die Kurven det D = ±, und D = in einem Diagramm von d gegen d. Lösung: a) det Q = ±: = det I = det(qq T ) = det Q det Q T = (det Q). Die Gleichung x = hat nur ± als Lösungen.

11 b) Q = : Qx Q = sup x x = sup x xt Q T Qx xt x = sup x xt Ix xt x = sup xt x x xt x = sup = x Zusatz:.5 det(d) = det(d) = - D = orthogonale.5 d d Unter diagonale Matrizen gibt es 4 orthogonale: ( ) ( ) ( ) ( ),,,. Zusatzaufgabe: Image Stitching mit Gauß-Elimination In dieser Aufgabe verwen wir die Gauß-Elimination zum Lösen linearer Gleichungssysteme im Bereich des Rechnersehens. Eine der Aufgaben, die durch Techniken der Bildverarbeitung bewältigt werden, ist das Zusammensetzen von Einzelbildern (engl. image stiching) bzw. die Erzeugung von Panoramabildern.

12 Will man zwei Bilder I und I aneinandernähen, detektiert der entspreche Algorithmus zunächst sogenannte Merkmalpunkte (engl. feature points) in beiden Bildern. Unter der Annahme, dass beide Bilder einen gemeinsamen Teil einer Szenerie zeigen, gibt es solche Merkmalpunkte in beiden Bildern. Anschließ findet eine Verknüpfung der Merkmalpunkte im ersten Bild I mit den zugehörigen Punkten im Bild I statt, wie in Abbildung gezeigt. Abbildung : Image stiching. In der Praxis treten viele Fehler beim Finden gemeinsamer Bildmerkmale auf. Allerdings gehen wir hier von perfekten Beziehungen zwischen den Punkten aus. Da sich die Punkte in der Bildebene befinden, existiert eine lineare Transformation H (im Englischen als homomorphy bezeichnet), die die Mengen von Merkmalpunkten aufeinander abbildet. Bezeichnet man die Merkmalpunkte in Bild I als x i, i =,... n und in Bild I als x i, i =,... n, so kann die Korrespondenz zwischen ihnen durch x = Hx ausgedrückt werden. Aufgabe: Gegeben seien die beiden Punktepaare I I ( ) ( ) 3 x = x = ( ) ( ). 4 x = x 3 = 4 Bestimmen Sie die entspreche x-transformationsmatrix H. Lösung: Gegeben seien zwei Merkmalpunkte x = [3 ] T und x = [4 3] T im Bild I und deren korrespondiere Punkte x = [ ] T und x = [ 4] T im anderen Bild I. Wie bereits erwähnt, lässt sich der Zusammenhang zwischen korrespondieren Punkten über die Transformation x = H x ausdrücken. Nun gilt es die Einträge der Homography-Matrix zu finden. Notieren wir zunächst den bekannten Zusammenhang für das erste Paar korrespondierer Punkte: x ( ) = H ( x ) ( ) h h = 3 h h x ( ) 4 = H ( x ) h h = h h ( ) 4 3 Nach der Matrix-Vektor-Multiplikation erhalten wir ein System mit vier Gleichungen mit den vier Unbekannten h, h, h, h.

13 3h + h = 3h + h = 4h + 3h = 4h + 3h = 4 Durch Tauschen der zweiten und dritten Gleichung erhalten wir das folge (lineare) Gleichungssystem, das wir mittels Gauß-Elimination lösen: 3 h 3 A h = b 4 3 h 3 h = h Die Gauß-Elimination erfolgt wie folgt: / / Damit lässt sich leicht h = 4, h =, h =, h = berechnen. Weiterer Lösungsweg: Hx = x Gauß : und damit folgt die Lösung H = und Hx = x lässt sich schreiben als H [ ] [ ] x x = x x T [ ] [ ] T T x H T x = x T x T ( ) ( ) 3 H T = ( ) ( ) ( ). 4 H T = 4 ( 4 ),

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 8 Institut für Informatik Prof. Dr. Thomas Huckle Michael Rippl Fabio Gratl Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt: Gaußelimination mit Pivotsuche,

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

4. Großübung. Lösung linearer Gleichungssysteme

4. Großübung. Lösung linearer Gleichungssysteme 4. Großübung Lösung linearer Gleichungssysteme Gesucht x, x, x 3, x 4 R, sodass gilt. mit A R 4 4, x R 4, b R 4 x x + 3x 3 + x 4 = 5 6x 3x 7x x 4 = 5 4x + 4x + 5x 3 5x 4 = 3 8x + x + x 3 + x 4 = 8 3 x

Mehr

Numerik für Informatiker und Bioinformatiker. Daniel Weiß

Numerik für Informatiker und Bioinformatiker. Daniel Weiß Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,

Mehr

Numerisches Programmieren

Numerisches Programmieren Informatics V - Scientific Computing Numerisches Programmieren Tutorübung 3 Jürgen Bräckle, Christoph Riesinger 16. Mai 2013 Tutorübung 3, 16. Mai 2013 1 Gauß-Elimination und Pivotsuche LR-Zerlegung QR-Zerlegung

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MNUM Mathematik: Numerische Methoden Herbstsemester 17 Dr Christoph Kirsch ZHAW Winterthur Aufgabe 1 : Lösung Semesterendprüfung Wir schreiben zuerst die Gleichungen f(x i ; a, a 1, a y i, i 1,,, 1, als

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana [email protected] battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Lineare Gleichungssysteme, LR-Zerlegung

Lineare Gleichungssysteme, LR-Zerlegung Prof Thomas Richter 2 Juni 27 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomasrichter@ovgude Material zur Vorlesung Algorithmische Mathematik II am 22627 Lineare Gleichungssysteme,

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr

Elektrischer Schaltkreis lin. Gleichungssystem

Elektrischer Schaltkreis lin. Gleichungssystem Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) Beispiel : Elektrischer Schaltkreis I R

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen.

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen. Kapitel 4 Lineare Gleichungssysteme 4 Problemstellung und Einführung In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen Lineares Gleichungssystem: Gesucht ist

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( ) Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für

Mehr

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen

Mehr

Aufgaben zu Kapitel 16

Aufgaben zu Kapitel 16 Aufgaben zu Kapitel 16 1 Aufgaben zu Kapitel 16 Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2

Mehr

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix MAV-NUM Applied Numerics Frühlingssemester 08 Dr. Evelyne Knapp ZHAW Winterthur Serie 4 Aufgabe (LR Zerlegung Theorie): (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix 3 0 0 0 (b) Lösen Sie mit

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme 3 Lineare Gleichungssysteme 3 Fortsetzung des Matrizenkalküls Als erstes beweisen wir einen einfachen Satz über den Rang von Matrizenprodukten Satz 3 (a) Für Matrizen A : Ã l m, B : Ã m n gilt rang AB

Mehr

4.2.5 Das Cholesky-Verfahren

4.2.5 Das Cholesky-Verfahren S. Ulbrich: Mathematik IV für Elektrotechnik, Mathematik III für Informatik 34 4.2.5 Das Cholesky-Verfahren Für allgemeine invertierbare Matrizen kann das Gauß-Verfahren ohne Pivotsuche zusammenbrechen

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Aufwand und Komplexität Vorlesung vom Komplexität und Effizienz

Aufwand und Komplexität Vorlesung vom Komplexität und Effizienz Aufwand und Komplexität Vorlesung vom 15.12.17 Komplexität und Effizienz Aufwand: Anzahl dominanter Operationen (worst-case). Beispiel. Landau-Symbol O(n). Beispiel. Definition: Aufwand eines Algorithmus.

Mehr

Cramersche Regel. Satz 2.26

Cramersche Regel. Satz 2.26 ramersche Regel Satz 6 Es sei A R n n eine quadratische Matrix mit det(a) 6= Für das LGS Ax = b sei A j := (a,,a j, b, a j+,,a n ), also die Matrix, die entsteht, wenn in A die j-te Spalte durch den Vektor

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 12 Hausaufgaben Aufgabe 12.1 Sei f : R 3 R 3 gegeben durch f(x) :=

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

Lineare Algebra und Geometrie II, Übungen

Lineare Algebra und Geometrie II, Übungen Lineare Algebra und Geometrie II, Übungen Gruppe (9 9 45 ) Sei A 2 Bestimmen Sie A und A Finden Sie weiters Vektoren u, v R 2 mit u und Au A, beziehungsweise v und Av A Zunächst die Berechnung der Norm

Mehr

Mathematik IT 2 (Lineare Algebra)

Mathematik IT 2 (Lineare Algebra) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 018 Prof Dr N Hungerbühler Serie 8: Online-Test Schicken Sie Ihre Lösung bis spätestens Freitag, den 3 November um 14:00 Uhr ab Diese Serie besteht nur aus Multiple-Choice-Aufgaben

Mehr

Linear Systems and Least Squares

Linear Systems and Least Squares Linear Systems and Least Squares Vortragender: Gelin Jiofack Nguedong Betreuer: Prof. Dr. Joachim Weickert Proseminar: Matrixmethoden in Datenanalyse und Mustererkennung Wintersemester 2015/2016 18. November

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg [email protected] Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2010

EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2010 Prof. Dr. O. Junge, P. Koltai, K. Tichmann Zentrum Mathematik - M3 Technische Universität München EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2 Tutorübungen T6 (Schur-Komplement) (a) Es sei

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

Direkte Verfahren für Lineare Gleichungssysteme

Direkte Verfahren für Lineare Gleichungssysteme Kapitel 1 Direkte Verfahren für Lineare Gleichungssysteme 11 Einführung (mündlich) 12 Das Gaußsche Eliminationsverfahren Es sei A IK n n eine invertierbare Matrix und b IK n ein gegebener Vektor Gesucht

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 2 Beweise Sie folgende

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Matrizenoperationen mit FORTRAN

Matrizenoperationen mit FORTRAN Kapitel 2 Matrizenoperationen mit FORTRAN 21 Grundlagen Bei vielen Anwendungen müssen große zusammenhängende Datenmengen gespeichert und verarbeitet werden Deshalb ist es sinnvoll, diese Daten nicht als

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr