Lineare Gleichungssysteme
|
|
|
- Michael Schenck
- vor 7 Jahren
- Abrufe
Transkript
1 Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x a n x n = b a x + a x a n x n = b =. a m x + a m x a mn x n = b m heißt lineares Gleichungssystem (LGS) mit den Koeffizienten a ij, den rechten Seiten b i und den (unbekannten) Variablen x j. Beispiel : Gegeben: I 3x + 4x = 7 II x + x = 5 ( ) ( ) A = R, b = R 5 ( ) x Gesucht: x = R, so dass A x = b x Lösung: x = 3, x = Homogene und nichthomogene Systeme Sind in einem LGS alle b i = ; i =,...,m, so heißt das System homogen, ist mindestens ein b k, so heißt es inhomogen. Ein Vektor x =(x, x,...,x n ) T R n, der das LGS Ax = b erfüllt, heißt Lösung. Die Menge aller x R n, die das LGS erfüllen, heißt Lösungsmenge oder allgemeine Lösung. Die Lösungsmenge eines LGS bleibt unverändert, wenn: zwei Gleichungen vertauscht werden, eine Gleichung mit α multipliziert wird, ein Vielfaches einer Gleichung zu einer anderen addiert wird.
2 Gauß Algorithmus Der Gauß-Algorithmus stellt eine Strategie zum Lösen des Gleichungssystems Ax = b dar. Das LGS wird gelöst oder als nicht lösbar erkannt, ggf. entstehen auch vieldeutige Lösungen. Der Algorithmus besteht aus zwei Schritten: a) Vorwärtselimination Es werden Vielfache einer ausgewählten Gleichung von den jeweils anderen Gleichungen subtrahiert, so dass umgeformte Gleichungen mit einer unbekannten Variablen weniger entstehen. Dieser Vorgang wird zwecks Eliminierung weiterer unbekannter Variablen wiederholt,bis nur noch eine Gleichung bleibt, die dann zu lösen ist. b) Rückwärtssubstitution Die bereits ermittelten Variablen werden von unten nach oben in die jeweils ausgewählten Gleichungen eingesetzt, so dass man jeweils eine Lösung für eine weitere Variable erhält. Beispiel a) Vorwärtseliminierung I x + 4x x 3 = 6 II x x + 5x 3 = III 4x + x x 3 = I x + 4x x 3 = 6 I II I: x 3x + 6x 3 = 3 II III- I: x 7x + x 3 = III III 7 3 II : x x 3 = 3 III x 3 = 4 Das System I, II, III wird umgeformt zu I, II, III Beispiel -Fortsetzung b) Rücksubstitution x 3 in II : 3x = 3 x = 3 x, x 3 in I: x = 6 x = 4 Lösung: x = ( 4, 3, ) T = = Beispiel CH Finde positive ganzzahlige x, x, x 3, so dass gilt x Na + x Cl x 3 NaCl Aus der Bilanz für jedes der beteiligten Elemente erhalten wir je eine Gleichung ( ) x = x 3 x = x 3 Das Gleichungssystem ist homogen, die Matrix hat Rang, es gibt einen d Lösungsraum, der aufgespannt wird von der Lösung x =(, /, ) T. Skalieren mit k = liefert eine teilerfremde ganzzahlige Lösung, also Na + Cl NaCl
3 Beispiel CH Beispiel 4x4 Finde positive ganzzahlige x, x, x 3, x 4, so dass gilt x C H 5 OH + x O x 3 CO + x 4 H O Bilanzen: x = x 3 C 6x = x 4 H x + x = x 3 + x 4 O 6 A = ; b = Das Gleichungssystem ist homogen, die Matrix hat Rang 3, es gibt einen d Lösungsraum. skalieren! Noch ein Beispiel: x As S 3 + x HNO 3 + x 3 H O x 4 H3AsO4 + x 5 H SO 4 + x 6 NO Beispiel 4x4, Fortsetzung Beispiel 4x4, Fortsetzung x = x 4 = x 3 = ( + )/( ) = x = ( + )/( ) = x = ( ) ( )= ( ) T,,, eindeutige Lösung
4 Beispiel: Abhängigkeit (über Regularität, Faktorisierung und Determinanten) A = 4 det A = 6 A = 3 ; b = letzte Zeile der Matrix ist Summe der ersten drei Zeilen bei rechter Seite auch letzte Zeile redundant Lösungsmenge identisch der vom 3 4 System formal: zusammenfassend: rk A = 3 x = x 4 = α x 3 = α x = ( + α)/( ) = α x = α + + α + + α = + α ( ) T,,, + α (,,, ) T,α R
5 Beispiel: Widerspruch Fortsetzung A = 3 Widerspruch (weil b 4 b + b + b 3 ) ; b = formal: Zusammenfassung Details Theorem Das LGS Ax = b ist genau dann lösbar, wenn der Rang der Koeffizientenmatrix A gleich dem der erweiterten Koeffizientenmatrix Ab =(A b) ist, rk(a) =rk((a b)). Theorem Die Lösung des lösbaren LGS Ax = b hat die Struktur S = x b + ker(a), wobei x b eine beliebige spezielle Lösung und ker(a) die homogene Lösung, d.h. die des homogenen LGS Ax = ist. Die Ränge der Koeffizientenmatrix A und der erweiterten Koeffizientenmatrix Ab =(A b) ergeben sich nach der Vorwärtselimination beim Gaußalgorithmus. (Zählen der Pivotelemente) Die Basisdarstellung von ker(a) findet man aus der Rückwärtssubstitution.
6 Beispiele Immer noch mehr Beispiele a) x + 3x + x 3 = 9 x 8x + x 3 = 85 6x + x + 3x 3 = 3x + x + 5x 3 = 6 b) 3x x + x 3 = 7x 4x x 3 = x 3x x 3 = 5 x + x + 5x 3 = 5x + 7x 3 = 7 c) 3x x + x 3 = 7x 4x x 3 = x 3x x 3 = 5 x + x + 5x 3 = 5x + 7x 3 = 7 d) 6x + 4x + 8x 3 + 7x 4 = 3x + x + 5x 3 + 8x 4 = 8 3x + x + 7x 3 + 7x 4 = 4 x 3 x 4 = 4 Lösungen zu den letzten 4 Beispielen a) x = 5 b) x = t c) leere Menge (Widerspruch, keine Lösung) d) x = + u 3 + v 4 4 en Die Determinante der Koeffizientenmatrix A ergibt sich nach der Vorwärtselimination beim Gaußalgorithmus. (Multiplizieren der Pivotelemente) Statt Rückwärtssubstitution kann man auch die Elimination fortsezen, bis Diagonalgestalt (Einheitsmatrix) vorliegt. Dann ist die Lösung sofort ablesbar. (Gauß-Jordan). Gauß- und Gauß-Jordan sind auch mit mehreren rechten Seiten ausführbar. So lassen sich insbesonder Inverse berechnen. (Einheitsmatrix als rechte Seite)
7 Cramersche Regel Formel für n = : Die Cramersche Regel gibt für die i-te Koordinate x i folgende Formel an: x i = = det a (A ib + A i b A ni b n ) a... b... a n a... b... a n = D i det a..... D a n... bn... a nn Hier wurde die i-te Spalte in a durch b ersetzt. Für n = und das System erhält man als Lösung: a x + a x = b a x + a x = b x = b a b a a a a a x = a b a b a a a a. Beispiel für n = 3: x + x + 3x 3 = 9 x x + x 3 = 3x + x + x 3 = 7 a = 3 3 det(a) = ( ) ( ) 3 = 3 Lösung x x x D = 7 = D = 3 7 = 6 9 D 3 = 3 7 = 39 = 3 6 =
8 Mehr analytische Geometrie Aufgabe: Bestimme Abstand Punkt Ebene (im Raum R 3 ) Punkt c =(c, c, c 3 ) T R 3 ; Ebene d + x a () + x a () ; Richtungsvektoren a () R 3, a () R 3, linear unabhängig; Stützpunkt d R 3 ; Lineares Gleichungssystem: Ax = b = c d hierbei sind x und x die Flächenkoordinaten in der gesuchten Ebene, die Spalten der Matrix A sind die Richtungsvektoren a (j), j =,. wenn lösbar, so liegt der Punkt in der Ebene doch was, wenn nicht?? Suche Vektor a (3), der senkrecht zu a () und zu a () steht also aus Kern von A. Erweitere A um Spalte a (3) : Ā = (a () a () a (3)) die neue Matrix Ā hat Rang 3, jedes LGS eindeutig lösbar löse jetzt Ā x = b Komponente f = x 3 a (3) ist Lot auf Ebene Norm = f = gesuchter Abstand Normalform Wegen a (3) a (j), j =,, gilt A T f = A T (Ax b) = hier ist x =(x, x ) T =( x, x ) T und f = b Ax Wir lösen also einfach nur das System A T Ax = A T b Hyperebenen (Geraden in der Ebene, Ebenen im Raum, n -dimensionale affine Teilräume im R n ) lassen sich als Lösung einer linearen Gleichung schreiben E = {y : Ny = e} hierbei sei N ein normierter Vektor, der senkrecht zur Ebene steht es gilt dist (x, E) = Nx e
9 Verwandte Aufgaben Abstand zweier Geraden im Raum (windschief? Schnittpunkt?) Durchstoßpunkt Gerade Ebene Abstand Punkt Gerade (in der Ebene, im Raum)
( ) Lineare Gleichungssysteme
102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv
Lineare Gleichungssysteme (Teschl/Teschl 11.1)
Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
6. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)
Corinne Schenka Vorkurs Mathematik WiSe 2012/13
4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:
Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren
Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(
A2.3 Lineare Gleichungssysteme
A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.
Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische
Lineare Gleichungssysteme
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter
Lineare Gleichungssysteme - Grundlagen
Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]
(Allgemeine) Vektorräume (Teschl/Teschl 9)
(Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:
Matrizen und Determinanten
Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:
Analytische Geometrie II
Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe
LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1
LINEARE GLEICHUNGSSYSTEME 1. Ein kurzes Vorwort Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie 2 x 1 + 2 x 2 = 3 6 a + 4 b = 3 (a) (b) 4 x 1 + 3 x 2 = 8 3 a + 2
LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow
LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL
7 Lineare Gleichungssysteme
118 7 Lineare Gleichungssysteme Lineare Gleichungssysteme treten in vielen mathematischen, aber auch naturwissenschaftlichen Problemen auf; zum Beispiel beim Lösen von Differentialgleichungen, bei Optimierungsaufgaben,
Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung
Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter
Mathematik 1, Teil B. Inhalt:
FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A
133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des
1 Geometrie - Lösungen von linearen Gleichungen
Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem
Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung
Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik [email protected] v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
Lineare Gleichungssysteme
Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4
Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:
Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es
Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya
Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
1 0 1, V 3 = M, und λ A = λa
Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a
Analytische Geometrie mit dem Voyage 1
Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor
3.6 Eigenwerte und Eigenvektoren
3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse
(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2
Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit
Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11
Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)
Quadratische Matrizen
Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch
WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch
Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen
Lineare Algebra I Zusammenfassung
Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition
In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)
34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)
Studiengänge) Beispiele
Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. DETERMINANTEN Determinanten
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. [email protected] http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen
Lösungen zum 5. Aufgabenblatt
SS 2012, Lineare Algebra 1 Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Mathematischer Vorkurs Lösungen zum Übungsblatt 5
Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 [email protected] Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion
1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.
Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar
3.4 Der Gaußsche Algorithmus
94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,
Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7
Mathematik für Wirtschaftswissenschaftler im WS 203/4 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Aufgabe 27 Sei eine lineare Abbildung f : R 4 R 3 gegeben durch f(x, x 2, x 3 ) = (2 x 3 x 2
Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%
Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen
3. Übungsblatt Aufgaben mit Lösungen
. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen
1 Singulärwertzerlegung und Pseudoinverse
Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese
4. Vektorräume und Gleichungssysteme
technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume
Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010
Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und
Aufgaben zu Kapitel 14
Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt
Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden
Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der
Lineare Algebra. Teil III. Inhaltsangabe
Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24
Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014
Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................
Analytische Geometrie
Analytische Geometrie Übungsaufgaben Lineare Gleichungssysteme Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Pflichtteilaufgaben (ohne GTR) Aufgabe : Löse die folgenden linearen Gleichungssysteme:
Wirtschaftsmathematik Formelsammlung
Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2015 (a + b) 2 = a 2 +2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) =a 2 b 2 Fakultät (Faktorielle) n! =1 2 3 4 (n 1) n Intervalle Notation
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Mathematik Analytische Geometrie
Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,
Skalarprodukte (Teschl/Teschl Kap. 13)
Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +
Lineare Gleichungssysteme und Gauß'scher Algorithmus
Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier
Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie
Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen
Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.
1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen
4 Lineare Algebra (Teil 2): Quadratische Matrizen
4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,
Vektor und Matrixnormen Vorlesung vom
Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse
5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge.
1. Definition von drei Vektoren sind l.u. 2. Wie überprüft man 3 Vektoren mit Hilfe eines LGS auf lineare Unabhängigkeit? 3. Definition von Basis?... wenn sich der Nullvektor nur als triviale LK darstellen
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden
Analytische Geometrie I
Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN
Schule Thema Bundesgymnasium für Berufstätige Salzburg Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Unterlagen LehrerInnenteam Sehr oft treten in der Mathematik
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg Spezialfälle und Rechenregeln Spezialfälle der Matrimultiplikation A = (m
3 Matrizen und Determinanten
31 Matrizen 311 Matrizen und Gleichungssysteme Grundlegende Begriffe der linearen Algebra und linearen Optimierung sind die Begriffe Matrix, Vektor, Determinante und lineares Gleichungssystem Beispiel
Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,
Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog
Mathematik I Übungsblatt 5 WS 12/13 Prof. Dr. W. Konen, Dr.A.Schmitter
Bereiten Sie die Aufgaben parallel zu den in der Vorlesung besprochenen Themen für die nächsten Übungsstunden jeweils vor! Aufgabe 5.1 Vektoroperationen Gegeben sind die folgenden Vektoren: u = 3 1 2 v
d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1
2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach
Serie 10: Inverse Matrix und Determinante
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die
Elemente der Analysis II
Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel
Lineare Gleichungssysteme
Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare
Gleichungssysteme mit zwei Variablen
Gleichungssysteme mit zwei Variablen Eine alte chinesische Aufgabe lautet: In einem Stall befinden sich 5 Tiere, und zwar Hühner und Kaninchen. Die Tiere haben zusammen 9 Beine. Wie viele Hühner und wie
1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema
1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung
Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,
Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,
Lehrskript Mathematik Q12 Analytische Geometrie
Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
